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Introduction

Alice
Communications

Channel Bob

Eve

We need :
Encryption/Decryption
Key exchange
Signature

⇒ Asymmetric cryptography
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Introduction

Decryption
with secret key

Eve

ciphertext plaintext

Eve is able to:
observe the Alice’s computation
change the input
have the output
inject a fault during the computation
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Fault attacks

Fault attacks:
Safe-error attacks
Cryptosystems parameters alteration
Differential Fault Analysis (DFA) e.g. BellCoRe attack,
sign-change attacks.

Fault model:
Randomizing faults (Boneh et al, EUROCRYPT 1997)
Zeroing faults (Clavier, CHES 2007)
Instruction skip faults (Moro et al, JCE 2014)
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Classical Algorithm Scalar Multiplication

Algorithm 1 Double and Add Left-to-Right
Input: P ∈ E(Fp), k = (kn−1kn−2 . . . k0)2,∀i , ki ∈ {0,1}
Output: [k ]P

1: Q ← O . the point at infinity
2: for i = n − 1 downto 0 do
3: Q ← 2Q . EC-DBL
4: if ki = 1 then
5: Q ← Q + P . EC-ADD
6: end if
7: end for
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Fault Attack: Invalid input point

Biehl et al, CRYPTO 2000
Algorithm 1 Double and Add Left-to-Right

Input: P ∈ weak curve , k = (kn−1kn−2 . . . k0)2,∀i , ki ∈ {0,1}
Output: [k ]P

1: Q ← O . the point at infinity
2: for i = n − 1 downto 0 do
3: Q ← 2Q . EC-DBL
4: if ki = 1 then
5: Q ← Q + P . EC-ADD
6: end if
7: end for
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Fault Attack: Invalid input point

Biehl et al, CRYPTO 2000
Algorithm 1 Double and Add Left-to-Right

Input: P ∈ weak curve , k = (kn−1kn−2 . . . k0)2,∀i , ki ∈ {0,1}
Output: [k ]P

1: if P is not on the curve E(Fp) then error
2: Q ← O . the point at infinity
3: for i = n − 1 downto 0 do
4: Q ← 2Q . EC-DBL
5: if ki = 1 then
6: Q ← Q + P . EC-ADD
7: end if
8: end for
9: if Q is not on the curve E(Fp) then error else return Q

Countermeasure: Verify the input/output point and the curve
parameters
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Sign-change fault attack
Blömer et al, LNCS 2006
Algorithm 1 Double and Add Left-to-Right
Input: P ∈ E(Fp), k = (kn−1kn−2 . . . k0)2,∀i , ki ∈ {0,1}
Output: [k ]P

1: if P is not on the curve E(Fp) then error
2: Q ← O . the point at infinity
3: for i = n − 1 downto 0 do
4: Q ← 2Q . Sign-change fault at i = 0
5: if ki = 1 then
6: Q ← Q + P . EC-ADD
7: end if
8: end for
9: if Q is not on the curve E(Fp) then error else return Q

Countermeasure: Verify the input/output point and the curve
parameters
⇒ INEFFECTIVE
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Sign-change fault attack
Blömer et al, LNCS 2006
Algorithm 1 Double and Add Left-to-Right
Input: P ∈ E(Fp), k = (kn−1kn−2 . . . k0)2,∀i , ki ∈ {0,1}
Output: [k ]P

1: if P is not on the curve E(Fp) then error
2: Q ← O . the point at infinity
3: for i = n − 1 downto 0 do
4: Q ← 2Q . Sign-change fault at i = 0
5: if ki = 1 then
6: Q ← Q + P . EC-ADD
7: end if
8: end for
9: if Q is not on the curve E(Fp) then error else return Q{

Q = [k0 + 2
∑n−1

i=1 ki2i−1]P
Q∗ = [k0 − 2

∑n−1
i=1 ki2i−1]P

=⇒ Q + Q∗ = [2k0]P.
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Sign-change fault attack
Blömer et al, LNCS 2006
Algorithm 1 Double and Add Left-to-Right
Input: P ∈ E(Fp), k = (kn−1kn−2 . . . k0)2,∀i , ki ∈ {0,1}
Output: [k ]P

1: if P is not on the curve E(Fp) then error
2: Q ← O . the point at infinity
3: for i = n − 1 downto 0 do
4: Q ← 2Q . Sign-change fault at i = 1
5: if ki = 1 then
6: Q ← Q + P . EC-ADD
7: end if
8: end for
9: if Q is not on the curve E(Fp) then error else return Q{
Q = [2k1 + k0 + 4

∑n−1
i=2 ki2i−2]P

Q∗ = [2k1 + k0 − 4
∑n−1

i=2 ki2i−2]P
=⇒ Q+Q∗ = [2(2k1+k0)]P.
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Shamir countermeasures

Computional protections against fault injection:

⇒ Modular extension

Fr

Fr

= error

output Fp

false

tr
ue

Fp

Zpr

Fp
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BOS countermeasure
Blömer et al, LNCS 2006

Algorithm 2 ECSM protected with BOS countermeasure
Input: P ∈ E(Fp), k ∈ {1, . . . ,ord(P)− 1}
Output: Q = [k ]P ∈ E(Fp)

1: Choose a small prime r , a curve E(Fr ), and a point Pr on that
curve.

2: Determine the combined curve E(Zpr ) and point Ppr using the
CRT.

3: (Xpr : Ypr : Zpr ) = ECSM(Ppr , k ,pr)
4: (Xr : Yr : Zr ) = ECSM(Pr , k , r)
5: if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr ) then
6: return (Xpr mod p : Ypr mod p : Zpr mod p)
7: else
8: return error
9: end if
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BOS countermeasure
Blömer et al, LNCS 2006

Algorithm 3 ECSM protected with BOS countermeasure
Input: P ∈ E(Fp), k ∈ {1, . . . ,ord(P)− 1}
Output: Q = [k ]P ∈ E(Fp)

1: Choose a small prime r , a curve E(Fr ), and a point Pr on that
curve.

2: Determine the combined curve E(Zpr ) and point Ppr using the
CRT.

3: (Xpr : Ypr : Zpr ) = ECSM(Ppr , k ,pr)
4: (Xr : Yr : Zr ) = ECSM(Pr , k , r)

5: if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr ) then
6: return (Xpr mod p : Ypr mod p : Zpr mod p)
7: else
8: return error
9: end if
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BOS countermeasure
Blömer et al, LNCS 2006

Algorithm 4 ECSM protected with BOS countermeasure
Input: P ∈ E(Fp), k ∈ {1, . . . ,ord(P)− 1}
Output: Q = [k ]P ∈ E(Fp)

1: Choose a small prime r , a curve E(Fr ), and a point Pr on that
curve.

2: Determine the combined curve E(Zpr ) and point Ppr using the
CRT.

3: (Xpr : Ypr : Zpr ) = ECSM(Ppr , k ,pr)
4: (Xr : Yr : Zr ) = ECSM(Pr , k , r) . without test in EC-ADD
5: if (Xpr mod r : Ypr mod r : Zpr mod r) = (Xr : Yr : Zr ) then
6: return (Xpr mod p : Ypr mod p : Zpr mod p)
7: else
8: return error
9: end if
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BOS is incorrect in Weierstrass curve

Elliptic curve on Zpr Elliptic curve on Fr
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BOS is incorrect in Weierstrass curve

Elliptic curve on Zpr Elliptic curve on Fr

Without fault injection, there are an error because O 6= [k ]P
mod r
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Our contributions

Security analysis of modular extension countermeasure
Correct the BOS countermeasure using Edwards and
Twisted Edward curve
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Security Analysis of Modular Extension

Definition 1: Fault model
We consider an attacker who can fault data by randomizing or zeroing
any intermediate variable, and fault code by skipping any number of
consecutive instructions.

Definition 2: Attack order
We call order of the attack the number of faults (in the sense of Def.
1) injected during the target execution.

Definition 3: Secure algorithm

An algorithm is said secure if it is correct and if it either returns the
right result or an error constant when faults have been injected, with
an overwhelming probability.
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Security Analysis of Modular Extension

Theorem 1: Security of test-free modular extension

Test-free algorithms protected using the modular extension
technique, are secure as per Def. 3 . In particular, the
probability of non-detection is inversely proportional to the
security parameter r .
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Faulted results are polynomials of faults.

We give the formal name x̂ to any faulted variable x .
For convenience, we denote them by x̂i , 1 ≤ i ≤ n, where
n ≥ 1 is the number of injected faults.
The result of asymmetric computation consists in additions,
subtractions, and multiplications of those formal variables
(and inputs). Such expression is a multivariate polynomial.
If the inputs are fixed, then the polynomial has only n
formal variables. We call it P(x̂1, . . . , x̂n).
For now, let us assume that n = 1, i.e., that we face a
single fault. Then P is a monovariate polynomial. Its
degree d is the multiplicative depth of x̂1 in the result.
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Non-detection probability is
inversely proportional to r

A fault is not detected if and only if P(x̂1) = P(x1) mod r ,
whereas P(x̂1) 6= P(x1) mod p.
As the faulted variable x̂1 can take any value in Zpr , the
non-detection probability Pn.d. is given by:

Pn.d. =
1

pr − 1
·

∑
x̂1∈Zpr\{x1}

1P(x̂1) = P(x1) mod r

=
1

pr − 1
·
(
− 1 + p

r−1∑
x̂1=0

1P(x̂1) = P(x1) mod r

)
. (1)

Let x̂1 ∈ Zr , if P(x̂1) = P(x1) mod r , then x̂1 is a root of the
polynomial ∆P(x̂1) = P(x̂1)− P(x1) in Zr . We denote by
#roots(∆P) the number of roots of ∆P over Zr . Thus (1)
computes (p ×#roots(∆P)− 1)/(pr − 1) ≈ #roots(∆P)/r .
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Theoretical Upper-Bound for #roots

#roots(∆P) can be as high as the degree d of ∆P in Zr , i.e.,
min(d , r − 1). However, in practice, ∆P looks like a random
polynomial over the finite field Zr , for several reasons:

inputs are random numbers in most cryptographic
algorithms, such as probabilistic signature schemes,
the coefficients of ∆P in Zr are randomized due to the
reduction modulo r .
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Theoretical Upper-Bound for #roots
Leont’ev proved in Mathematical Notes 2006 that if P is a
random polynomial in Fp then #roots(P) ∼ Poisson(λ = 1),
i.e., P(#roots(P) = n) = 1

en! .
In the case of ∆P mod r , we know that there is always at least
one root, when x̂1 = x1

 0
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 0.2

 0.3

 0.4

 0  1  2  3  4  5  6  7  8

P
ro

b
a
b
ili

ty

#roots

Poisson(1)
k = 3

Non-detection probability is inversely proportional to r .
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Correct BOS countermeasure

Definition 4: Edwards curves
On the finite field Fp with p a prime number, an elliptic curve in
Edwards form has parameters c,d in the finite field Fp and
coordinates (x , y) satisfying the following equation:

x2 + y2 = c2(1 + dx2y2), (2)

with cd(1− c4d) 6= 0.

The main advantage to use the Edwards curves is that addition
formulas ECADD-complete are :

complete
unified

⇒ no test in EC-ADD-unified formula
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Correct BOS countermeasure

Elliptic curve on Zpr Elliptic curve on Fr
(Edwards form) (Edwards form)

No problem with the point at infinity
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Correct BOS countermeasure

Twisted Edwards curves are a generalization of Edwards
curves.

Definition 5: Twisted Edwards curves
Let p a prime number. On the finite field Fp, an elliptic curve in
twisted Edwards form has parameters a,d in the finite field Fp
and coordinates (x , y) satisfying the following equation:

ax2 + y2 = 1 + dx2y2, (3)

with ad(a− d) 6= 0.

Like Edwards curves, the addition formulas are unified and
complete.
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Edwards Curve example
We generate a Edwards curve on the finite field F2255−19
defined by x2 + y2 = 1− 6x2y2 mod 2255 − 19.
The number of elements defined on the curve computed by
MAGMA tool is:

#E(2255 − 19) = 2255 + 138694172605265013181071149003381840660.

We find a generator point (xG, yG) on the Edwards curve with:

xG =53746514586250388770967951861766021561817370662802863797712166095360241234126,

yG =19570081233560550597987439135529516381390903225319934175948181057081969418594.

For the small curve E(Fr ), we can choose r = 2147499037;
hence we have c′ = 1800340494,d ′ = 1430405543, x ′G =
28751952 and y ′G = 1290929995.
Remark: The probability that a random prime r meets the
requirement of lemma 1 is closed to 1/4.

20/24 Margaux Dugardin PROOFS 2016



Twisted Edwards Curve example

The twisted Edwards Curves Ed25519 defined by equation
−x2 + y2 = 1− 121665

121666x2y2 on F2255−19, with:

xG =247274132351065410025545745716755888346227681673976384567264236825212336082063,

yG =15549675580280190176352668710449542251549572066445060580507079593062643049417.

The prime factor smaller than p of λ is :

Prime factors r 2 3 17 47 78857 843229 159962189299
Length in bit of r 2 2 5 7 16 19 40

r verifies the lemma 2 False False False False True True False

Important remark: we notice that the small verification field Fr
cannot be chosen at random.
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Performance

Projective unified addition version takes
10M+ 1S + 1C + 1D + 7A
The bitwidth of the modulus is denoted by n (e.g., n = 256
for Ed25519).
We denote by n′ the number of CPU words of the modulus

ECADD-complete ECADD-complete ECADD-complete Total cost of the
Curves type on Fp on Zpr on Fr countermeasure

Edwards 11.8n′2 + 7n′ 11.8n′2 + 30.6n′ + 18.8 19.8 11.8n′2 + 30.6n′ + 38.6
Twisted Edwards 11.8n′2 + 7n′ 12.8n′2 + 32.6n′ + 29.8 19.8 12.8n′2 + 32.6n′ + 49.6

Computational
Curves type overhead with:

n′ = 8 n′ = 16
Edwards ≈ +28% ≈ +13%

Twisted Edwards ≈ +39% ≈ +21%
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Conclusion

Using complete and unified elliptic curve formula is
recommended to implemente the BOS countermeasure
Choose a small curve is not trivial !
(Other work: Neves and Tibouchi, PKC 2016)
Another advantage of (Twisted) Edwards curve is the
Simple Side Channel Analysis resistance of unified
formulas (no difference between a doubling and adding)
The ECSM computation on the small curve can be
reduced by the modulo of the order of the small curve
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Thank you !
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