
XMSS-based Chain of Trust

Soundes Marzougui1 and Jean-Pierre Seifert2

1 Technische Universität Berlin, Berlin, Germany
soundes.marzougui@tu-berlin.de

2 Technische Universität Berlin, Berlin, Germany
Jean-Pierre.Seifert@external.telekom.de

Abstract

Given that large-scale quantum computers can eventually compute discrete logarithm
and integer factorization in polynomial time [44], all asymmetric cryptographic schemes
will break down. Hence, replacing them becomes mandatory. For this purpose, the Na-
tional Institute of Standards and Technology (NIST) initiated a standardization process for
post-quantum schemes. These schemes are supposed to substitute classical cryptography
in different use-cases, such as client-server authentication during the TLS handshake. How-
ever, their signatures, public key sizes, and signature verification time impose difficulty,
especially for resource-constrained devices. In this paper, we improve the TLS hand-
shake performance relying on post-quantum signatures by combining the XMSS and the
Dilithium signature schemes along the chain of certificates. We provide proof-of-concept
implementation of our solution by integrating the two signature schemes in the WolfSSL
library. Moreover, we evaluate the performance of our solution and establish that it reduces
the signature verification time considerably and minimizes the size of the chain of trust.
We provide a security proof of the proposed chain of trust which relies on the security of
the XMSS scheme.

Keywords: Chain of Trust, Dilithium, Handshake Protocol, Post-quantum Cryptogra-
phy, XMSS

1 Introduction

TLS security is based on public-key cryptography and provides connection integrity, confiden-
tiality, and authenticity using X.509 certificates. X.509 are IETF-standard certificates used in
digital authentication [18]. In a TLS connection, endpoints acting as servers (or clients) verify
the communicating peer’s identity and public key (PK) held by its certificate by leveraging a
chain of certificates rooted to a pre-trusted root CA. We use the term chain of trust to refer
to these chain of certificates throughout the paper. The signing algorithm used along with the
chain of certificates is usually the same, such as Elliptic Curve Digital Signature (ECDSA) and
RivestShamirAdleman (RSA).

With the advent of quantum computers, a soon-to-become physical reality, breaking the
discrete logarithm and integer factorization cryptography has become increasingly possible as
compared to traditional binary computers [45]. This calls for an urgent need to migrate toward
post-quantum cryptography to avoid the insecurities owing to quantum computer-based attacks.

There is a large body of literature on post-quantum signature schemes and their families.
Each of these families is based on its underlying cryptographic hardness assumptions. Among
these, the most widely known schemes are based on error-correcting codes, lattices, multivariate
systems, and cryptographic hash functions. The downside to these schemes is that they bear
large signatures and public keys sizes (kilobytes to megabytes) compared to their classical
counterparts e.g., RSA and ECDSA. Moreover, the higher the security level of these schemes,

XMSS-based Chain of Trust Marzougui and Seifert

the worst their performance regarding signing, verification time, signatures, and public keys
size [42].

Using a pure post-quantum chain of certificates in the TLS handshake protocol leads to large
chain’s size. The signature and public key sizes of these signature schemes are in the order of
kilobytes to megabytes, which is considered as the bottleneck of post-quantum authentication
in TLS [46].

Our contribution: We summarize the key contributions of our work as follows:

� We propose a mixed post-quantum chain of trust that will substitute the pure classical one.
Our new design combines two post-quantum signature schemes: XMSS and Dilithium.

� We provide a rigid security proof of the proposed chain of trust, relying on the security
of the XMSS scheme.

� We prove that the proposed XMSS-based chain of trust ensures a better performance
compared to the pure classical chain of certificates and the previous work [46], resulting
in faster signature verification time and smaller public key and signature sizes, hence, a
smaller chain of certificates.

� We enhance our solution by a proof-of-concept implementation integrated in the WolfSSL
library.

Related Work In [36], Marzougui and Krämer evaluated the submissions to the NIST com-
petition [2] with regard to their applicability to the most fundamental security use-cases of
embedded systems. They identified XMSS [32] and qTESLA [10] signature schemes as the
most fitting, and implemented them on ARM Cortex-R5 microprocessor-based development
board. They also evaluated the performance of their implementation [36]. As a result, they
suggested the use of hardware accelerator and the optimization of both algorithms to reduce
their memory consumption.

In [22], Bürstinghaus-Steinbach et al. showed the integration of the post-quantum key
encapsulation mechanism (KEM) scheme Kyber for key establishment and the post-quantum
signature scheme SPHINCS+ into the embedded TLS library mbedTLS [1]. They measured
the performance of these post-quantum primitives on four different embedded platforms and
presented the challenges regarding large certificates chain and slow signing process during the
TLS handshake protocol. They concluded that these challenges affect the use of embedded
systems as TLS server but do not necessarily prevent them from acting as TLS client. While
the writers of [22] recommended that the use of hardware accelerators may be considered to
speed up the SPHINCS+ computations [22], no countermeasures were suggested for the huge
size of the chain of trust.

Another possible improvement is the use of different post-quantum signature schemes in
the same chain of certificates to improve the performance of post-quantum authentication in
TLS as in [46]. A highly secure signing scheme is used in some certificates at the expense of
low performance, while other certificate encapsulates a public key corresponding to an efficient
signing scheme (at the cost of a low security level). By doing so, we reduce the duration of the
endpoint’s signing operation. In addition, the overall certificates’ chain size is smaller than a
pure certificate [46].

The idea of combining multiple post-quantum signature schemes came first in [17] to ensure
the transition to post-quantum cryptography. Bindel et al. in [17] introduced hybrid certificate
which includes two public keys for the subject, one classical and another post-quantum, and two

2

XMSS-based Chain of Trust Marzougui and Seifert

different Certificate authorities. They investigated the use of hybrid digital signature schemes,
employed multiple methods for combining them, and framed unforgeable conditions for the
resulting hybrid scheme [17]. This approach is, however, inefficient to tackle the problem of
large chains of certificates.

A different way of combining multiple post-quantum signature schemes is called mixed cer-
tificate and is applied along a chain of certificates [46]. Certificates in this approach are signed
with different signing algorithm. Sikeridis et al. were the first to introduce mixed certificate [46].
First, they investigated the impact of larger post-quantum chain of certificates and slower sign-
ing and verification on the throughput of the authenticating server. Then, they established
that large certificates and signed messages are penalized by the Transmission Control Protocol
(TCP) congestion window leading to extra Round-Trip Time (RTT)and higher TLS handshake
latency. With slow signing, as they noticed, the server reaches the saturation point much ear-
lier [46] deeming the process crucial for the server’s performance. Sikeridis et al. concluded
that the certificates chain size together with heavy signing and verification affects the TLS
handshake time. To resolve the issue, they proposed a combination of the Dilithium [25] and
the FALCON [26] signature schemes along the same chain of certificates.

This combination, however, has its own limitations. These certificates are bulky in size,
especially for a higher security level. In addition, FALCON’s signing is also CPU-intensive and
slow, resulting in a handshake delay. The limitations become more apparent because the writers
excluded certain certificate extensions which limits the applicability of their combination.

Organization We structure the paper the following sections. In Sec. 2, we introduce the
TLS architecture. We give an overview on the integration of the two post-quantum signature
schemes XMSS and Dilithium in the WolfSSL library in Sec. 3. In Sec. 4, we detail on the
proposed XMSS-based chain of trust. In Sec. 5, we provide the security proof of the XMSS-
based chain of trust. Sec. 6 assesses the performance of the designed chain of trust. Finally, we
conclude this work by citing the advantages and the limitations of the proposed chain of trust.

2 Background

2.1 X.509 Certificate

Among the various public key certificates, X.509 is the most common Public Key Infrastruc-
ture (PKI) standard adopted by the IETF protocols (RFC5280 [18] and RFC6818 [49]) and is
excessively employed in digital authentication for various protocols (e.g., TLS, SSH, IKEv2).

A Certificate Authority (CA) issues an entity’s certificate. A digital certificate assures the
entity’s identity and ties the public key to it. In turn, the entity’s identity is appended to
the certificate in its subject field, while the public key is stored in the Subject Public Key
Information (SPKI) along with the issuer’s algorithm. A certificate comes with a specific
validity period and extensions to enable additional functionality. Using the specified signature
algorithm, the public key of an entity is signed by the CA’s private key. The signature is then
appended to the certificate’s signature field.

During the session setup, the entities exchange certificates in order to verify the peer’s
identity. At the top of an X.509, are trusted CAs that self-sign their public keys known as root
CA certificates. A root CA issues intermediate CAs (ICA). Subsequently, these intermediate
CAs are used by the ICA to further issue and sign leaf certificates. This process creates a chain
of certificates called a chain of trust. A chain of trust consists of two to four certificates but
can be arbitrarily longer. In the final step of the chain verification, a leaf certificate is validated

3

XMSS-based Chain of Trust Marzougui and Seifert

by an endpoint if the endpoint trusts the chain’s root CA, and the issuer’s public keys verify
all the issued signatures from the leaf to the root certificate.

2.2 Handshake Protocol

TLS consists of a record layer and a handshake layer. As shown in Fig. 1, the record layer
is located above the transport layer and uses the Transmission Control Protocol (TCP). It
uses symmetric cryptographic algorithms such as AES for bulk data encryption. To ensure a
post-quantum security, AES-256 or higher security bits can be used [28]. The record layer is
responsible for fragmentation, compression, and encryption of the sent messages. Above the
record layer is the handshake layer that contains change cipher spec and alert. An application
data protocol is located above the handshake layer. While the alert protocol is responsible for
handling errors, the change cipher spec protocol indicates whether the cipher suites are used,
in addition to changing the encryption keys during the handshake protocol.

HTTP FTP Telnet Other

Handshake
Change

Cipher Spec Alert

Record

TCP/IP

A
p
p
li

ca
ti

o
n

L
ay

er

H
an

d
sh

ak
e

L
ay

er

R
ec

o
rd

L
ay

er

T
ra

n
sp

o
rt

L
ay

er

Figure 1: TLS Protocol Layers

The handshake protocol ensures confidentiality, integrity, and authenticity of the exchanged
messages and takes place in a series of steps. First, the cryptographic primitives are negotiated
between the client and the server. Then, the session keys are generated and then validated.
Session keys are used later for the encryption of exchanged messages. After the client and the
server are ready, the connection achieves a symmetric encryption.

Fig. 2 presents a high overview of the TLS handshake protocol steps. The handshake
begins when the client starts a TLS connection by sending a ClientHello message. The mes-
sage embeds the supported TLS version, cipher suites, and compression algorithms along with
client random and optional data such as session ID or ticket for session resumption. This en-
tire process is mediated by a cipher suite which describes these attributes: the key exchange
cryptographic algorithm, signatures algorithm, encryption algorithm, message authentication,
and the Pseudo Random Function (PRF) used to calculate keying material. For example,
TLS ECDHE ECDSA WITH AES 256 GCM SHA256 is a cipher suite that uses ECDHE for
the key exchange algorithm; ECDSA as the authentication algorithm; AES256 for the bulk
data encryption algorithm, and SHA256 for the Message Authentication Code (MAC) algo-
rithm). In return, the server answers with a ServerHello message which contains the chosen

4

XMSS-based Chain of Trust Marzougui and Seifert

ClientHello

ServerHello

Certificate

CertificateRequest

ServerHelloDone

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

Application Data

Application Data

Client Server

Handshake Protocol

Record Protocol

Figure 2: Handshake Protocol

TLS version, cipher suite, compression algorithm, and a server random. Along with it, it also
sends a Certificate message containing the certificate with the server’s public key and the entire
chain of certificates up to a root certification authority (CA). At the moment of writing this
paper, the adopted chain of certificates is pure, i.e., one signature algorithm is used along the
chain of certificates. To ensure resistance against quantum computer attacks, classical signature
schemes need to be replaced with post-quantum signature schemes.

In case Diffie-Hellman (DH) is used for key exchange, a ServerKeyExchange message is sent
containing the server’s ephemeral DH public key, a signature over the public DH key, client
random, and server random. To ensure post-quantum security, in the same light, DH should
be replaced by a post-quantum KEM (e.g., Kyber as in [22]).

Likewise, if mutual authentication is required, the server is expected to send a Certifi-
cateRequest message to which the client responds with a similar Certificate message. With the
ServerHelloDone message, the server gives the client the signal to continue the handshake. The
client sends a ClientKeyExchange message. As we are interested only in building a secure chain
of trust used for client and server authentication, we will not investigate the choice of KEM.

In case of mutual authentication, the client sends first a client Certificate message and a
CertificateVerify message. This message holds a digital signature over all handshake messages
sent or received, starting at ClientHello and up to, but excluding this message. If the client
wants to switch the negotiated algorithms, he sends a ChangeCipherSpec message to the server
(as shown in Fig. 2). Second, the Finished message completes the handshake. Then, the server
answers also with a ChangeCipherSpec protocol message and a Finished message. Finally,
application data can be securely exchanged.

2.3 Post-quantum Families

TLS makes heavy use of classical asymmetric algorithms in the handshake protocol for sign-
ing and key exchange (e.g., RSA, ECDSA). To ensure a quantum-resistant connection, these

5

XMSS-based Chain of Trust Marzougui and Seifert

algorithms have to be exchanged by post-quantum schemes.
Currently, there are four promising families of mathematical objects and schemes being

discussed in the field of post-quantum cryptography: lattice, code, hash, and multivariate
families. Each family’s security relies on its underlying cryptographic hardness assumptions.

Lattice-based Cryptography The National Institute of Standards and Technology (NIST),
initiated a standardization process of post-quantum cryptographic schemes [2]. Since five out
of seven finalists of the NIST post-quantum cryptography standardization process are lattice-
based schemes, lattice-based cryptography can be regarded as currently the most relevant family
of post-quantum cryptography.

Lattice-based cryptography was introduced by Ajtai [8]. A lattice is defined as the set of all
integer linear combinations of linearly independent vectors in real n-space Rn. There exist many
lattice-related NP-hard problems used for cryptographic purposes, namely the Shortest Vector
Problem (SVP), the Closest Problem (CVP), and Learning with Errors (LWE). While the
shortest vector problem (SVP) pertains to finding a shortest non-zero vector in the Euclidean
norm, the closest vector problem (CVP) is solved by finding a lattice vector that minimizes
the distance from another target lattice. The security of lattice-based signatures submitted to
NIST relies on the Learning with Errors problem (LWE). The LWE instance contains the secret
vectors blinded with a noise vector (error) which usually are taken from a Gaussian distribution.
This makes them expensive in terms of execution time [41].

Nevertheless, lattice-based cryptography offers highly efficient schemes compared to other
post-quantum families. Signature schemes based on lattice problem hardness are divided into
two categories: hash-and-sign and Schnorr-based schemes. Hash-and-sign based schemes, such
as GPV [27], qTESLA [10], and Dilithium [25], are based on pre-image trapdoor functions [39].
These schemes have been continuously improved to reduce the execution time of the key gener-
ation, signing, and verification algorithms [39] and to shrink the signature size [14]. The second
category of lattice-based signature schemes, for example Falcon [26] and pqNTRUSign [29], are
based on the same ideas as Schnorr signature schemes [34, 35].

The first generation of both classes of lattice-based schemes is based on standard lattices,
i.e., matrix and vector operations, which are costly in terms of execution time and memory con-
sumption (in the order of megabytes). More recent lattice-based schemes employ ring analogies
of standard lattices that use polynomial representation rather than matrices and vectors.This
representation significantly reduces the execution time and the memory consumption [9].

Hash-based Cryptography Hash-based schemes are considered to be the most mature
schemes for post-quantum digital signatures [21]. They were first introduced by Lamport [33],
and developed further [37, 24] to result in schemes such XSMSS and SPHINCS+ [21]. The
security of these schemes, improved over the last decades, relies on cryptographic hash functions
considered secure against quantum computer-based attacks for appropriately chosen security
parameters. There are two categories of hash-based signatures, namely the stateful and stateless
schemes.

– Stateful hash-based signature schemes: These schemes are built from one-time signature
(OTS) schemes such as [33, 37, 24] with multiple OTS signing keys. The signer has
to keep track of already-used OTS keys to avoid using them more than once. This
state management requirement is considered a significant disadvantage. The public keys
corresponding to the OTS private keys are typically represented as leaves of a Merkle
hash tree. A signature consists of an OTS, the OTS public key, and the values (i.e., hash

6

XMSS-based Chain of Trust Marzougui and Seifert

digests) of the intermediate nodes from the OTS public key to the root of the tree. This
approach allows verifying every OTS using the root of the hash tree as public key. XMSS
[30] and XMSSMT [32] are the examples of stateful hash-based schemes.

– Stateless hash-based signature schemes: These schemes do not require the signer to main-
tain any state (e.g., WOTS [19], HORST [12], and SPHINCS [16]). They are typically
built upon Few-Time Signatures (FTS) that allow signing multiple messages with the
same signing key. However, these schemes gradually leak information on the signing key
with each signature generated using this key [16].

Stateless hash-based signature schemes have the highest signature verification perfor-
mance among all post-quantum signature schemes [36]. Their public keys size is tiny
(around 60 bytes), but the size of their signatures is in the range of 40 kilobytes [46].

3 Post-quantum Integration in the wolfSSL Library

To perform a post-quantum TLS handshake, we integrated the reference implementations of
the post-quantum signature algorithms XMSS and Dilithium into the wolfSSL library [4]. The
wolfSSL is open source under the GPLv2 license for non-commercial use. There are three
divisions in the wolfSSL library: cryptographic primitives, TLS protocol, and tools described
in the following subsections. The code for our XMSS-based chain of trust can be found at
https://github.com/Soundes-M/Soundes-M-XMSS_based_chain_of_trust.

3.1 Cryptographic Primitives

The wolfSSL library is written in C and is backed by a C-language-based embedded cryptog-
raphy engine WolfCrypt [3]. The WolfCrypt library offers not just low memory usage and
optimized speed, but also high portability. It capsules cryptographic algorithms into modules
grouped into four categories: symmetric encryption algorithms, hash functions, random num-
ber generators, and public key algorithms. At the time of framing this paper, the wolfSSL
library contains only the post-quantum cryptographic scheme NTRU. We encapsulated XMSS
and Dilithium each in its own module using the algorithm’s reference code as a base for the
implementation. The reference implementation of XMSS offers to choose parameters like the
hash function during compilation. We support the variant XMSS-SHA2 10 256. We changed the
SHA2-256 function calls in the XMSS reference implementation from OpenSSL to the wolfSSL.

Since Dilithium requires the hash function SHAKE-256 which is not part of the WolfSSL
library, we kept the reference implementation of Dilithium.

3.2 TLS Protocol

In this paper, we focus on TLS connections with server authentication only. In a TLS con-
nection, we identify three messages of particular interest: Certificate, ServerKeyExchange, and
ClientKeyExchange. The Certificate message contains the chain of certificates. These certifi-
cates allow the client to verify the legitimacy of the server’s public key by validating all the
certificates up to the root. The verification process is more detailed in Sec.4. We outlined
an ASN1-based structure to define the new CA and ICA X.509 certificates. A CA is a self-
signed certificate using a Dilithium secret key. Additionally, two ICAs are used. One contains
a Dilithium public key but is signed by an XMSS secret key, and the other contains the XMSS
root node signed with a Dilithium secret key.

7

https://github.com/Soundes-M/Soundes-M-XMSS_based_chain_of_trust
https://github.com/XMSS/xmss-reference
https://github.com/pq-crystals/dilithium

XMSS-based Chain of Trust Marzougui and Seifert

Once the chain of certificates is verified, the post-quantum KEM public key is generated
and pasted into the ServerKeyExchange. Subsequently, the key exchange data is signed with
the server’s Dilithium public key. The signature is, therefore, added to the ServerKeyExchange
message and sent to the client. The client, after receiving the ServerKeyExchange message,
verifies the Dilithium signature and generates its own post-quantum KEM public key response.
In our test scenario, the client key exchange is unauthenticated.

3.3 Tools

We added some extensions to existing tools accompanying the wolfSSL library and to its con-
figuration. All changes we made to the library can be controlled through the config.h file
during compilation. Each module of the cryptographic primitives can be activated or deac-
tivated separately. The XMSS and Dilithium must be activated by setting --enable-XMSS

and --enable-DILITHIUM respectively. But given that the XMSS algorithm employs the hash
function defined in the wolfSSL library, --enable-opensslextra must be set when activating
it.

4 Description of the XMSS-based Chain of Trust

4.1 XMSS Signature Scheme

Like the Merkle signature scheme [38], XMSS uses a one-time signature scheme (OTS) that can
only sign one message with one key. To accommodate this limitation, a hash tree is used as
shown in Fig. 3. The use of a hash tree reduces the authenticity of many OTS verification keys
to one public XMSS key. To minimize storage requirements, pseudo-random generators (PRG)
are used. Since the XMSS signature scheme is based on a hash tree, it can be used to sign a
limited number of messages with one public key pk. Note that the number of possible messages
to sign N must be a power of two.

Key Generation: Initially, N key pairs of a Winternitz OTS [24]) are generated (Xi, Yi).
For each 1 ≤ i ≤ 2h, a hash value of the public key H(Yi) is computed.

The hash values H(Yi) constitute the leaves of the hash tree. By placing these leaves and
recursively hashing them, we form a binary tree. Let ai,j denote the node in the tree with
height i and left-right position j. Then, the hash values H(Yi) = a0,i form the leaves of the
tree. For each node, we choose two bitmasks α and β uniformly at random, then calculate each
tree node value by hashing the concatenation of its two children, xor-ed with random bitmasks
(e.g., a1,2 = H((a0,4 ⊕ α)‖(a0,5 ⊕ β)).

The private key of the XMSS signature scheme scales linearly with the number of messages
to be sent. However, in our scenario, the secret key size does not impose a difficulty as it is not
transferred during the TLS connection.

The public key pk is the root of the tree (A3 in Fig. 3), which can be built by concatenating
the hashes of the individual public keys Yi. These individual public keys can also be made
public without breaking security.

8

XMSS-based Chain of Trust Marzougui and Seifert

A3

A2

auth1

a0,0

H(Y0)

a0,1

H(Y1)

A1

A0

H(Yi=2)

auth0

H(Y3)

auth2

a1,2

a0,4

H(Y4)

a0,5

H(Y5)

a1,3

a0,6

H(Y6)

a0,7

H(Y7)

Figure 3: XMSS Hash Tree

Signing: The signer determines whether the key pair has been previously used to sign a
message and if so, chooses an unused pair (Xi, Yi). It then uses the Winternitz OTS scheme to
sign a message M , resulting in a signature sig’ and corresponding public key Yi. To prove the
legitimacy of the (Xi, Yi) pair, the signer includes intermediate nodes of the XMSS hash tree
(e.g., in Fig. 3 A0, A1, A2) so that the verifier verifies if H(Yi) was used to compute the public
key an,0 = An at the root of the tree.

To be able to calculate the node Ai+1, a verifier needs to know the other child of Ai+1, the
sibling node of Ai. We call this node authi, so that Ai+1 = H((Ai⊕α)‖(authi⊕β)) (with α and
β are maskbits chosen randomly at uniform). Hence, n nodes auth0, . . . , authn−1 are needed,
to reconstruct An = an,0 = pk from A0 = a0,i. We present an example of an authentication
path in Fig. 3.

These nodes auth0, . . . , , authn−1, the Yi, and the one-time signature sig′, together con-
stitute a signature of M using the XMSS signature scheme:sig = (sig′‖Yi‖auth0‖auth1‖ . . .
‖authn−1).

Signature Verification: With the knowledge of the public key pk, the message M , and the
signature sig = (sig′‖Yi‖auth0‖auth1‖ . . . ‖authn−1), the verifier first verifies the Winternitz
OTS sig′ of the message M using the Winternitz OTS public key Yi. If sig′ is a valid signature
of M , the verifier computes A0 = H(Yi) by hashing the OTS public key. The nodes of Aj of
the path are computed with j = 1, . . . , n− 1. If the obtained result equals the public key pk of
the XMSS signature scheme, the signature is considered valid.

4.2 Dilithium Signature Scheme

The Dilithium signature scheme is based on the Fiat-Shamir paradigm [34]. It can also be seen
as a variant of the Bai-Galbraith scheme (BG) [13].

Dilithium is known as one of the most promising post-quantum signatures submitted to the
NIST competition [23]. At the moment of writing this paper, it has reached the third round of
the NIST competition. The Dilithium scheme is known for its good performance because of its
key size and signature verification time (i.e., Dilithium-II has a public key and signature size
of 1312 and 2420 bytes respectively; its signing process takes 194.892 cycles and its signature
verification takes 72.663 cycles on a Skylake CPU (AVX implemented) [5].

9

XMSS-based Chain of Trust Marzougui and Seifert

Dilithium’s better performance can be owed to different reasons. First, Dilithium is in-
stantiated with Module-LWE which deals with matrix of ‘small’ polynomials A instead of a
unique polynomial A (as in Ring-LWE). Module-LWE addresses the limitation of R-LWE: the
size of polynomials increases with security. For Module, only the number of rows and columns
(noted k and l respectively in the official submission of Dilithium [22]) impacts security, not
the polynomial size (256 coefficients), which is set the same for all.

Another reason is Dilithium’s compression mechanisms. The compression is done in two
ways. First, the sampling of A is produced with XOF function (Extendable Output Function),
which generates a (deterministic) pseudo-random string from a small seed. Therefore, the public
key contains the seed instead of the polynomial A. Another compression is a per-coefficient
truncation (or rounding), associated with a correcting code mechanism to guess truncated bits.

4.3 XMSS-based Chain of Trust

In the existing literature, a chain of trust refers to a hierarchy of certificates used to verify the
validity of a certificate’s issuer. Each certificate in the chain of trust is issued and signed by
a certificate that lives higher up in the hierarchy. The certificate at the top of the hierarchy
(called a trust anchor) is a self-signed certificate.

In this section, we draw our attention to building a new chain of trust by combining two
post-quantum algorithms: XMSS and Dilithium. A high overview of the XMSS-based chain
of trust is given in Fig. 4. The validation of the chain of trust from the bottom to the top is
outlined in the steps below.

1. During the handshake protocol, the client receives the Certificate message from the server.
The Certificate message contains an XMSS-based chain of trust (as in Fig. 4). The ICA
of the chain (in blue) are XMSS certificates. These certificates contain Dilithium public
keys (i.e., a Dilithium public key signed with XMSS private key and stored in an XMSS
certificate). The signed Dilithium keys are verified in theses 2 steps:

(a) The client verifies the Winternitz One-Time signatures using the XMSS public keys.
These signatures are independent, and their verification can be parallelized to reduce
the time to 1

m of the total sequential verification time, with m being the number of
certificates (e.g., four certificates in Fig. 4).

(b) Then, the client computes the path through the XMSS hash tree and finally compares
it with the XMSS root node (see Fig. 4). If the values are equal, the verification of
the chain of trust proceeds to step 2. Otherwise, the verification fails, and the chain
of trust is broken.

2. To verify the signed root node of the XMSS hash tree (II), the client uses the Dilithium
public key of the root certificate (I) as shown in Fig. 4, which is a Dilithium self-signed
CA certificate. This step ensures the integrity of the XMSS root node.

In our XMSS-based chain of trust, we do not keep a state on the used XMSS keys because the
Dilithium keys are signed once and do not change often. In case of certificate revocation, the
whole XMSS hash tree should be regenerated.

Usually, a bigger tree height leads to an exponential growth in the run time of key gener-
ation [48]. As the number of leaves (the number of chain certificates) is small, regenerating
the XMSS hash tree is not time-consuming. In case of revocation, the root CA generates the
hash tree and signs the root node of the XMSS hash tree and the Dilithium public keys of the
trusted endpoint. Therefore, we believe that when using the XMSS chain of trust, one should
consider the overload on the root CA.

10

XMSS-based Chain of Trust Marzougui and Seifert

X
M

S
S

R
o
o

t N
o
d

e

Self-Signed

Root Certificate (I)

X
M

S
S

P
k0

Dilithium Certificate (II)

Dilithium

pk0

XMSS Certificate 0

XMSS Certificate 3

XMSS Certificate 2

XMSS Certificate 1

A Chain of Trust

X
M

S
S

P
k1

X
M

S
S

P
k3

X

M
S
S

P
k2

Dilithium

Pk1

Dilithium

Pk2

Dilithium

Pk3

XMSS

Root Node

XMSS

Root Node

Figure 4: A Chain of Trust based on XMSS and Dilithium

5 Security Proof

The XMSS-based chain of trust inherits its security from the XMSS scheme. In essence, forging
the XMSS signatures breaks the chain of trust described in Sec. 4.3. The security of XMSS
is based on two functions: the Hash function H (H is second preimage resistant) and the
pseudorandom function F . To capture this formally, we follow Theorem.1 from [20].

Theorem 1. If Hn is a second preimage resistant hash function family and Fn a pseudorandom
function family, then XMSS is existentially unforgeable under chosen message attacks.

In this paper, we employ XMSS from RFC 8391 [31], that defines different parameter sets
with n = 32 (n being the length of the hash in bytes) to provide a classical security level of 256
bits. A setting with n = 64 provides a classical security level of 512 bits. When considering
quantum-computer-aided attacks, these output sizes yield post-quantum security of 128 and
256 bits respectively [31]. SHA2 is used to instantiate the H and F functions. For n = 32
setting, XMSS employs SHA2-256, and for n = 64, SHA2-512 is used.

An XMSS-based chain of trust is valid only if all the signatures are valid. Therefore, breaking
the chain of trust requires breaking all the signatures of the chain.

This issue was introduced by Anderson in [11] under the name of forward security for
signature schemes (FSSIG), later formalized in [15]. It states that even if a key is compromised,
all signatures created before remain valid.

Theorem. 2 [20] proves that XMSS is FSSIG.

Theorem 2. If Hn is a second preimage resistant hash function family and Fn a pseudorandom
function family, then XMSS is a forward-secure digital signature scheme.

If an attacker learns the actual secret key Xi, she is still not be able to forge a signature
under a secret key Xj , j < i. This is a desirable property, especially in the context of chain of

11

XMSS-based Chain of Trust Marzougui and Seifert

trust. For example, the attacker who forges the signature of the XMSS Certificate 3 (Fig. 4)
and gets the corresponding secret key will not be able to reveal the other XMSS secret keys.

6 Performance Evaluation

6.1 Platform Description

Our evaluations so far have only covered the cryptographic primitives. We therefore created a
test setup to assess the verification time of the chain of trust and its size. The test setup was
composed of a 64-bit Ubuntu desktop PC and an Intel Whiskey Lake running on 1.8 GHz, with
16 GB RAM. We adopted the WolfSSL [4] version 4.5.0, which supports TLS1.3. The desktop
PC acted as a client. We further investigated the server-authenticated TLS connections only.
Hence, the evaluation of the chain of trust takes place on the client side.

6.2 Signature Verification Time

When using an XMSS-based chain of trust during handshake protocol, the verification of all
WOT XMSS signatures can be executed in parallel as described in Sec.4.3. Then, step (b)
was done by calculating the paths to the XMSS root node and comparing them to the signed
root node of the XMSS hash tree. As the run time of the XMSS signature verification is only
linearly impacted by h (h is the height of the XMSS hash tree) [48] and h is considerably small,
the verification is faster. In Tab. 1, we show a comparison of signatures verification time when
using different chain of trust (i.e., pure classical certificates, mixed post-quantum certificates
combining FALCON1024 and SPHINCS+ SHA256-128f-simple as in [46], and XMSS-based
chain of trust).

We compared our results to two pure classical chains of trust. For RSA, we used 3072-bit
version that provides 128 bits of security. While for ECDSA, we utilized the secp384r1 curve
which offers 192 bits.

We opted for a higher security level for ECC signatures (i.e., 192 instead of 128) because
these primitives will be broken by a quantum computers before their equivalent security level
big number RSA signatures. In other words, both RSA3072 and ECDSA256 would offer 0 bits
of security in a post-quantum setting. However, the amount of time needed to break ECDSA256
is smaller [7]. By choosing ECDSA348, we guarantee that both schemes need similar period of
time to be broken by a quantum computer.

We present the results of the previous work [46] in Tab. 1, where Sikeridis et al. combined
the two post-quantum signature schemes SPHINCS+ and FALCON along a chain of trust.
They picked SPHINCS-SHA256-128f-simple for integration and evaluation as it is the most
efficient among the SPHINCS+ variants [46]. SPHINCS-SHA256-128f-simple provides 64-bit
security in a post-quantum setting. Sikeridis et al. chose the variant FALCON1024 provided
by the Falcon inventors in the liboqs library [6, 47]. FALCON1024 provides 230-bit security
in a post-quantum setting. The adopted version does not include the floating point hardware
optimizations that could have improved FALCONS’s signing performance by 20 times [40].

6.3 Chain size

To quantify the differences between the sizes of the chains of trust, we use Tab.2. The results
presented summarize similar Distinguished Encoding Rules (DER)-encoded certificates’ chain
sizes excluding the root CA certificate. When a certificates’ chain exceeds the maximum length,

12

XMSS-based Chain of Trust Marzougui and Seifert

Chain of Turst Signature Verification (ms)
Our work 1.9
Pure RSA 3072 0.12
Pure ECDSA 384 2.10
FALCON and SPHINCS+ [46] 4.3

Table 1: Comparison of Signature Verification Time (two ICA)

TLS utilizes record fragmentation, and in turn, the record layer sends the certificate in chunks
of 214 bytes [43].

An XMSS signature size is calculated through 4 + n(p + h + 1), where p is the number of
Winternitz chains used in a single OTS operation, h the height of the XMSS hash tree, and n
the length of the hash (in bytes). The values p, h, and n influence the size of the signature.
Larger values imply larger signature sizes [48].

Given that the number of certificates constituting the chain of trust is small, and n being
fixed to 32 to ensure 128-bit security against computer-aided attacks, the signature size is
relatively small (in the order of 2.5 MB). In addition, our chain of trust does not necessitate a
state management; hence, we do not need additional fields in the certificate.

Chain of Trust Server’s Certificate size (KB)
Our work 4.096
Pure RSA 3072 2.44
Pure ECDSA 384 2.15
FALCON and SPHINCS+ [46] 9.89

Table 2: Comparison of Signatures and chains’ sizes (two ICA)

7 Conclusion

In this paper, we introduced a cutting-edge solution for the integration of the post-quantum
signature schemes XMSS and Dilithium along a chain of certificates used during the TLS hand-
shake protocol. Moreover, we enhanced our solution by a proof-of-concept implementation and
integrated the XMSS and the Dilithium schemes in the wolfSSL library [4]. We evaluated the
performance of a TLS variant using our chain of trust by comparing the signatures verification
and the chain size to the results of previous work [46].

Our solution offers a better performance owing to the comparable performance of XMSS to
that of hash functions.

We can easily tune the security of our solution to reach higher security levels by leveraging
the security parameters of the hash function used to hash the leaves of the XMSS tree. For
example, XMSS-SHA2-10-256 (w = 16, w is the Winternitz parameter) provides 196 bits of
security [20]. Another advantage of our solution is that hardware accelerators can be used
to speed up the signing and verification processes. Hence, running the chain’s validation on
a source-constrained device may be possible e.g., EFM32 Gecko 32-bit micro-controller that
comes with a cryptography accelerator supporting SHA-2. As stated in Sec. 4.3, the verification
process can also be parallelized.

By combining XMSS and Dilithium, we enable high-security enhanced performance for the
signature along the chain of certificate. We witness this boost in performance by employing

13

XMSS-based Chain of Trust Marzougui and Seifert

the Dilithium key, one of the finalists in the Post Quantum Cryptography Standardization and
known to perform better than other candidates [2], in the endpoints to sign the KEM public
key. By using Dilithium, we minimize the signing time and the chain size as compared to the
previous work [46].

However, a limitation of our work is the overload applied to the root CA. The CA should
manage the chain of trust for each endpoint separately; thus it may be potentially unreachable.
This will result in exhausting the root CA, incapacitated to handle incoming requests.

Future work will address the root CA overload challenge and the evaluation of a complete
handshake protocol that uses an optimized version of our XMSS-based chain of trust.

Acknowledgment

The work described in this paper has been supported by the German Federal Ministry of
Education and Research (BMBF) under the project Full Lifecycle Post-Quantum PKI - FLOQI
(ID 16KIS1074).

References

[1] Mbedtls library website. https://tls.mbed.org/. [Online; accessed 9-September-2021].

[2] NIST Post-Quantum Cryptography Standardization website. https://csrc.nist.gov/Projects/
post-quantum-cryptography/. [Online; accessed 9-September-2021].

[3] Wolfcrypt library website. https://www.wolfssl.com/products/wolfcrypt/. [Online; accessed
9-September-2021].

[4] Wolfssl library website. https://www.wolfssl.com/. [Online; accessed 9-September-2021].

[5] Dilithium website. https://pq-crystals.org/dilithium/index.shtml, 2020. [Online; accessed
9-September-2021].

[6] Liboqs website. https://github.com/open-quantum-safe/liboqs, 2020. [Online; accessed 9-
September-2021].

[7] The Search for Quantum Resistant Cryptography. https://sectigo.com/uploads/resources/

Quantum-Resistance-Whitepaper.pdf, September 2019. [Online; accessed 9-September-2021].

[8] M. Ajtai. Generating hard instances of lattice problems (extended abstract). pages 99–108, 1996.

[9] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and Giorgia Azzurra Mar-
son. An efficient lattice-based signature scheme with provably secure instantiation. In David
Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, Progress in Cryptology –
AFRICACRYPT 2016, pages 44–60, Cham, 2016. Springer International Publishing.

[10] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Kramer, Patrick Longa, and Jeffer-
son E. Ricardini. The lattice-based digital signature scheme qtesla. Cryptology ePrint Archive,
Report 2019/085, 2019. https://eprint.iacr.org/2019/085.

[11] Ross Anderson. Two remarks on public key cryptology. 10 2000.

[12] Jean-Philippe Aumasson and Guillaume Endignoux. Improving stateless hash-based signatures. In
Cryptographers’ Track at the RSA Conference, pages 219–242. Springer International Publishing,
2018.

[13] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on
learning with errors. Cryptology ePrint Archive, Report 2013/838, 2013. https://eprint.iacr.

org/2013/838.

[14] Rachid El Bansarkhani and Johannes Buchmann. Lcpr: High performance compression algorithm
for lattice-based signatures. Cryptology ePrint Archive, Report 2014/334, 2014. https://eprint.
iacr.org/2014/334.

14

https://tls.mbed.org/
https://csrc.nist.gov/Projects/post-quantum-cryptography/
https://csrc.nist.gov/Projects/post-quantum-cryptography/
https://www.wolfssl.com/products/wolfcrypt/
https://www.wolfssl.com/
https://pq-crystals.org/dilithium/index.shtml
https://github.com/open-quantum-safe/liboqs
https://sectigo.com/uploads/resources/Quantum-Resistance-Whitepaper.pdf
https://sectigo.com/uploads/resources/Quantum-Resistance-Whitepaper.pdf
https://eprint.iacr.org/2019/085
https://eprint.iacr.org/2013/838
https://eprint.iacr.org/2013/838
https://eprint.iacr.org/2014/334
https://eprint.iacr.org/2014/334

XMSS-based Chain of Trust Marzougui and Seifert

[15] Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael Wiener,
editor, Advances in Cryptology — CRYPTO’ 99, pages 431–448, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[16] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Niederhagen, Louiza
Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko Wilcox-O’Hearn. Sphincs: Prac-
tical stateless hash-based signatures. In Elisabeth Oswald and Marc Fischlin, editors, Advances
in Cryptology – EUROCRYPT 2015, pages 368–397, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[17] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. Transitioning to a
quantum-resistant public key infrastructure. Cryptology ePrint Archive, Report 2017/460, 2017.
https://eprint.iacr.org/2017/460.

[18] Sharon Boeyen, Stefan Santesson, Tim Polk, Russ Housley, Stephen Farrell, and Dave Cooper.
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280, May 2008.

[19] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus Rückert. On
the security of the winternitz one-time signature scheme. In Abderrahmane Nitaj and David
Pointcheval, editors, Progress in Cryptology – AFRICACRYPT 2011, pages 363–378, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

[20] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. Xmss - a practical forward secure
signature scheme based on minimal security assumptions. In Bo-Yin Yang, editor, Post-Quantum
Cryptography, pages 117–129, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[21] Johannes A. Buchmann, Denis Butin, Florian Göpfert, and Albrecht Petzoldt. Post-Quantum
Cryptography: State of the Art, pages 88–108. Springer Berlin Heidelberg, Berlin, Heidelberg,
2016.

[22] Kevin Bürstinghaus-Steinbach, Christoph Krauß, Ruben Niederhagen, and Michael Schneider.
Post-quantum tls on embedded systems: Integrating and evaluating kyber and sphincs+ with
mbed tls. ASIA CCS ’20, page 841–852, New York, NY, USA, 2020. Association for Computing
Machinery.

[23] NIST Information Technology Laboratory Computer Security Resource Center. NIST Standard-
ization round. https://csrc.nist.gov/projects/post-quantum-cryptography, 2020. [Online;
accessed 9-September-2021].

[24] Chris Dods, Nigel Smart, and Martijn Stam. Hash based digital signature schemes. In Cryptography
and Coding - IMACC 2005, volume 3796, pages 96 – 115, Germany, November 2005. Springer
Berlin Heidelberg. Conference Proceedings/Title of Journal: Cryptography and Coding, Springer
LNCS 3796.

[25] L. Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, P. Schwabe, Gregor Seiler, and
D. Stehlé. Crystals-dilithium: A lattice-based digital signature scheme. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018:238–268, 2018.

[26] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,
Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. Falcon:
Fast-fourier lattice-based compact signatures over ntru. Submission to the NIST’s post-quantum
cryptography standardization process, 36, 2018.

[27] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. Cryptology ePrint Archive, Report 2007/432, 2007. https://eprint.
iacr.org/2007/432.

[28] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt. Applying grover’s
algorithm to aes: Quantum resource estimates. pages 29–43, 02 2016.

[29] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William Whyte.
Ntrusign: Digital signatures using the ntru lattice. In Marc Joye, editor, Topics in Cryptology —
CT-RSA 2003, pages 122–140, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

15

https://eprint.iacr.org/2017/460
https://csrc.nist.gov/projects/post-quantum-cryptography
https://eprint.iacr.org/2007/432
https://eprint.iacr.org/2007/432

XMSS-based Chain of Trust Marzougui and Seifert

[30] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz Mohaisen. Xmss:
extended merkle signature scheme. [Online; accessed 9-September-2021].

[31] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz Mohaisen. XMSS:
eXtended Merkle Signature Scheme. RFC 8391, May 2018.

[32] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal Parameters for XMSSMT.
In Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar Weippl, and Lida Xu, editors,
Security Engineering and Intelligence Informatics, pages 194–208. Springer Berlin Heidelberg,
2013.

[33] Leslie Lamport. Constructing digital signatures from a one way function. Technical Report CSL-
98, October 1979. This paper was published by IEEE in the Proceedings of HICSS-43 in January,
2010.

[34] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based signa-
tures. In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, pages 598–616,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[35] Vadim Lyubashevsky. Lattice signatures without trapdoors. pages 738–755, 2012.

[36] Soundes Marzougui and Juliane Krämer. Post-quantum cryptography in embedded systems. ARES
’19, New York, NY, USA, 2019. Association for Computing Machinery.

[37] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in Cryptology
— CRYPTO’ 89 Proceedings, pages 218–238, New York, NY, 1990. Springer New York.

[38] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in Cryptology
— CRYPTO’ 89 Proceedings, pages 218–238, New York, NY, 1990. Springer New York.

[39] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.
Cryptology ePrint Archive, Report 2011/501, 2011. https://eprint.iacr.org/2011/501.

[40] Thomas Pornin. New efficient, constant-time implementations of falcon. Cryptology ePrint
Archive, Report 2019/893, 2019. https://ia.cr/2019/893.

[41] Thomas Prest. Gaussian sampling in lattice-based cryptography. PhD thesis, Ecole normale
supérieure-ENS PARIS, 2015.

[42] Manohar Raavi, Simeon Wuthier, Pranav Chandramouli, Yaroslav Balytskyi, Xiaobo Zhou, and
Sang-Yoon Chang. Security comparisons and performance analyses of post-quantum signature
algorithms. In Kazue Sako and Nils Ole Tippenhauer, editors, Applied Cryptography and Network
Security, pages 424–447, Cham, 2021. Springer International Publishing.

[43] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August 2018.

[44] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, October 1997.

[45] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, October 1997.

[46] Dimitrios Sikeridis, Panos Kampanakis, and M. Devetsikiotis. Post-quantum authentication in tls
1.3: A performance study. IACR Cryptol. ePrint Arch., 2020:71, 2020.

[47] D. Stebila and M. Mosca. Post-quantum key exchange for the internet and the open quantum safe
project. In SAC, 2016.

[48] W. Wang, Bernhard Jungk, Julian Wälde, S. Deng, Naina Gupta, Jakub Szefer, and Ruben
Niederhagen. Xmss and embedded systems - xmss hardware accelerators for risc-v. IACR Cryptol.
ePrint Arch., 2018:1225, 2018.

[49] Peter E. Yee. Updates to the Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 6818, January 2013.

16

https://eprint.iacr.org/2011/501
https://ia.cr/2019/893

	Introduction
	Background
	X.509 Certificate
	Handshake Protocol
	Post-quantum Families

	Post-quantum Integration in the wolfSSL Library
	Cryptographic Primitives
	TLS Protocol
	Tools

	Description of the XMSS-based Chain of Trust
	XMSS Signature Scheme
	Dilithium Signature Scheme
	XMSS-based Chain of Trust

	Security Proof
	Performance Evaluation
	Platform Description
	Signature Verification Time
	Chain size

	Conclusion

