
GSIS,  TOHOKU UNIVERSITY

PROOFS2015, Saint Malo, France

Shoei Nashimoto, Naofumi Homma,

Yu-ichi Hayashi and Takafumi Aoki

Tohoku University, Japan

Buffer Overflow Attack with Multiple Fault 

Injection and a Proven Countermeasure

17 September 2015



Embedded devices become attractive

 Increase attractions to attack embedded systems

 Many devices connect to networks (Internet-of-Things)

 Worth paying high cost, e.g., attacks to cryptographic 

hardware

 Fault injection attacks

 Inject fault(s) in cryptographic operation,

and obtain secret key from faulty output(s)

 Fault injection into microcontrollers often brings

bit inversion or instruction skip [Agoyan 2010], [Endo 2014]

It is possible to apply fault injection techniques

to general-purpose software 2/27



Fault injection attacks to general-purpose software

 Previous works

 Execute arbitrary code in Java Virtual Machine by 

inverting bits  [Govindavajhala 2003], [Bouffard 2011]

 Cause effect like buffer overflow (BOF) using

instruction skip [Fouque 2012]

 Not only cryptographic software

 Fault injection attacks are also threat to general-purpose

software

3/27



This work

 Propose buffer overflow attack with multiple fault injection

 Instruction skips are not considered in most software

 Can invalidate countermeasures by secure coding

 Overcome typical software countermeasure and

perform general buffer overflow (BOF) attack

 Propose effective countermeasure and prove its validity

Side-channel attacks,

Fault injection attacks

Attacks to software

DoS attacks, 

BOF attacks, 

Injection attacks

Attacks to hardware

+

4/27



Outline

 Background

 Buffer overflow attacks

 Proposed attack & experiment

 Countermeasure

 Conclusion

5/27



What are BOF attacks?

 Buffer overflow (BOF)

 Invalid memory overwrite caused by input that exceeds 

assigned memory size

 Commonly happen when using flexible languages that 

can finely handle a memory region, such as C/C++

 strcpy(), scanf(), gets() are dangerous

 BOF attacks

 Use BOF vulnerability to execute malicious operations

 Abnormal stop of OS or applications

 Gaining administrator rights

6/27



How to perform BOF attack (e.g., strcpy())

void sub_function(char *data) {

char buf[20];

strcpy(buf, data);

return;

}

int main(int argc, char *argv[]) {

sub_function(data);

return 0;

}

① ②

③

① Function call ② Memory allocation ③ String-copy operation

empty

Input data

Stack Pointer

Return Address

Stack Pointer

0xFFFF

0x0000

Return Address

Stack Pointer

buf [20]

Return Address

7/27



int main(int argc, char *argv[]) {

sub_function(data);

return 0;

}

①

Attack

Code

Data

Shell Code

Stack Pointer

Return Address

① Function call ② Memory allocation

Stack Pointer

0xFFFF

0x0000

Return Address

Stack Pointer

buf [20]

Return Address

③ String-copy operation

How to perform BOF attack (e.g., strcpy())

void sub_function(char *data) {

char buf[20];

strcpy(buf, data);

return;

}

②

③

8/27



Countermeasure against BOF attacks

Name Method Layer

ASLR

(Address Space Layout 

Randomization)

Change stack address for

every execution.

OS

(Operating System)

SG

(Stack Guard)

Add random numbers and

check them at the end of function.
Compiler

DEP (Data Execution 

Prevention),

ES (Exec Shield)

Prohibit execution of all code

in the stack.
OS, CPU, Compiler

ISL

(Input Size Limitation)

Use function that can limit input 

size.
Program

 Input Size Limitation (ISL)

 Only need standard C library

 Simply change function to use

 strcpy(dest, src) → strncpy(dest, src, size) 9/27



Outline

 Background

 Buffer Overflow Attacks

 Proposed attack & Experiment

 Countermeasure

 Conclusion

10/27



Concept of the proposed attack

 Assumption

 Feeding glitchy clock signal into CPU enables

instruction skip(s).

 Attack method

 Skip a few instructions while input attack code, and 

invalidate boundary check to make buffers overflowed

 Take control of CPU like common attacks

Glitchy clock signal

Skip multiple and arbitrary instructions

11/27



BOF using instruction skips

 Target function

 strncpy(dst, src, size)

 Limit input size up to size

 Target instructions

① Subtract (update) instruction

Continue the loop without update

→ Increase input size by 1 character

② Branch instruction

Continue the loop unconditionally

→ Over the assigned size

START

END

Copy 1 character

null ?

Yes

No

cnt --

cnt < 0

No

Yes

Simplified flow of strncpy()

1

2

12/27



Experimental setup

Clock glitch

generator

(on FPGA)

Smart card

(AVR ATmega163)
 Equipments

 SASEBO-W (Side-channel Attack

Standard Evaluation BOard)

 Smart card (AVR ATmega163)

 PC

 Conditions

Microcontroller AVR ATmega163 (8 bit)

Clock frequency of microcontroller Up to 8 MHz

Compiler avr gcc (4.3.3) (Not optimized by -o0)

FPGA Xilinx XC6SLX150-FGG484

Attack condition Program is known

Communicate 

with PC

13/27



Experimental outline

 Procedure

 Invalidate the countermeasure of strncpy() and

perform BOF attack

 Overwrite return address to call function in the program

 Control flow

PC Smart card

1. User input（32 byte） 2. Handle input data

3. Memory dump

Store 19 byte into 

char msg[20] by using

strncpy()

Time

1’. Fault injection command

14/27



Result

 No fault, “A...A”  (20 byte)

 5 faults, “A...A (0x38) (0x04) (0x04) (0x08)”  (24 byte)

char  msg[20]

Stack Pointer

+

Return Address

void hello_world() {  memcpy((char*)0x120, “hello world!”, 12);  }

Function maliciously called by BOF attack

(The address is got by the object dump of the program)

15/27



 No fault, “A...A”  (20 byte)

 5 faults, “A...A (0x38) (0x04) (0x04) (0x08)”  (24 byte)

Result

char  msg[20]

Stack Pointer

+

Return Address

16/27



Possibility of proposed attack

 Target functions

 User functions that have iteration

 strncpy(), fgets(), strncmp(), 

memcpy()

 Attack conditions

 Physically accessible

(fault injection)

 Program is known

(BOF attack)

START

END

end 

judgement

Store data

into memory

Load data

from memory

continue

end

Vulnerable structure

1

2

3

Loop

CERT/CC Top 10 Secure Coding Practices [1]

No1: Validate input.

[1] https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices 17/27



Example of attack scenario

 Malicious firmware update in M2M network

Machine To Machine (M2M)

sensor network

Internet

master

node

 Send malicious update program,

and perform BOF attack

 Directly call update function

1. Sign update program 

by private key

2. Check validity of the

program by public key

18/27



Outline

 Background

 Buffer Overflow Attacks

 Proposed attack & Experiment

 Countermeasure

 Conclusion

19/27



How to protect branch instruction

 Locate branch instruction at the bottom of loop

“Skip branch → The loop is finished”

START

END

Copy 1 character

null ?

Yes

No

cnt --

cnt < 0

No

Yes

START

END

Copy 1 character

null ?
Yes

No

cnt --

cnt < 0

Yes

No

20/27



How to protect branch instruction

 Locate branch instruction at the bottom of loop

“Skip branch → The loop is finished”

START

END

Copy 1 character

null ?

Yes

No

cnt --

START

END

Copy 1 character

null ?
Yes

No

cnt --

21/27



How to protect update instruction

 Associate loop counter with store address

“Skip update → Data is stored into same address”

finish

cnt

0 size

str

init init + size

INIT: str = init

finish

INIT: str = init

end = size + str

str

init end

init + size

=

a b c d e - -

a b c d e f -

a b c d e - -

a b c d f - -

Skip the update Skip the update

init init+size

BOF

22/27



Application to AVR microcontroller

1  strncpy:

2  INIT:

3      movw

4      movw

5  LOOP:

6      subi

7      sbci

8      brcs

9      ld

10    st

11    and  

12    brne

13 rjmp

…

1  my_strncpy:

2  INIT:

3      movw

4      movw

5      add

6      adc

7      rjmp

8  LOOP:

9      ld

10    st

11    adiw

12    and

13    breq

14 CMP:

15    cp

16    cpc

17    brlo

18    ret

…

Update instructions

Branch instruction

Protected instructions

r30, r22

r26, r24

r20, 0x01

r21, 0x00

END

r0, Z+

X+, r0

r0, r0

LOOP

Z_CMP

r30, r22

r26, r24

r20, r26

r21, r27

CMP

r0, Z+

X, r0

r26, 0x01

r0, r0

Z_CMP

r26, r20

r27, r21

LOOP

23/27



my_strncpy:

INIT:

movw

movw

add

adc

rjmp

LOOP:

ld

st

adiw

and

breq

CMP:

cp

cpc

brlo

ret

…

# 20 inst

r30, r22

r26, r24

r20, r26

r21, r27

CMP

r0, Z+

X, r0

r26, 0x01

r0, r0

Z_CMP

r26, r20

r27, r21

LOOP

1

2

3

4

Security evaluation

 Assumptions of attackers

1. Skip multiple and arbitrary instructions

2. Use BOF

3. All flags are reset when my_strncpy() 

is called

 Evaluation method

 Examine all the possible instruction 

skips (220 patterns)

 Consider all the combinations of four 

instructions by above assumptions

24/27



my_strncpy:

INIT:

movw

movw

add

adc

rjmp

LOOP:

ld

st

adiw

and

breq

CMP:

cp

cpc

brlo

ret

…

# 20 inst

r30, r22

r26, r24

r20, r26

r21, r27

CMP

r0, Z+

X, r0

r26, 0x01

r0, r0

Z_CMP

r26, r20

r27, r21

LOOP

Examining skipping of add

 size’ > size ⇒ BOF happens

size : original input size

size’ : input size after instruction skip

・𝑠𝑖𝑧𝑒′ = 𝑒𝑛𝑑′ − 𝑠𝑡𝑟′

str’ : initialized value of store address

・𝑠𝑖𝑧𝑒′ − 𝑠𝑖𝑧𝑒 = 𝐶𝐹’ ∗ 0𝑥100 – 𝑟26 (0 ≤ 𝑟26 ≤ 0𝑥100)

𝐶𝐹’: carry flag when my_strncpy() is called

・If 𝐶𝐹’ = 1 then 𝑠𝑖𝑧𝑒′ > 𝑠𝑖𝑧𝑒 , and BOF happens

・But, according to the assumptions, all flags are 

reset and 𝐶𝐹’ = 0. So BOF cannot happen.

25/27



Overheads by our countermeasure

Function name
Program memory [Byte] Clock cycles

Total Difference Total Difference

strncpy() 30 - 10 + 10n -

my_strncpy() 40 +10 13 + 11n +(3 + n)

* n: size, argument of strncpy()

26/27



Conclusion and future work

 Conclusion

 Proposal of buffer overflow (BOF) attack with multiple 

fault injection

 Invalidated typical software countermeasure 

against BOF attacks, and performed BOF attack

 Proposal of software countermeasure, evaluated its 

overhead, and proved its validity

 Future work

 Apply our attack to other microprocessors, such as ARM

 Propose “systematic” proof of the countermeasure

27/27


