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Abstract

Masking is a promising countermeasure against side-channel attack, and share slic-
ing is its efficient software implementation that stores all the shares in a single register
to exploit the parallelism of Boolean instructions. However, the security of share slicing
relies on the assumption of bit-independent leakage from those instructions. Gao et al.
recently discovered a violation causing a security degradation, called the bit-interaction
leakage, by experimentally evaluating ARM processors. However, its causality remained
open because of the blackbox inside the target processors. In this paper, we approach this
problem with simulation-based side-channel leakage evaluation using a RISC-V processor.
More specifically, we use Western Digital’s open-source SweRV EH1 core as a target plat-
form and measure its side-channel traces by running logic simulation and counting the
number of signal transitions in the synthesized ALU netlist. We successfully replicate the
bit-interaction leakage from a shifter using the simulated traces. By exploiting the flexi-
bility of simulation-based analysis, we positively verify Gao et al.’s hypothesis on how the
shifter causes the leakage. Moreover, we discover a new bit-interaction leakage from an
arithmetic adder caused by carry propagation. Finally, we discuss hardware and software
countermeasures against the bit-interaction leakage.

1 Introduction

There is a growing demand for extending the IT systems to the physical world by using network-
enabled embedded devices, and there is a growing demand for efficient and secure implementa-
tion of cryptography. There are many use cases of operating such embedded devices in a hostile
environment wherein the device owners are potential attackers. Given the physical access, such
attackers obtain information leakage via physical side-channels such as execution time, power
consumption, and electromagnetic radiation to attack cryptography. Such side-channel attack
(SCA) is a realistic threat to secure embedded devices [21], and researchers have been studying
new attacks and defenses for more than two decades since the Kocher et al.’s discovery of simple
and differential power analyses [12, 14].

Masking is arguably the most well-studied countermeasure against SCA, which redundantly
encodes a sensitive intermediate variable into a set of variables called shares [4]. In a (d + 1)-
share Boolean masking, for instance, we encode a target variable x into its shared representation
x = (x0, x1, · · · , xd) satisfying x =

⊕d
i=0 xi. Then, we perform the target cryptographic opera-

tion while maintaining the shared representation, which efficiently randomize the computation
and eliminate the correlation between the sensitive intermediate variable and side-channel leak-
age. A large computational overhead is the major drawback of masking; the computational
cost grows quadratically with the number of shares (d + 1), which is the security parame-
ter. The overhead is particularly serious for resource-constrained devices, and efficient masking
implementation is an important research subject.

Barthe et al.’s share slicing is a technique for efficiently implementing a Boolean masking in
software [2]. The incompatibility between the bit-wise masking and the word-wise processing
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in CPUs is one reason of inefficiency, and share slicing addresses this issue by concatenating
the shares into a word, e.g., x0||x1|| · · · ||xd, and storing it into a general-purpose register. By
using the CPU’s Boolean instructions with this register, we can efficiently process these bits in
parallel, in the same way as the conventional bit-slicing technique [15, 3]. Since we put several
shares in the same register, the interaction between the bits in the register immediately causes
an exploitable side-channel leakage; the bit-wise independence is the prerequisite for the security
of share slicing, which looks reasonable at first glance considering the CPU’s instructions being
bit-wise.

Gao et al. rigorously studied the prerequisite behind share slicing by experimentally evaluat-
ing ARM processors and discovered a violation, called the bit-interaction leakage, which causes
a security degradation in a masking scheme [8]. They observed the bit-interaction leakage only
with particular shift instructions, and hypothesized that a barrel-shifter circuit is the source of
the leakage. However, the verification of the hypothesis remained open because the black-box
nature of the target ARM processor prevented us from understanding its internals.

We study the bit-interaction leakage with simulation-based leakage evaluation using an open-
source RISC-V processor. More specifically, we choose Western Digital’s SweRV EH1 Core [5]
as a target, and evaluate its side-channel leakage by counting the number of signal transitions
(i.e., toggles) in a logic simulator using a synthesized netlist [22]. The target processor’s source
code in SystemVerilog is publicly available [5], which enable the research community to publicly
discuss and modify the circuit structure. We study the causality of bit-interaction leakage by
the following techniques enabled the above simulation environment. First, we pinpoint the
leakage source by simulating side-channel leakage for each component. Second, we modify the
target processor to observe how it changes the side-channel leakage.

1.1 Contributions

Our contributions are fourfold. We first make a simulation-based evaluation environment and
replicate the bit-interaction leakage. Then, we pinpoint the source with finer-grained simulation,
followed by the experiments verifying why these components cause bit-interaction leakages.
Finally, we discuss software and hardware countermeasures. Below we briefly summarize the
contributions and how they correspond to the paper organization.

Leakage Simulator based on Open-Source RISC-V Processor (Section 3) Our sim-
ulation environment enables us simulating side-channel leakage from an open-source RISC-V
implementation (SweRV EH1) by counting the number of signal transitions in a logic simulator.
We successfully replicate the bit-interaction leakage using simulated side-channel traces.

Causality of Bit-Interaction Leakage from Shifters (Section 3 and Section 4) We
narrow down the leakage source into the shifter circuits in the arithmetic logic unit (ALU). We
further verify the Gao et al.’s hypothesis that signal transition in its control signal being the
cause of leakage.

Yet Another Bit-Interaction Leakage from an Arithmetic Adder (Section 3 and
Section 4) Our simulation identifies that an arithmetic adder in ALU also causes a bit-
interaction leakage through carry-propagation paths.

Proposing Countermeasure Against Bit-Interaction Leakage (Section 5) We discuss
possible countermeasures to eliminate the bit-interaction leakage. The target processor gener-
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ates the bit-interaction leakage even with Boolean (cf. add/shift) instructions because of the
particular ALU structure that runs all the combinatorial operations in parallel and selects one
later. Addressing the problem, we discuss a new ALU circuit that stops the adder and shifter
circuits during irrelevant instructions thereby eliminating the bit-interaction leakage while ex-
ecuting Boolean instructions. Moreover, we discuss a software countermeasure to eliminate
the bit-interaction leakage from the shift instructions. The method dispatches several dummy
instructions in advance, which prevents the signal transition and the bit-interaction leakage.

2 Preliminary

We briefly recall the bit-interaction leakage and the target processor. Masking is well-studied
countermeasure against side-channel attack, and share-slicing is its efficient software implemen-
tation. The bit-interaction leakage is a certain type of side-channel leakage that can defeat
share slicing. SweRV EH1 is an open-source implementation of the RISC-V instruction set.

2.1 Masking and Share-slicing

Masking is arguably the most well-studied countermeasure against SCA. It encodes a sensitive
intermediate variable x into a set of shares namely x [4]. One common realization is Boolean
(i.e., additive) masking, in which the sum of all the shares represents the original variable. More
specifically, with (d + 1)-share masking, we have

x = (x0, x1, · · · , xd) s.t. x =

d⊕
i=0

xi. (1)

Realizing the entire cryptographic operation in the form of shares is the core idea of masking.
Given a target function f : x 7→ y, we can construct a map between the shares namely f : x 7→ y,
which realizes the original function while preserving the shared representation of the input and
output. We can achieve the construction of f by decomposing f with basic operations (such as
AND and XOR etc.) and then replacing each operation with its corresponding masked gadget.
The shared representation efficiently randomize the computation and eliminate the correlation
between the sensitive intermediate variable and side-channel leakage.

A large computational overhead is the major drawback of masking. The number of shares
(d + 1) corresponds to the security parameter d [11], the number of probes the adversary has
access to, and we should choose sufficiently large d. Computational cost, memory space, and
randomness grow with the number of shares (d + 1). In particular, the computational cost
in circuit complexity grows quadratically with the number of shares because of the additional
effort needed to realize a non-linear operation (i.e., AND) in the shared representation [11].
This is a serious issue especially for embedded devices with limited computational resources.
Consequently, researchers have been studying efficient masking and its implementation.

Bit-slicing is a common technique for efficient software implementation, which decomposes
the target algorithm into bit operations, and execute them in parallel by using Boolean in-
structions in a CPU [15, 3]. Efficient software implementation of masking using the bit-slicing
technique is an active research field [10, 2]. In particular, share slicing is first introduced by
Barthe et al. [2] and then elaborated by Gao et al. [8]. The particular way of slicing character-
izes share-slicing; share-slicing packs all the shared bits of x into a word, e.g., x0||x1|| · · · ||xd,
and stores into a general-purpose register.
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2.2 Bit-Interaction Leakage and its Causality

Gao et al. rigorously studied the security of share-slicing and discovered the bit-interaction
leakage which causes a security degradation. Since share-slicing puts several shares in the same
register, the interaction between the bits in the register immediately causes an exploitable side-
channel leakage. Gao et al. experimentally evaluated the ARM Cortex M0 and M3 processors
and discovered that such a bit-interaction leakage exists and is measurable, and causes a security
degradation in a masking scheme [8].

Based on the observation that bit-interaction leakage occurs only with certain shift instruc-
tions, Gao et al. hypothesized that a transient phenomenon in a barrel shifter causes the
leakage. A barrel shifter, shown in Figure 1, is a circuit for realizing variable shifts and is com-
posed of a series of 2n-bit shifters and selectors. For simplicity, we focus on the first selector
for the 32-bit input x and its 1-bit shift denoted by x � 1. When the control signal shamt[0]
arrives later than x, there is a signal transition from x to x � 1 at the selector output, caus-
ing a side-channel leakage depends on two neighboring bits, i.e., a bit-interaction leakage. In
summary, the signal transition in shamt causes the bit-interaction leakage in the barrel shifter.
Verification of the hypothesis remained open because the black-box nature of the target ARM
processor prevented us from understanding its internals.

32
<<1

Input
<<2 <<4 <<8 <<16

Output

shamt[0] shamt[1] shamt[2] shamt[3] shamt[4]

32

Figure 1: A typical 32-bit barrel shifter for left-logical shift composed of a series of constant
shifts and selectors

2.3 RISC-V and SweRV EH1 Core

RISC-V [20] is an open instruction-set architecture, attracting much attentions from the semi-
conductor industry as a free and open alternative to ARM and other micro-architectures. There
are several open-source implementations, including Rocket Chip [1], SonicBOOM [23], and
SweRV EH1 Core [5], which makes RISC-V a desirable platform for studying side-channel
leakage from processors.

SweRV EH1 Core is a RISC-V implementation developed by Western Digital, of which
source code publicly available with Apache License 2.0 [5]. SweRV is written in synthesiz-
able SystemVerilog (cf. Rocket Chip written in Chisel), which makes its integration to the
conventional digital-design flow easier.

We briefly review the details about the SweRV EH1’s ALU in Figure 2, which is essential
for understanding the bit-interaction leakage. There are three inputs: A IN and B IN are 32-bit
input operands, and ALU codes is a control signal deciding which instruction to execute. There
are pipeline registers that update their values the beginning of a clock cycle. Upon the register’s
update, the new data in the registers propagate to the combinatorial logic represented as the
boxes labeled with Comb bitwise, Comb shifters1, and Comb adder. These combinatorial

1The Comb shifters submodule consists of the left-logical, right-logical, and right-arithmetic shifts expressed
with SystemVerilog’s operators, i.e., <<, >>, and >>>.
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circuits run in parallel independently to the instruction being executed. Finally, the AND-OR
tree at the end, controlled by the ALU codes signal selects a particular output depending on
the instruction. We believe that this is a textbook implementation of ALU [19].

Comb_bitwise

Comb_shifters

Comb_adder

32

32

A_IN

B_IN

Output
32

ALU_codes

Figure 2: SweRV EH1’s ALU that runs all the combinatorial circuits in parallel, and se-
lects one output later. Comb bitwise is the combinatorial circuit for Boolean instructions.
Comb shifters is the combinatorial circuit for various shift instructions. Comb adder is the
arithmetic adder. ALU codes control outputs of each combinatorial circuit. The border indi-
cates the range of the ALU module written in SystemVerilog.

3 Leakage Simulation Environment using Open-Source
Processor

In this section, we describe our simulation environment and replicate the bit-interaction leak-
age using simulated side-channel traces. Finally, we pinpoint the sub-components inside ALU
causing the bit-interaction leakage.

3.1 Simulation Method

Simulation based side-channel evaluation is indispensable for verifying the security before fab-
ricating a chip, and there are several simulation-based evaluations of side-channel attack in
different levels e.g., functional, gate-level, SPICE, and electromagnetic simulations. Among
them, we choose gate-level simulation [22] which can simulate the Gao et al.’s hypothesis on
the bit-interaction leakage (see Section 2.2) at low computational cost.

In gate-level simulation, we simulates side-channel traces by the number of signal transitions
in logic simulation using a netlist i.e., a circuit composed of standard cells usually generated
by a logic synthesizer. It can simulate transient phenomena, also known as glitches, known to
cause security degradation in masking countermeasures [17]. Gate-level simulation is cheaper
than finer-grained alternatives such as SPICE simulation, and we can easily integrate it to
the standard design flow because logic engineers who design cryptographic circuits are usually
familiar with logic simulators. We can choose either pre- and post-P&R (place and route)
simulation. The latter can provide more accurate and realistic delay information at the cost
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of additional effort of making P&R. In this paper, however, we choose pre-P&R simulation by
prioritizing shorter turn-around time in experiments.

Limitation As a downside, however, gate-level simulation only considers gate-level phenom-
ena. More specifically, it does not simulate the electrical coupling effect [6, 13] which is hypoth-
esized as yet another cause of the bit-interaction leakage. The gate-level simulation is sufficient
for detecting the bit-interaction leakages in the gate level, as we will see in the later sections,
however, missing bit-interaction leakage in gate-level simulation does not promise its absence
in a real chip. Verification of the bit-interaction leakage by the coupling effect is beyond the
scope of this paper.

3.2 Simulation Environment

SweRV Configuration We instantiate the SweRV EH1 [5] processor with its default config-
uration parameters except for the following two options. First, we set the number of ALUs to
two (cf. four) to simplify the analysis. Second, we enable the clock gating which we believe a
natural choice considering an ASIC implementation.

Logic Synthesis We focus on the bit-interaction leakage from ALU and simulate the leakage
exclusively from the ALU. We first generate a netlist by synthesizing the ALU’s source code
(design/exu/exu alu ctl.sv in the SweRV EH1’s source code [5]) using NanGate 45-nm stan-
dard cell library [18] and Synopsys Design Compiler. For the simulation efficiency, we keep the
non-ALU components intact at the RTL-level description. After the synthesis, we make func-
tional verification by replacing the original ALU code with the synthesized netlist and running
a logic simulation using Cadence Incisive to check if a test succeeds. During the simulation, we
back-annotate the delay information in SDF and run the logic simulation at the 1-picosecond
precision.

Extending Logic Simulator for Counting Toggles We simulate side-channel leakage
from the ALU by counting the number of signal transitions at the standard cells composing
the synthesized netlist. We realize it by using Verilog Procedural Interface (VPI) [7, 16], which
enables us to assign a callback function called upon the target signal’s change. More specifically,
we design a callback function that counts the number of 0 → 1 output transitions (i.e., rising
edges) in each clock cycle to simulate current consumption at a VDD pin [22]. We assign the
callback function to all the standard cells in the ALU’s netlist, which enable us to measure the
ALU’s total toggle counts representing side-channel leakage. For narrowing down the leakage
source in the later experiments, we separate the ALU into smaller submodules, corresponding
to Comb adder, Comb shifters and Comb bitwise in Figure 2, without changing the original
logical structure before the synthesis. Then, we count the number of toggles for each of the
submodules representing Comb bitwise, Comb shifters and Comb adder.

3.3 Experimental Validation

We verify our simulation environment by replicating the bit-interaction leakage using simulated
side-channel traces.

6



Simulation Based Evaluation of Bit-Interaction Side-Channel Leakage on RISC-V Asano and Sugawara

Target Software Snippet Figure 3 shows the code snippet the processor executes during
the simulation. Figure 3-(a) to -(c) correspond to three instructions we examine namely the
logical-left shift (slli), xor (xori), and add (addi) instructions2. The target takes the sensitive
value in the general-purpose register t3, processes it with the immediate 1, and stores the result
to another register t4.

The remaining lines are experimental instrumentation. In particular, we use nop instructions
in the 12th and 17th lines, which is the shortcut of addi x0, x0, 0, in order to initialize the
ALU into a known state.

(a) slli

1 // t0: loop count
2 // t1: loop var i
3 // t2: array address
4 loop:
5 // t3 = *( array)
6 lw t3 , 0(t2)
7 // array++
8 addi t2, t2, 4
9 // i++

10 addi t1, t1, 1
11 // nops
12 addi x0, x0, 0
13 ...
14 // t4 = t3 << 1
15 slli t4, t3, 1
16 // nops
17 addi x0, x0, 0
18 ...
19 // back to loop
20 bne t0, t1, loop

(b) xori

1 // t0: loop count
2 // t1: loop var i
3 // t2: array address
4 loop:
5 // t3 = *( array)
6 lw t3 , 0(t2)
7 // array++
8 addi t2, t2, 4
9 // i++

10 addi t1, t1, 1
11 // nops
12 addi x0, x0, 0
13 ...
14 // t4 = t3 ^ 1
15 xori t4, t3, 1
16 // nops
17 addi x0, x0, 0
18 ...
19 // back to loop
20 bne t0, t1, loop

(c) addi

1 // t0: loop count
2 // t1: loop var i
3 // t2: array address
4 loop:
5 // t3 = *( array)
6 lw t3 , 0(t2)
7 // array++
8 addi t2, t2, 4
9 // i++

10 addi t1, t1, 1
11 // nops
12 addi x0, x0, 0
13 ...
14 // t4 = t3 + 1
15 addi t4, t3, 1
16 // nops
17 addi x0, x0, 0
18 ...
19 // back to loop
20 bne t0, t1, loop

Figure 3: The assembly code used for the simulation. The sub-figures (a)–(c) differ in the target
instructions in the line #15. We load the test vectors in the general-purpose register t3.

Test Vector for Leakage Assessment We conduct the test vector leakage assessment
(TVLA) [9] to evaluate the bit-interaction leakage. By following the Gao et al.’s work [8],
we use a pair of test vectors namely


TVrandom := {r31||r30|| · · · ||r4||r3||r2||r1||r0︸ ︷︷ ︸

32bit

| ri ∈ {0, 1}}

TVshare0s := {s15||s14|| · · · ||s4||s3||s2||s1||s0︸ ︷︷ ︸
32bit

| si ∈ {00, 11}} (2)

We feed these values to the target instructions through the general-purpose register t3. TVrandom

consists of 32-bit random values. Meanwhile, the 32-bit values in TVshare0 are composed of
either 00 or 11 representing all zeroes in share slicing with a 2-share masking. The expected
Hamming weights of both TVrandom and TVshare0 is 16, and their side-channel leakage should
be indistinguishable as far as the bits in the register are independent. Finally, we compare the
two sets of traces, corresponding to TVrandom and TVshare0, with Welch’s t-test. Rejection in the
t-test implies the presence of the bit-interaction leakage.

2We use the immediate (I-type) instructions for simplicity. The leakage from the register (R-type) instruc-
tions should be the same because they use the same ALU.
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We use 20,000 test vectors for each of TVrandom and TVshare0. We repeat the measurements
for the three target instructions, i.e., slli, xori, and addi. For the later experiments, we
measure the toggles in different resolutions: Comb shifters, Comb adder, Comb bitwise, and
the entire ALU.

3.4 Replicating the Bit-Interaction Leakage

Figure 4-(a) to -(c) show the results with the slli, xori, and addi instructions. In each graph,
the vertical and horizontal axes represent the t-statistic and the number of side-channel traces,
respectively. Each subfigure has 3–4 traces corresponding to the resolution of the measurement3.
The red horizontal lines indicate ±4.5, which are the typical thresholds for rejecting the null
hypothesis.

(a) slli instruction
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(b) xori instruction
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(c) addi instruction
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Figure 4: Bit-interaction leakage from the SweRV EH1 core’s ALU. The sub-figures (a)–(c)
correspond to the slli, xori, and addi instructions. Each graph shows the t-statistic and
the number of side-channel traces. Each graph contains 3 or 4 traces corresponding to the
side-channel traces from Comb shifters, Comb adder, Comb bitwise, and the entire ALU.

We observe t-statistics exceeding the thresholds with all the instructions, successfully repli-
cating the bit-interaction leakage. In particular, we always observe the bit-interaction leakage
from Comb shifters and Comb adder. Meanwhile, the t-statistic fit within the (−4.5, 4.5)
range while measuring Comb bitwise with the xori instruction. We can interpret the results
as follows: Comb shifters and Comb adder cause the bit-interaction leakage. Comb bitwise is
leak free, but the entire ALU shows the bit-interaction leakage even with the xori instruction
because the ALU circuit in Figure 2 activates Comb shifters and Comb adder.

4 Causality of Bit-Interaction Leakage

In this section, we study the mechanism behind the bit-interaction leakage from Comb shifters

and Comb adder observed in the previous experiment.

4.1 Barrel shifter

The bit-interaction leakage from Comb shifters confirms with the Gao et al.’s hypothesis that
a barrel shifter causes the bit-interaction leakage. As discussed in Section 2.2, Gao et al. further

3We omit the Comb bitwise in Figure 4-(a) and (c) because we observe no switching activity in the target
component, and thus the corresponding t-statistics are meaningless.
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hypothesised that signal transition in the selector signal is the problem, which we will verify in
the next experiment.

In order to verify the hypothesis, we modify the shifter in Figure 1 to stop the signal
transition in the control signal. More specifically, we insert buffers in front of the shifter
input so that the shamt signal always arrives earlier, which efficiently removes the phenomenon
Gao et al. hypothesized as the cause.

In order to simplify the experiment, we focus on an independent barrel shifter instead of the
EH1 core. More specifically, we implement a 32-bit logical-left shifter using the << operator4

in the same way as the SweRV EH1 core. We also implement a modified shifter which is the
same way except for inserting buffers in front of the input signal. Then, we synthesize the
corresponding netlists and simulate them in the same ways as the previous experiment. The
amount of left shift is always set as 1 to represents the target in the previous experiment, i.e.,
slli t4, t3, 1. Before each measurement, we initialize all the inputs with zeros to set the
circuit into a known state.

For this experiment, we evaluate the bit-interaction leakage between any pair of the bits
in the 32-bit input, in contrast to the previous experiments which considered the interaction
between adjacent bits only. In other words, we conduct the following measurements to find the
specific pair of bits which occurs bit-interaction leakage. We realize the evaluation by measuring
the target shifter with random 32-bit values and then split them into two groups afterwards.
More specifically, we denote S ⊂ {0, 1}32 be the input set. For a 32-bit shifter input r ∈ S, we
denote its i-th bit as [r]i. For evaluating the bit-interaction leakage between i-th and j-th bits,
we split S into the following two groups:{

S(i,j)1 := {r ∈ S | [r]i ⊕ [r]j = 1}
S(i,j)0 := {r ∈ S | [r]i ⊕ [r]j = 0}

(3)

Finally, we run a t-test comparing the side-channel traces corresponding to S(i,j)1 and S(i,j)0 .
Rejection in the test implies a bit-interaction leakage between the i-th and j-th bits. We
measure 50,000 traces, i.e., |S| = 50, 000, and conduct t-tests for any pair of i and j.

Figure 5-(a) and -(b) show the experimental results for the two shifters before and after
inserting the input buffer. Each sub-figure shows t-statistic for any (i, j) combination with a
heatmap. More specifically, the horizontal and vertical axes represent the indices of the target
bits j and i, and the color represents the t-statistic for the given pair. We show the results only
for i < j because of the symmetry.

With the shifter without modification, we observe t-statistics beyond the threshold with
j = i + 1, showing a slash line in Figure 5-(a). This result indicates that the bit-interaction
leakage occurs only between the neighboring bits because the shift amount is 1. This bit-
interaction leakage disappears in Figure 5-(b), confirming that the insertion of input buffer
efficiently eliminate the bit-interaction leakage. As a result, we can conclude that Gao et al.’s
hypothesis is correct, and signal transition in shamt signals causes the bit-interaction leakage
in the barrel shifter.

4.2 Adder

In section 3, we observed the bit-interaction leakage source from the arithmetic adder
Comb adder, which has not been known in the previous study [8]. We study its causality

4We also conduct same experiment with >> and >>> (arithmetic right shift) operator and confirm that the
results are similar to the result of << operator.
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(b) Buffer inserted
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Figure 5: The heatmaps showing the bit-interaction leakage between i-th and j-th bits for 1-bit
left shift in barrel shifters. The sub-figure (a) and (b) correspond to the two shifters before and
after inserting the input buffer. The horizontal and vertical axes represent the indices of the
target bits j and i, and the color represents the t-statistic. The t-statistics of dotted cells are
outside the range of (-4.5, 4.5).

in the same way as the previous section and show that carry propagation is the cause of the
problem.

4.2.1 Experiment #1

First, we check the interaction between bits by repeating the previous experiment with an
arithmetic adder. More specifically, we implement and synthesize a 32-bit adder using the +

operator in Verilog, which results in netlist of a simple ripple carry adder 5(See Figure 6). We
feed the random 32-bit input r ∈ S to the adder’s first operand, while the second operand is
always 1, i.e., the adder always increment the first operand. Before each add operation, we let
the adder perform 0 + 0 to initialize it into a known state.

We analyze the simulated traces in the same as Section 4.1 to evaluate the interaction
between i-th and j-th bits in the first operand r ∈ S. Figure 7 shows that the t-statistics for
different (i, j) pairs in heatmap. Unlike the shifter, only lower bits exhibit the bit-interaction
leakage. More specifically, we observe t-statistics exceeding the -4.5 threshold for

(i, j) ∈ {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}. (4)

Moreover, the t-statistic becomes smaller in the higher bits. The above result strongly suggests
that carry propagation is the cause of the bit-interaction leakage; the smaller probability of the
carry propagation reaching to the higher bits explains the less interaction in the higher bits.

4.2.2 Experiment #2

For further verifying the hypothesis with the second experiment using carefully designed test
vectors that stops the carry propagation by fixing the LSB to 0. We feed these test vectors as

5We confirm that the arithmetic adder of the SweRV EH1’s ALU is also written by + operator and synthesized
into a simple ripple carry adder.

10



Simulation Based Evaluation of Bit-Interaction Side-Channel Leakage on RISC-V Asano and Sugawara
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Figure 6: A 32-bit ripple carry adder. FA is a full-adder component. a and b is input, and Out

is output. C is carry.
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Figure 7: The heatmaps showing the bit-interaction leakage between i-th and j-th bits while
performing +1 in the ripple-carry adder

the first operand of the adder while fixing the second operand to 1. More specifically, we use
the following test vectors:{

TV0
carry1 := {r ∈ {0, 1}32 | [r]2 ⊕ [r]1 = 0 and [r]0 = 1}

TV1
carry1 := {r ∈ {0, 1}32 | [r]2 ⊕ [r]1 = 1 and [r]0 = 1} (5){

TV0
carry0 := {r ∈ {0, 1}32 | [r]2 ⊕ [r]1 = 0 and [r]0 = 0}

TV1
carry0 := {r ∈ {0, 1}32 | [r]2 ⊕ [r]1 = 1 and [r]0 = 0} (6)

For analysis, we compare the pairs (TV0
carry1, TV1

carry1) and (TV0
carry0, TV1

carry0), respectively.
These pairs are designed to detect the bit-interaction leakage between the 1st and 2nd bits
denoted as [r]1 and [r]2 wherein r ∈ {0, 1}32 is an element of the test vectors. Meanwhile,
(TV0

carry1, TV
1
carry1) and (TV0

carry0, TV
1
carry0) are different in LSB, i.e., [r]0. The LSB of (TV0

carry1,

TV1
carry1) is fixed to 1, and thus the carry always propagates to the [r]1. Meanwhile, with

(TV0
carry0, TV

1
carry0), [r]0 is fixed to zero and thus carry propagation never reaches to higher bits.

We prepare 50,000 test vectors of each group and measure toggles when adding 1.
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Figure 8 shows the results of t-tests. The result comparing (TV0
carry1, TV1

carry1) is the
baseline and in which t-statistics exceed the [-4.5, 4.5] range, confirming the presence of the
bit-interaction leakage as predicted by the previous result in Figure 7. In contrast, the bit-
interaction leakage disappears with the result comparing (TV0

carry0, TV1
carry0). These results

verify that the bit-interaction leakage by adder is caused by propagating carry.
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Figure 8: The bit-interaction leakage betwee the 1st and 2nd bits in the ripple-carry adder.
The traces (TV0

carry1,TV
1
carry1) and (TV0

carry0,TV
1
carry0) represent to the results with and without

the carry input from the 0th bit.

5 Discussion

Our results show that the bit-interaction leakage due to shifter and/or adder is present even
in Boolean instructions. Considering the above two cases, we discuss countermeasures in two
levels: (i) hardware countermeasure to eliminate the bit-interaction leakage from the adder and
shifter circuits in executing Boolean instructions by stopping the adder and shifter circuits and
(ii) software countermeasure to thwart the bit-interaction leakage from the shifter.

5.1 Hardware Countermeasure

We first discuss a hardware countermeasure to stop the adder and shifter circuits during ir-
relevant instructions thereby eliminating their bit-interaction leakage while executing Boolean
instructions.

Figure 9-(a) and -(b) show the ALU circuit before and after the modification. Figure 9-(a)
is the original ALU, similar to the one in Figure 2, which runs all the combinatorial circuits
Comb bitwise, Comb shifters, and Comb adder in parallel, and selects one output later. This
parallel execution is harmless in logical level, but causes the bit-interaction leakage even with
Boolean instructions. We can address the problem by stopping Comb shifters and Comb adder

while executing Boolean instructions and can easily realize this by inserting registers in front
of the combinatorial circuits as shown in Figure 9-(b).

The main area overhead comes from the additional six 32-bit registers, which is negligible
compared to the circuit area of the entire CPU. In addition, it increases the number of pipeline
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(a) Normal

ALU_codes

Comb_bitwise
Operand
A and B

Comb_shifters

Comb_adder

32 x 2

(b) Proposed method

Operand
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Comb_bitwise
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Comb_adder

ALU_codes

32 x 2

CLK

Figure 9: Hardware modification for isolating the adder/shifter leakage during Boolean instruc-
tions. (a) the original ALU before modification. (b) the modified ALU having registers in front
of the combinatorial circuits

stages which can cause a performance overhead in the cycle per instruction. We can further
optimize the ALU in Figure 9-(b) using negative-edge registers to keep the number of pipeline
stages, but that is beyond the scope of this paper.

With the modified ALU in Figure 9-(b), we can eliminate the bit-interaction leakage from
Boolean instructions because the ALU no longer feed the sensitive operands to Comb shifters

and Comb adder. This countermeasure is effective to Boolean instructions only, and the bit-
interaction leakage is still present in the shift and add instructions. We address the leakage
from the shift instructions in the next section, meanwhile we leave the bit-interaction leakage
from add instructions unprotected because they are unused in share slicing.

5.2 Software Countermeasure

We discuss software countermeasure for eliminating the bit-interaction leakage from a barrel
shifter caused by signal transition hypothesized by Gao et al.

As we verified in Section 4.1, the bit-interaction leakage is caused by the change in the
control signal after the shifter input has arrived. We can avoid such transition in the control
signal by dispatching several dummy instructions in advance thereby so that the control signal
is properly precharged. This countermeasure prevents the bit-interaction leakage from the shift
instructions. In particular, with the ARM Cortex M0/M3 processors that has the bit-interaction
leakage on with the shift instructions [8], we can eliminate the bit-interaction leakage only with
this software countermeasure.

Figure 10 shows an example code snippet with the countermeasure wherein the instructions
shown in blue are the additional dummy instructions and the one in red is the target instruction
handling sensitive data. More specifically, we replace the nop instruction (a shortcut of addi

x0, x0, 0) in Figure 3-(a) with slli x0, x0, 1. Since the operand x0 is always initialized
with zero, this slli x0, x0, 1 instruction makes no change in the general-purpose registers,
and we can use it as yet another nop instruction. Meanwhile, the third operand 1 represent
the amount of shifts which is directly connected to the barrel shifter’s control signal (shamt in
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Figure 1). At the time the target instruction at the 14th line, no signal transition occurs at the
barrel shifter’s control signal because it is already set by the preceding dummy instructions.

1 // t0: loop count

2 // t1: loop var i

3 // t2: array address

4 loop:

5 lw t3 , 0(t2) // t3 = *(array)

6 addi t2, t2, 4 // array ++

7 addi t1, t1, 1 // i++

8 addi x0, x0, 0 // nops

9 ...

10 slli x0, x0, 1 // alternative nops , input 1 in B operand

11 slli x0, x0, 1

12 slli x0, x0, 1

13 slli x0, x0, 1

14 slli t4, t3, 1 // target , t4 = t3 << 1

15 addi x0, x0, 0 // nops

16 ...

17 bne t0, t1, loop // back to loop

Figure 10: An example assembly code sequence for the software countermeasure. The red
instruction is the target instruction handling sensitive data. The blue instructions are the
dummy instructions for countermeasure

We can realize any shift with the constant offset by choosing the dummy instructions with
the same shift amount as the target instruction. The number of dummy instructions determines
the overhead. In this particular example, this countermeasure multiplies the cost of the shift
instruction by ×4 6. The overhead depends on the ratio of shift instructions occupied in the en-
tire implementation. The evaluation through a case study of concrete masking implementation
is beyond the scope of this paper, and opened for future research.

6 Conclusion

We conducted simulation-based side-channel evaluation of the SweRV EH1 core, open-source
RISC-V implementation, and replicate the bit-interaction leakage in its ALU. We found that a
shifter and an arithmetic adder are the sources of the leakage, and showed the mechanism how
these components cause the bit-interaction leakage. We also observed that the bit-interaction
leakage is present even with Boolean instructions because of the particular ALU structure
running all the combinatorial circuits in parallel. We finally discussed the hardware and software
countermeasures for addressing the bit-interaction leakage: (i) an ALU modification to stop
the bit-interaction leakage during the instructions irrelevant to the shifter and the adder, e.g.,
Boolean instructions, and (ii) a software countermeasure for eliminating the bit-interaction
leakage from a shifter by using dummy instructions that pre-charges the ALU in advance.

There are several open questions. The other source of bit-interaction leakage is possible
because we focused on ALU only and the TVLA-based methodology can cause false negatives.
We plan to verify the proposed countermeasures through simulation and/or real experiments.

6We place several slli x0, x0, 1 instructions to saturate the two ALUs in the EH1’s dual-issue architecture.
We will need additional care for the CPU with the out-of-order execution; it is no the case with the SweRV EH1
core.
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