17 September 2015

Buffer Overflow Attack with Multiple Fault
Injection and a Proven Countermeasure

PROOFS2015, Saint Malo, France

Shoeil Nashimoto, Naofumi Homma,
Yu-ichi Hayashi and Takafumi Aoki

Tohoku University, Japan
GSIS, TOHOKU UNIVERSITY

Embedded devices become attractive

B [ncrease attractions to attack embedded systems
O Many devices connect to networks (Internet-of-Things)

O Worth paying high cost, e.g., attacks to cryptographic
hardware

B Fault injection attacks
O Inject fault(s) in cryptographic operation,
and obtain secret key from faulty output(s)

O Fault injection into microcontrollers often brings
bit inversion or instruction skip [Agoyan 2010], [Endo 2014]

It is possible to apply fault injection techniques
to general-purpose software 5197

Fault injection attacks to general-purpose software

B Previous works

O Execute arbitrary code in Java Virtual Machine by
Inverting bits [Govindavajhala 2003], [Bouffard 2011]

O Cause effect like buffer overflow (BOF) using
Instruction skip [Fouque 2012]

B Not only cryptographic software

O Fault injection attacks are also threat to general-purpose
software

3/27

This work

B Propose buffer overflow attack with multiple fault injection
O Instruction skips are not considered in most software
® Can invalidate countermeasures by secure coding

O Overcome typical software countermeasure and
perform general buffer overflow (BOF) attack

B Propose effective countermeasure and prove its validity

— Attacks to software —

SInpu 4
Yo strean (P, ngth(;
-

| DoS attacks,
[l BOF attacks,
Injection attacks

4127

Outline

L]

B Buffer overflow attacks

B Proposed attack & experiment
B Countermeasure

B Conclusion

5/27

What are BOF attacks?

B Buffer overflow (BOF)

O Invalid memory overwrite caused by input that exceeds
assigned memory size

O Commonly happen when using flexible languages that
can finely handle a memory region, such as C/C++

® strcpy(), scanf(), gets() are dangerous

B BOF attacks
O Use BOF vulnerability to execute malicious operations
® Abnormal stop of OS or applications

® Gaining administrator rights
6/27

How to perform BOF attack (e.g., strcpy())

iInt main(int argc, char *argv(]) { void sub_function(char *data) {

(D sub_function(data);

return O;

}

- @ char buf[20];

@ strcpy(buf, data);

return;

}

(1) Function call
0x0000

Stack Pointer

Return Address

OXFFFF :

(@ Memory allocation

buf [20]

Stack Pointer

Return Address

3 String-copy operation

Input data

empty

Stack Pointer

Return Address

1127

How to perform BOF attack (e.g., strcpy())

iInt main(int argc, char *argv(]) { void sub_function(char *data) {
(D sub_function(data); @ char buf[20];
return O; @) strcpy(buf, data);
} ' return;
}
@ Function call (2 Memory allocation @ String-copy operation
0x0000
buf [20] Data]
Stack Pointer Stack Pointer : : :St:ac}_TDc__)irEte:r: : Attack
Return Address Return Address | Return Address Code
OXFFFF i : <¢ Shell Code l

8/27

Countermeasure against BOF attacks

Name Method Layer
(Ad dressAS? LaF\;e Lavout Change stack address for OS

Ran dorﬁization)y every execution. (Operating System)

SG Add random numbers and Combiler
(Stack Guard) check them at the end of function. P
DEP (Data Execution - :
Prevention), :?]r?hhe'bslttae;(f stitien @il Gt OS, CPU, Compiler

ES (Exec Shield) '

ISL Use function that can limit input

(Input Size Limitation) size. Program

B [nput Size Limitation (ISL)
O Only need standard C library
O Simply change function to use

® strcpy(dest, src) — strncpy(dest, src, size) 9/27

Outline

O

O

B Proposed attack & Experiment
B Countermeasure

B Conclusion

10/27

Concept of the proposed attack

B Assumption

O Feeding glitchy clock signal into CPU enables
Instruction skip(s).

PUSH R29 Push register on stack
_[————l____{————t__ PUSH R28 Push register on stack
RE B+ B O Rt . .
Re RC 0,088 Relati ™ .
PUSH R@ Push register on stack
T R2Gge 3t HrfremHoTocatior—
Glitchy clock signal IN R29, @x3E In from I/0 location

Skip multiple and arbitrary instructions
B Attack method

O Skip a few instructions while input attack code, and
Invalidate boundary check to make buffers overflowed

O Take control of CPU like common attacks
11/27

BOF using instruction skips

B Target function (CSTART)
O strncpy(dst, src, size)
O Limit input size up to size et | @
Yes
B Target instructions ot <NO)
0]
(D Subtract (update) instruction Copy 1 character
Continue the loop without update NG
— Increase input size by 1 character null 2
Yes
(@ Branch instruction :
(END)

Continue the loop unconditionally

— Over the assigned size Simplified flow of strncpy()
12/27

Experimental setup

Smart card
(AVR ATmegal63)

B Equipments

O SASEBO-W (Side-channel Attack
Standard Evaluation BOard)

O Smart card (AVR ATmegal63)
O PC

I ‘ Clock glitch
s generator

Communicate

" e P s (0N FPGA
B Conditions with PC h ()
Microcontroller AVR ATmegal63 (8 hit)

Clock frequency of microcontroller Up to 8 MHz

Compiler avr gcc (4.3.3) (Not optimized by -00)
FPGA Xilinx XC6SLX150-FGG484
Attack condition Program is known

13/27

Experimental outline

B Procedure

O Invalidate the countermeasure of strncpy() and
perform BOF attack

O Overwrite return address to call function in the program

H Control flow

PC Smart card

1. User input (32 byte) 2. Handle input data
1’. Fault injection command

Store 19 byte into
char msg[20] by using

v

TimeV 14/27

Result

B No fault, “A...A” (20 byte)

0100
0108
0110
0118
0120
0128

/[char msg[20] J

41 41 41 41
41 41 41 41

38 04 03 86
ob 00 bf 00 53
00 00/ 00 00 00
00 00 00 00 00

AAAAAAAA
AAAAAAAA

A A o
Stack Pointer
+

% Return Address

B 5 faults, “A...A (0x38) (0x04) (0x04) (0x08)” (24 byte)

void hello_world() { memcpy((char*)0x120, “hello world!”, 12); }

Function maliciously called by BOF attack

(The address is got by the object dump of the program)

15/27

Result

H No fault, “A.

.A” (20 byte) /[Chaf mSQ[ZO]J

0100
0108

0110

41 41 41 41 41 41 41 47 AAAAAAAA
41 471 41 41 41 41 41 417 AAAAAAAA
41 41 41 0038 04 03 86| AA*=°

0118
0120
0128

B 5 faults, “A..

3c 04 06 0b 00 bf 00 53 Stack Pointer
00 00 00 00 09/ 00 00 00 | . *
00 00 00 00 @0 00 00 0o | | ReturnAddress

A (0x38) (0x04) (0x04) (0x08)” (24 byte)

0100
0108
0110

41 41 41 41 41 41 41 47 AAAAAAAA
41 41 41 41 41 41 41 417 AAAAAAAA
41 41 41 41|38 04 04 08| | AAAAS. ..

0118

3c 04 06 Qb 00 bf 00 53 | <...... S

0120

0128

48 65 6¢c 6C 6f 20 77 6f Hello wo
72 6Cc 64 21| 00 00 00 00 rld!....

Possibility of proposed attack

B Target functions (_ START)
O User functions that have iteration -y, o4,
O strnecpy(), fgets(), strncmp(), Load data @f
memcpy() : from memory
CERT/CC Top 10 Secure Coding Practices [1] Store data ?
Nol: Validate input. Into memory
B Attack conditions continue
end
O Physically accessible judgement
(fault injection) end
C END)

O Program is known
(BOF attack) Vulnerable structure

[1] https:/iwww.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices 1 7/ 2 7

Example of attack scenario

B Malicious firmware update in M2M network

master ‘ % 1. Sign update program
v by private key

- J 2. Check validity of the

program by public key

\= & Send malicious update program,

%{ and perform BOF attack

_0O Directly call update function
Machine To Machine (M2M)

sensor network 18/27

Outline

N
N
N
B Countermeasure

B Conclusion

19/27

How to protect branch instruction

B |ocate branch instruction at the bottom of loop
“Skip branch — The loop is finished”

(START)

cnt --

Yes

cnt<O
No

Copy 1 character

No

null ?
Yes

CE;\ID)

—)

(_ START)

Copy 1 character

=
No

cnt --

NO

\cnt<0

JYes

(END)

20/27

How to protect branch instruction

B |ocate branch instruction at the bottom of loop
“Skip branch — The loop is finished”

(START)

cnt --

Copy 1 character

o

Yes

(END)

(START)

Copy 1 character

=
No

cnt --

(EI:\ID)

21/27

How to protect update instruction

B Associate loop counter with store address

“Skip update — Data is stored into same address”

INIT: str = init
0l finish size
CNt o ———)
Init init + size
Str e -
— init —init+size

alblc|d]|e

Skip the updatel, BOE
alb|lc|d|e]|f

INIT:{ str = init
end = size + str
Init + size
init finish eHd
Str == ~
alblc|d|e

Skip the update \L

alb

C

d

f

22127

Application to AVR microcontroller

1 strncpy
2 INIT:

3 movw
4 movw
5 LOOP:
6 subi
7 sbci
8 brcs
9 Id

10 st

11 and
12 brne
13 rmp

r30, r22
r26, r24

r20, Ox01
r21, 0x00
END

ro, Z+
X+, 10
ro, rO
LOOP

Z CMP

Protected instructions ———

Update instructions

Branch instruction

J

1 my_strncpy:
2 INIT:

3 movw 130, r22
4 mMovw 126, r24
5 add r20, r26
6 adc r21, r27
7 1mp CMP

8 LOOP:

9 |d ro, Z+
10 st X, ro

11 adiw r26, 0x01
12 and ro, rO
13 breq Z CMP

15 cp r26, r20
16 cpc 27,121
17 Drlo LOOP

23/27

Security evaluation

B Assumptions of attackers
1. Skip multiple and arbitrary instructions
2. Use BOF

3. All flags are reset when my_strncpy()
Is called

B Evaluation method

O Examine all the possible instruction
skips (22° patterns)

O Consider all the combinations of four
Instructions by above assumptions

my_strncpy: # 20 inst

INIT:
movw
movw

(D) add
(2) adc

rmp
LOOP:
Id
st
adiw
and
breq
CMP:
3 cp
(4) cpc
brlo
ret

r30, r22
r26, r24
r20, r26
r21, r27
CMP

ro, Z+

X, ro

r26, 0x01
rO, rO

Z CMP

r26, r20
r27,r21
LOOP

24/27

Examining skipping of add

size . original input size
size’. Input size after instruction skip

B size’ > size = BOF happens
-size' = end’ — str’
str’: Initialized value of store address

"size' —size = CF’ * 0x100 - r26 (0 <126 < 0x100)
CF’: carry flag when my_strncpy() is called

If CF’ = 1 then size’ > size , and BOF happens

- But, according to the assumptions, all flags are
reset and CF’ = 0. So BOF cannot happen.

my_strncpy: # 20 inst

INIT:

add
adc

LOOP:

CMP:

cp
cpc

r20, r26
r21, r27

r26, r20
r27,r21

25/27

Overheads by our countermeasure

_ Program memory [Byte] Clock cycles
Function name _ _
Total Difference Total Difference
strncpy() 30 - 10 + 10n -
my_strncpy() 40 +10 13 + 11n +(3+n)

*n: size, argument of strncpy()

26/27

Conclusion and future work

B Conclusion

O Proposal of buffer overflow (BOF) attack with multiple
fault injection

® |Invalidated typical software countermeasure
against BOF attacks, and performed BOF attack

O Proposal of software countermeasure, evaluated its
overhead, and proved its validity

B Future work
O Apply our attack to other microprocessors, such as ARM

O Propose “systematic” proof of the countermeasure

27127

