
Using Linear Codes as a Fault Countermeasure for
Non-Linear Operations :

Application to AES and Formal Verification
work co-funded by the PRINCE project

Sabine Azzi, Bruno Barras,
Maria Christofi, David Vigilant
PROOFS workshop 2015, September 17th

Introduction

Motivation

Is it possible to design a countermeasure for embedded devices based on linear
codes to protect linear (obviously yes) and non-linear parts of a block cipher ?

Can we formally verify it ?

Our Contribution

Not yet studied for the non-linear operations (such as substitution step)
−→ This is discussed in this paper !

Willingness to get a formal verification of AES based on linear code as a fault
countermeasure.

2 / 25 PROOFS workshop 2015, September 17th

1 Introduction
Existing techniques
Recent interest in using linear codes to protect block ciphers
Linear codes well suited for software implementation

2 / 25 PROOFS workshop 2015, September 17th

Existing Techniques to Protect Block Ciphers
Against Fault Attacks

Time redundancy : The algorithm itself is not modified. The whole algorithm or
some parts of it are executed several times sequentially, and it is verified that the
replayed computations lead to the same results.

Hybrid redundancy : The consistency is verified in its context. For example,
verifying the encryption result can be done by deciphering the result and verify
that the original plaintext is recovered after decryption.

Information redundancy : Add some duplication of the information which allows
to detect any modification of any part of the data, with a consistency check with its
duplication part.

3 / 25 PROOFS workshop 2015, September 17th

Existing Techniques to Protect Block Ciphers
Against Fault Attacks

Time redundancy : The algorithm itself is not modified. The whole algorithm or
some parts of it are executed several times sequentially, and it is verified that the
replayed computations lead to the same results.

Hybrid redundancy : The consistency is verified in its context. For example,
verifying the encryption result can be done by deciphering the result and verify
that the original plaintext is recovered after decryption.

Information redundancy : Add some duplication of the information which
allows to detect any modification of any part of the data, with a consistency
check with its duplication part.

3 / 25 PROOFS workshop 2015, September 17th

1 Introduction
Existing techniques
Recent interest in using linear codes to protect block ciphers
Linear codes well suited for software implementation

3 / 25 PROOFS workshop 2015, September 17th

Recent Interest in Using Linear Codes to
Protect Block Ciphers

Side-Channel and specific for AES : ”A New Masking Scheme for Side-Channel
Protection of AES” (Bringer et al. - 2012)

Bloc cipher generic : Fault Attacks and Side-Channel : ”Orthogonal Direct
Sum Masking” (Bringer et al. - 2014)

Bloc cipher generic : Side-Channel Resistance study : ”Complementary Dual
Codes for Counter-measures to Side-Channel Attacks (Carlet et al. - 2015)

4 / 25 PROOFS workshop 2015, September 17th

1 Introduction
Existing techniques
Recent interest in using linear codes to protect block ciphers
Linear codes well suited for software implementation

4 / 25 PROOFS workshop 2015, September 17th

Some Systematic Linear Codes Operations can
be Implemented Efficiently in Software

For systematic codes, data x is represented by x ||Gx

e.g. C[16, 8, 5]
Decoded data representation : 1 byte

Encoded data representation : 2 byte

Redundancy part generation is a lookup table (256 bytes)

Verification that x||Gx is in C is a lookup table (256 bytes)

5 / 25 PROOFS workshop 2015, September 17th

2 Contribution
Study of the usage of systematic linear codes for non-linear operations of block
ciphers
Formal Verification Methodology
AES case study implementation and formal verification

5 / 25 PROOFS workshop 2015, September 17th

Linear Codes and Non Linear Operations

Open question in cited
papers.

Common technique : Decode
data before the non linear
step and re-encoded it after it.

decoded data for the non
linear step⇒ the fault
resistance is significantly
decreased
This paper

studies the fault resistance
especially during non linear
operations
proposes a formal
verification of a block cipher
implementation with a
countermeasure based on
linear codes

State of the art on constrained devices (not enough
room for a lookup table with encoded entries).

Encoded(x)

x

NL op

NL op(x)

Encoded(NL op(x))

decode

encode

E

6 / 25 PROOFS workshop 2015, September 17th

Systematic Linear Codes and Non Linear
Operations

Systematic codes may be interesting :
2 lookup tables

x |Gx

x Gx

NL op T?

NL op(x) GNL op(x)

NL op(x)|GNL op(x)

Consistency check

possible

Consistency check

possible

But Gx may not determine uniquely x.

7 / 25 PROOFS workshop 2015, September 17th

Example : C[16,8,5] and Non Linear
Operations

x |Gx

x Gx

NL op T

NL op(x) GNL op(x)

NL op(x)|GNL op(x)

Consistency check

possible

Consistency check

possible

Gx does not determine uniquely x .

8 / 25 PROOFS workshop 2015, September 17th

Example : C[16,8,5] and Non Linear
Operations

C[16, 8, 5] :

has an
orthogonal/complementary
code

Gx does not determine
uniquely x

BUT... Gx ⊕ x determines
uniquely x

x |Gx

x Gx

NL op T

NL op(x) GNL op(x)

NL op(x)|GNL op(x)

Consistency check

possible

Consistency check

possible

9 / 25 PROOFS workshop 2015, September 17th

Method Applications/Generalisations

The paper discusses how this approach can be :

Generalized for all systematic linear codes with a square generator matrix (or
concatenation of square matrices)

Applied whatever the non linear operation (for all block ciphers)

Combined with masking methods to prevent side channel attacks

Applied to the orthogonal sum code technique

10 / 25 PROOFS workshop 2015, September 17th

Example : C[16,8,5], Complementary and Non
Linear Operations
C[16,8,5] has an orthogonal/complementary code C2 with a generator matrix H

x ⊕ Hy |y ⊕ Gx

x ⊕ Hy y ⊕ Gx

NL op′

Input :
randomized by
Hy

Output :

randomised by

Hy′

T ′

Input :
randomized by
y ⊕ Hy

Output :

randomized by y’

NL op(x)⊕ Hy ′ GNL op(x) ⊕ y ′

NL op(x)⊕ Hy ′|GNL op(x) ⊕ y ′

Consistency check

possible

Consistency check

possible

11 / 25 PROOFS workshop 2015, September 17th

2 Contribution
Study of the usage of systematic linear codes for non-linear operations of block
ciphers
Formal Verification Methodology
AES case study implementation and formal verification

11 / 25 PROOFS workshop 2015, September 17th

Motivation

Many software countermeasures presented to thwart attacks ...

... which are ”quickly” broken.

Their security has to be verified ...

... but it is costly.

Use tools from mathematics and theoretical computer science...

...provide mechanized proofs that can be used as non-regression
tests.

12 / 25 PROOFS workshop 2015, September 17th

Motivation

Many software countermeasures presented to thwart attacks ...

... which are ”quickly” broken.

Their security has to be verified ...

... but it is costly.

Use tools from mathematics and theoretical computer science...

...provide mechanized proofs that can be used as non-regression
tests.

12 / 25 PROOFS workshop 2015, September 17th

Motivation

Many software countermeasures presented to thwart attacks ...

... which are ”quickly” broken.

Their security has to be verified ...

... but it is costly.

Use tools from mathematics and theoretical computer science...

...provide mechanized proofs that can be used as non-regression
tests.

12 / 25 PROOFS workshop 2015, September 17th

Motivation

Many software countermeasures presented to thwart attacks ...

... which are ”quickly” broken.

Their security has to be verified ...

... but it is costly.

Use tools from mathematics and theoretical computer science...

...provide mechanized proofs that can be used as non-regression
tests.

12 / 25 PROOFS workshop 2015, September 17th

Motivation

Many software countermeasures presented to thwart attacks ...

... which are ”quickly” broken.

Their security has to be verified ...

... but it is costly.

Use tools from mathematics and theoretical computer science...

...provide mechanized proofs that can be used as non-regression
tests.

12 / 25 PROOFS workshop 2015, September 17th

Motivation

Many software countermeasures presented to thwart attacks ...

... which are ”quickly” broken.

Their security has to be verified ...

... but it is costly.

Use tools from mathematics and theoretical computer science...

...provide mechanized proofs that can be used as non-regression
tests.

12 / 25 PROOFS workshop 2015, September 17th

Motivation

Many software countermeasures presented to thwart attacks ...

... which are ”quickly” broken.

Their security has to be verified ...

... but it is costly.

Use tools from mathematics and theoretical computer science...

...provide mechanized proofs that can be used as non-regression
tests.

So ... formal methods should be used to prove that systems respect some functional
and security properties.

12 / 25 PROOFS workshop 2015, September 17th

Motivation

Many software countermeasures presented to thwart attacks ...

... which are ”quickly” broken.

Their security has to be verified ...

... but it is costly.

Use tools from mathematics and theoretical computer science...

...provide mechanized proofs that can be used as non-regression
tests.

So ... formal methods should be used to prove that systems respect some functional
and security properties.

Objective

Given an implementation of a cryptographic algorithm, with a set of countermeasures,
formally verify its functionality and its resistance to a set of attacks pre-defined.

12 / 25 PROOFS workshop 2015, September 17th

The goal !

But how do we generate all fault
scenarios ?

13 / 25 PROOFS workshop 2015, September 17th

The goal !

But how do we generate all fault
scenarios ?

13 / 25 PROOFS workshop 2015, September 17th

TL-FACE - User’s interaction

TL-FACE implements the method described in ”Formal verification of an implementation of CRT-RSA Vigilant’s
algorithm”, 2012, Christofi, Chetali, Goubin, Vigilant

14 / 25 PROOFS workshop 2015, September 17th

Define the Fault Model - Parameters I

Number of faults authorized per execution
single-fault attack
double-fault attack
multi-fault attack

Fault location (attacked variable)
no control : the target is one or more unknown bits
limited control : the target is a chosen variable
full control : the target is a set of chosen bits

Appearance time (attacked instruction)
no control
limited control : the fault is injected during the execution of a bloc of some identified
operations
full control : the attacker chooses the ”moment” of the injection

Fault persistence
transient fault : fault effect disappears after a period of time
permanent fault : fault effect persists until the attacked variable be refreshed
destructive fault : physical structure of the chip will be destroyed

15 / 25 PROOFS workshop 2015, September 17th

Define the Fault Model - Parameters I

Number of faults authorized per execution
single-fault attack
double-fault attack
multi-fault attack

Fault location (attacked variable)
no control : the target is one or more unknown bits
limited control : the target is a chosen variable
full control : the target is a set of chosen bits

Appearance time (attacked instruction)
no control
limited control : the fault is injected during the execution of a bloc of some identified
operations
full control : the attacker chooses the ”moment” of the injection

Fault persistence
transient fault : fault effect disappears after a period of time
permanent fault : fault effect persists until the attacked variable be refreshed
destructive fault : physical structure of the chip will be destroyed

15 / 25 PROOFS workshop 2015, September 17th

Define the Fault Model - Parameters I

Number of faults authorized per execution
single-fault attack
double-fault attack
multi-fault attack

Fault location (attacked variable)
no control : the target is one or more unknown bits
limited control : the target is a chosen variable
full control : the target is a set of chosen bits

Appearance time (attacked instruction)
no control
limited control : the fault is injected during the execution of a bloc of some identified
operations
full control : the attacker chooses the ”moment” of the injection

Fault persistence
transient fault : fault effect disappears after a period of time
permanent fault : fault effect persists until the attacked variable be refreshed
destructive fault : physical structure of the chip will be destroyed

15 / 25 PROOFS workshop 2015, September 17th

Define the Fault Model - Parameters I

Number of faults authorized per execution
single-fault attack
double-fault attack
multi-fault attack

Fault location (attacked variable)
no control : the target is one or more unknown bits
limited control : the target is a chosen variable
full control : the target is a set of chosen bits

Appearance time (attacked instruction)
no control
limited control : the fault is injected during the execution of a bloc of some identified
operations
full control : the attacker chooses the ”moment” of the injection

Fault persistence
transient fault : fault effect disappears after a period of time
permanent fault : fault effect persists until the attacked variable be refreshed
destructive fault : physical structure of the chip will be destroyed

15 / 25 PROOFS workshop 2015, September 17th

Define the Fault Model - Parameters II

Number of affected bits
only one bit
some bits (up to one byte)
a random number of bits (bound by the size of the affected variables or the component’s
bus)

Fault type
bit flip : set bit value to its complementary value
stuck-at : set bit value to its initial value
random fault : set bit value to a random value
bit set or bit reset : set bit value to a known value

Attacker success probability

16 / 25 PROOFS workshop 2015, September 17th

Define the Fault Model - Parameters II

Number of affected bits
only one bit
some bits (up to one byte)
a random number of bits (bound by the size of the affected variables or the component’s
bus)

Fault type
bit flip : set bit value to its complementary value
stuck-at : set bit value to its initial value
random fault : set bit value to a random value
bit set or bit reset : set bit value to a known value

Attacker success probability

16 / 25 PROOFS workshop 2015, September 17th

Define the Fault Model - Parameters II

Number of affected bits
only one bit
some bits (up to one byte)
a random number of bits (bound by the size of the affected variables or the component’s
bus)

Fault type
bit flip : set bit value to its complementary value
stuck-at : set bit value to its initial value
random fault : set bit value to a random value
bit set or bit reset : set bit value to a known value

Attacker success probability

16 / 25 PROOFS workshop 2015, September 17th

TL-FACE : ”Fault Attack Checking Engine”
How it works

Generate C code to simulate the faults
Automatic generation

Annotate C code to express the correctness of the crypto implementation and the
fact that these faults are detected

Annotations using the ACSL language

Use static analysis tools/provers to check that all annotations are matched (i.e. no
fault may modify the result without detection)

Integration using frama-c 1

And if the proof does not finish ?
Report the potential point of attack

(line code + attacked variable)

1. frama-c is a source code analysis tool of C software, developed by
CEA-LIST and INRIA-Saclay
17 / 25 PROOFS workshop 2015, September 17th

2 Contribution
Study of the usage of systematic linear codes for non-linear operations of block
ciphers
Formal Verification Methodology
AES case study implementation and formal verification

17 / 25 PROOFS workshop 2015, September 17th

Use Case : Formal Verification of an AES
Implementation

An AES software ANSI-C implementation based on systematic linear code
C[16,8,5] has been developed.

A formal verification for a basic fault model has been performed.

Chosen Fault Model : An attacker can :
inject one fault per execution
inject permanent faults
modify data (not the code execution)
flip one bit of the AES state

Implementation is believed resistant under a stronger attacker model (2, 3, 4) but
has to be (formally) verified

18 / 25 PROOFS workshop 2015, September 17th

Details About AES Implementation

Each byte of the AES state x is replaced by a 16-bit codeword of C[16,8,5]

X = x ||Gx = x ∗ G

(G being the generator matrix)

Design is straightforward for linear operations of AES.

No matrix operation.

Only lookup tables are used.

Technique described above for non linear step is applied.

19 / 25 PROOFS workshop 2015, September 17th

Results - Found Locations

Once the previous method is applied, the number of identified locations are :

Functions Possible locations
AddRoundKey 13
SubBytes 13
ShiftRow 16
MixColumns 101
Encrypt 15

We focused on

one linear operation : AddRoundKey

one non linear operation : SubBytes

20 / 25 PROOFS workshop 2015, September 17th

Results

AddRoundKey operation

3 possible locations for the considered fault model

All fault injections are detected by the countermeasure

SubBytes operation

1 possible location for the considered fault model

It seems to be detected by the countermeasure

Security of the whole system

Further (manual) study shows that other operations are secure too

21 / 25 PROOFS workshop 2015, September 17th

Conclusion

We discuss a novel method for using systematic linear codes in order to protect
non linear operations of block ciphers against fault attacks.

Can be applied to all block ciphers.

Can be efficiently implemented in software.

The presented method is to be combined with other methods (such as tour
counter, byte index -for the ShiftRow operation- etc) as some attack paths are not
covered by codes

We develop an AES software implementation with this method and verify it
formally under a basic fault model.

22 / 25 PROOFS workshop 2015, September 17th

Future Work

Formal verification of the actual AES implementation considering stronger fault
models.

Provide precise bench (code/RAM/performance/Fault detection) of the method
compared to other existing ones.

Develop an AES implementation implementing orthogonal sum technique and
combined with this method, and then verify it formally.

23 / 25 PROOFS workshop 2015, September 17th

Thank you for your attention !
maria.christofi@trusted-labs.com

24 / 25 PROOFS workshop 2015, September 17th

Overhead Compared to Unsecure
Implementation

AES software implementation using C[16,8,5]

Performance (assuming at least 16-bit CPU is used)
All linear operations : almost free

Nonlinear operations : 2 LUT + 1 XOR instead of 1 LUT

RAM
Each internal variable byte represented on 2 bytes : x2

Nonlinear operations : 1 LUT in code, 2 randomized LUTs in RAM (512 bytes)

25 / 25 PROOFS workshop 2015, September 17th

	Introduction
	Existing techniques
	Recent interest in using linear codes to protect block ciphers
	Linear codes well suited for software implementation

	Contribution
	Study of the usage of systematic linear codes for non-linear operations of block ciphers
	Formal Verification Methodology
	AES case study implementation and formal verification

