
Formally Proved Security of Assembly Code
Against Power Analysis:

A Case Study on Balanced Logic

Pablo Rauzy
rauzy@enst.fr

pablo.rauzy.name

Sylvain Guilley
guilley@enst.fr

perso.enst.fr/∼guilley

Zakaria Najm
znajm@enst.fr

TelecomParisTech
CNRS LTCI / COMELEC / SEN

PROOFS 2014
Third Workshop on Security Proofs for Embedded Systems

September 27, 2014 @ Busan, Korea

IACR ePrint 2013/554

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 1 / 37

http://pablo.rauzy.name/
http://perso.enst.fr/~guilley/
http://eprint.iacr.org/2013/554

∨

∧

∧
∧

∧
∨

∧
∧

∧
∨

yTrue

yFalse

aTrue

bTrue

mTrue

aFalse

bFalse

mFalse

C

∨
∨

∨

∨
∨

∨

C

C

C

aFalse

bFalse

aTrue

bTrue

0

yFalse

yTrue

SecLib:

∨
∨

∧

∨

∧
∧

∧

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

BCDL:

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

MDPL:

MAJ

MAJ

OR4

OR4

UNI

WDDL:

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 2 / 37

Softw
are?

Automation?

Verification?

Form
ally?

∨

∧

∧
∧

∧
∨

∧
∧

∧
∨

yTrue

yFalse

aTrue

bTrue

mTrue

aFalse

bFalse

mFalse

C

∨
∨

∨

∨
∨

∨

C

C

C

aFalse

bFalse

aTrue

bTrue

0

yFalse

yTrue

SecLib:

∨
∨

∧

∨

∧
∧

∧

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

BCDL:

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

MDPL:

MAJ

MAJ

OR4

OR4

UNI

WDDL:

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 2 / 37

Softw
are?

Automation?

Verification?

Form
ally?

∨

∧

∧
∧

∧
∨

∧
∧

∧
∨

yTrue

yFalse

aTrue

bTrue

mTrue

aFalse

bFalse

mFalse

C

∨
∨

∨

∨
∨

∨

C

C

C

aFalse

bFalse

aTrue

bTrue

0

yFalse

yTrue

SecLib:

∨
∨

∧

∨

∧
∧

∧

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

BCDL:

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

MDPL:

MAJ

MAJ

OR4

OR4

UNI

WDDL:

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 2 / 37

Softw
are?

Automation?

Verification?

Form
ally?

∨

∧

∧
∧

∧
∨

∧
∧

∧
∨

yTrue

yFalse

aTrue

bTrue

mTrue

aFalse

bFalse

mFalse

C

∨
∨

∨

∨
∨

∨

C

C

C

aFalse

bFalse

aTrue

bTrue

0

yFalse

yTrue

SecLib:

∨
∨

∧

∨

∧
∧

∧

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

BCDL:

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

MDPL:

MAJ

MAJ

OR4

OR4

UNI

WDDL:

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 2 / 37

Softw
are?

Automation?

Verification?

Form
ally?

∨

∧

∧
∧

∧
∨

∧
∧

∧
∨

yTrue

yFalse

aTrue

bTrue

mTrue

aFalse

bFalse

mFalse

C

∨
∨

∨

∨
∨

∨

C

C

C

aFalse

bFalse

aTrue

bTrue

0

yFalse

yTrue

SecLib:

∨
∨

∧

∨

∧
∧

∧

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

BCDL:

yFalse

yTrue

aFalse
bFalse

aTrue
bTrue

MDPL:

MAJ

MAJ

OR4

OR4

UNI

WDDL:

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 2 / 37

Softw
are?

Automation?

Verification?

Form
ally?

Motivation

I Our goal is to be able to formally assess the security of a
cryptosystem against power analysis attacks.

I But, formal methods work with models, not implementations.

I Yet, side-channel attacks are an implementation-level threat.

→ We want to apply formal methods on the implementation.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 3 / 37

Motivation

Power Analysis

I Power analysis is a form of side-channel attack in which the attacker
measures the power consumption of a cryptographic device.

I Power consumption is modeled by the Hamming weight of values and
the Hamming distance of updates.

I Unprotected implementation leaks at every step.

I Thwarting side-channel analysis is a complicated task.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 4 / 37

Motivation

Countermeasures

I In practice, there are two ways to protect cryptosystems.

I Palliative countermeasures attempt to make the attack more
difficult, however without a theoretical foundation:

I variable clock,
I operation shuffling,
I dummy encryptions, etc.

I Curative countermeasures aim at providing a leak-free
implementation based on a security rationale:

I decorrelate the leakage from the manipulated data, or
I make the leakage constant, irrespective of the manipulated data.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 5 / 37

Motivation / Countermeasures

Masking

Masking Definition

Mix the computation with random numbers to make the leakage (at least
in average) independent of the sensitive data.

I Pros:
I independence with respect to the leakage behavior of the hardware,
I existence of provably secure masking schemes.

I Cons:
I greedy requirement for randomness,
I randomness is hard to formalize,
I hardware glitches are likely to depend on more than one sensitive data,

hence being high-order.
I possibility of high-order attacks.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 6 / 37

Motivation / Countermeasures

Balancing

Balancing Definition

Follow a dual-rail protocol to make the leakage constant, irrespective of
the manipulated data.

DPL (Dual-rail with Precharge Logic) Definition

Compute on redundant representation on two indistinguishable resources,
so that the attacker cannot know which one has been set (which depends
on the bit value).

I Pros:
I no randomness necessary,
I simple protocol easily captured formally.

I Cons:
I strongly depends on assumption on the hardware leakage.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 7 / 37

Motivation
Power Analysis
Countermeasures

Dual-rail with Precharge Logic
DPL in Software
DPL Macro

Generation of DPL Protected Assembly Code
Generic Assembly Language
Code Transformation
Correctness Proof of the Transformation

Formally Proving the Absence of Leakage
Computed Proof of Constant Activity
Hardware Characterization

Case Study: present on an AVR Micro-Controller
Profiling the AVR Micro-Controller
Generating Balanced AVR Assembly
Cost of the Countermeasure
Attacks

Conclusions
Perspectives

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 8 / 37

Dual-rail with Precharge Logic

I The DPL countermeasure consists in computing on a redundant
representation: each bit y is implemented as a pair (yFalse, yTrue).

I The bit pair is then used in a protocol made up of two phases:

1. a precharge phase, during which all the bit pairs are zeroized
(yFalse, yTrue) = (0, 0), such that the computation starts from a known
reference state;

2. an evaluation phase, during which the (yFalse, yTrue) pair is equal to
(1, 0) if it carries the logical value 0, or (0, 1) if it carries the logical
value 1.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 9 / 37

Dual-rail with Precharge Logic

DPL in Software

I Historically, DPL has been designed for implementation at hardware
level.

I But we want to run DPL on an off-the-shelf processor.
I Therefore, we must:

I identify two similar resources that can hold true and false values in an
indiscernible way for a side-channel attacker;

I play the DPL protocol by ourselves, in software.

I Then, to reproduce the DPL protocol in software we have to:
I work at the bit level, and
I duplicate (in positive and negative logic) the bit values.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 10 / 37

Dual-rail with Precharge Logic

DPL Macro

I Each sensitive instruction should replaced by a DPL macro.

I The DPL macro assumes that the system is in a valid DPL state.

I And leaves it in a valid DPL state to make the macros chainable.

I The basic idea is to concatenate two DPL encoded values.

I Then use the result as an index in a look-up table.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 11 / 37

Dual-rail with Precharge Logic / DPL Macro

Example Using the Two Least Significant Bit

I In this example we use the two LSB.

I Logical value 1 is 1 (01).

I Logical value 0 is 2 (10).

I Precharge phases (activity: 1 if sensitive)

I Evaluation phases (activity: 1)

I Masks (activity: normally 0)

I Shifts (activity: 2)

I Concatenation (activity: 1)

I Look-up (activity: 1 + 2)

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for
d = a op b

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 12 / 37

Dual-rail with Precharge Logic / DPL Macro

Example Using the Two Least Significant Bit

I In this example we use the two LSB.

I Logical value 1 is 1 (01).

I Logical value 0 is 2 (10).

I Precharge phases (activity: 1 if sensitive)

I Evaluation phases (activity: 1)

I Masks (activity: normally 0)

I Shifts (activity: 2)

I Concatenation (activity: 1)

I Look-up (activity: 1 + 2)

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for
d = a op b

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 12 / 37

Dual-rail with Precharge Logic / DPL Macro

Example Using the Two Least Significant Bit

I In this example we use the two LSB.

I Logical value 1 is 1 (01).

I Logical value 0 is 2 (10).

I Precharge phases (activity: 1 if sensitive)

I Evaluation phases (activity: 1)

I Masks (activity: normally 0)

I Shifts (activity: 2)

I Concatenation (activity: 1)

I Look-up (activity: 1 + 2)

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for
d = a op b

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 12 / 37

Dual-rail with Precharge Logic / DPL Macro

Example Using the Two Least Significant Bit

I In this example we use the two LSB.

I Logical value 1 is 1 (01).

I Logical value 0 is 2 (10).

I Precharge phases (activity: 1 if sensitive)

I Evaluation phases (activity: 1)

I Masks (activity: normally 0)

I Shifts (activity: 2)

I Concatenation (activity: 1)

I Look-up (activity: 1 + 2)

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for
d = a op b

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 12 / 37

Dual-rail with Precharge Logic / DPL Macro

Example Using the Two Least Significant Bit

I In this example we use the two LSB.

I Logical value 1 is 1 (01).

I Logical value 0 is 2 (10).

I Precharge phases (activity: 1 if sensitive)

I Evaluation phases (activity: 1)

I Masks (activity: normally 0)

I Shifts (activity: 2)

I Concatenation (activity: 1)

I Look-up (activity: 1 + 2)

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for
d = a op b

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 12 / 37

Dual-rail with Precharge Logic / DPL Macro

Example Using the Two Least Significant Bit

I In this example we use the two LSB.

I Logical value 1 is 1 (01).

I Logical value 0 is 2 (10).

I Precharge phases (activity: 1 if sensitive)

I Evaluation phases (activity: 1)

I Masks (activity: normally 0)

I Shifts (activity: 2)

I Concatenation (activity: 1)

I Look-up (activity: 1 + 2)

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for
d = a op b

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 12 / 37

Dual-rail with Precharge Logic / DPL Macro

Example Using the Two Least Significant Bit

I In this example we use the two LSB.

I Logical value 1 is 1 (01).

I Logical value 0 is 2 (10).

I Precharge phases (activity: 1 if sensitive)

I Evaluation phases (activity: 1)

I Masks (activity: normally 0)

I Shifts (activity: 2)

I Concatenation (activity: 1)

I Look-up (activity: 1 + 2)

r1 ← r0
r1 ← a
r1 ← r1 ∧ 3
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 3
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for
d = a op b

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 12 / 37

Generation of DPL Protected Assembly Code

I We want to automatically insert this countermeasure in assembly
code.

I To be as universal as possible, we use a generic assembly language
which can be mapped to and from virtually any actual assembly
language.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 13 / 37

Generation of DPL Protected Assembly Code

Generic Assembly Language

Prog ::= (Label? Inst? (’;’ <comment>)? ’\n’)*
Label ::= <label-name> ’:’
Inst ::= Opcode0

| Branch1 Addr
| Opcode2 Lval Val
| Opcode3 Lval Val Val
| Branch3 Val Val Addr

Opcode0 ::= ’nop’
Branch1 ::= ’jmp’
Opcode2 ::= ’not’ | ’mov’
Opcode3 ::= ’and’ | ’orr’ | ’xor’ | ’lsl’ | ’lsr’

| ’add’ | ’mul’
Branch3 ::= ’beq’ | ’bne’
Val ::= Lval | ’#’ <immediate-value>
Lval ::= ’r’ <register-number>

| ’@’ <memory-address>
| ’!’ Val (’,’ <offset>)?

Addr ::= ’#’ <absolute-code-address>
| <label-name>

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 14 / 37

Generation of DPL Protected Assembly Code / Generic Assembly Language

DPL Macro Using the Two Least Significant Bit

mov r1 r0 r1 ← r0
mov r1 a r1 ← a
and r1 r1 #3 r1 ← r1 ∧ 3
lsl r1 r1 #1 r1 ← r1 � 1
lsl r1 r1 #1 r1 ← r1 � 1
mov r2 r0 r2 ← r0
mov r2 b r2 ← b
and r2 r2 #3 r2 ← r2 ∧ 3
orr r1 r1 r2 r1 ← r1 ∨ r2
mov r3 r0 r3 ← r0
mov r3 !r1,op r3 ← op[r1]
mov d r0 d ← r0
mov d r3 d ← r3

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 15 / 37

Generation of DPL Protected Assembly Code

Code Transformation

1. Bitslice code.

2. DPL macros expansion.

3. Look-up tables.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 16 / 37

Generation of DPL Protected Assembly Code / Code Transformation

1. Bitslicing Code

I Always possible (by Turing machines equivalence theorem)

I But, hard to do automatically in practice.

I However, there are a lot of already (manually) bitsliced
implementations, since it is a common optimization technique.

→ We take already bitsliced code as input.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 17 / 37

Generation of DPL Protected Assembly Code / Code Transformation

2.1. Sensitive Instructions

Sensitive value Definition

A value is said sensitive if it depends on sensitive data. A sensitive data
depends on the secret key or the plaintext.

Sensitive instruction Definition

An instruction is said sensitive if it may modify the Hamming weight of a
sensitive value.

I All the sensitive instructions must be expanded to a DPL macro.

I Thus, all the sensitive data must be transformed too.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 18 / 37

Generation of DPL Protected Assembly Code / Code Transformation

2.2. Which Instructions are Sensitive?

I Bitsliced code means that only the logical (bit level) operators, except
shifts, are used in sensitive instructions.

I DPL protocol implies that not instructions are replaced by xor.

→ Only and, or, and xor instructions need to be expanded to DPL
macros.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 19 / 37

Generation of DPL Protected Assembly Code / Code Transformation

3. Look-Up Tables

I Addresses of the look-up tables are sensitive too: their indices are
sensitive values.

I Thus, the addresses bits corresponding to the accessed cell must be 0.

I In our example, the look-up table addresses must be multiple of 16.

index 0000, 0001, 0010, 0011, 0100, 0101 , 0110 , 0111

and 00 , 00 , 00 , 00 , 00 , 01 , 10 , 00

or 00 , 00 , 00 , 00 , 00 , 01 , 01 , 00

xor 00 , 00 , 00 , 00 , 00 , 10 , 01 , 00

index 1000, 1001 , 1010 , 1011, 1100, 1101, 1110, 1111

and 00 , 10 , 10 , 00 , 00 , 00 , 00 , 00

or 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

xor 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 20 / 37

Generation of DPL Protected Assembly Code / Code Transformation

3. Look-Up Tables

I Addresses of the look-up tables are sensitive too: their indices are
sensitive values.

I Thus, the addresses bits corresponding to the accessed cell must be 0.

I In our example, the look-up table addresses must be multiple of 16.

index 0000, 0001, 0010, 0011, 0100, 0101 , 0110 , 0111

and 00 , 00 , 00 , 00 , 00 , 01 , 10 , 00

or 00 , 00 , 00 , 00 , 00 , 01 , 01 , 00

xor 00 , 00 , 00 , 00 , 00 , 10 , 01 , 00

index 1000, 1001 , 1010 , 1011, 1100, 1101, 1110, 1111

and 00 , 10 , 10 , 00 , 00 , 00 , 00 , 00

or 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

xor 00 , 01 , 10 , 00 , 00 , 00 , 00 , 00

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 20 / 37

Generation of DPL Protected Assembly Code

Correctness Proof of the Transformation

Correct DPL transformation Definition

Let S be a valid state of the system (values in registers and memory).

Let c be a sequence of instructions of the system.

Let Ŝ be the state of the system after the execution of c with state S, we
denote that by S

c−→ Ŝ.

We write dpl(S) for the DPL state equivalent to the state S.

We say that c′ is a correct DPL transformation of the code c if

S
c−→ Ŝ =⇒ dpl(S)

c′−→ dpl(Ŝ).

Correctness of our code transformation Proposition

The expansion of the sensitive instructions into DPL macros is a correct
DPL transformation.

I Proof in the paper.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 21 / 37

Formally Proving the Absence of Leakage

I Example execution for and.

a, b 10, 10 Sensitive
activityd r1 r2 r3

mov r1 r0 ? 0 ? ? 0
mov r1 a ? 10 ? ? 1
and r1 r1 #3 ? 10 ? ? 0
shl r1 r1 #1 ? 100 ? ? 2
shl r1 r1 #1 ? 1000 ? ? 2
mov r2 r0 ? 1000 0 ? 0
mov r2 b ? 1000 10 ? 1
and r2 r2 #3 ? 1000 10 ? 0
orr r1 r1 r2 ? 1010 10 ? 1
mov r3 r0 ? 1010 10 0 0
mov r3 !r1,and ? 1010 10 10 3
mov d r0 0 1010 10 10 0
mov d r3 10 1010 10 10 1

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 22 / 37

Formally Proving the Absence of Leakage

I Example execution for and.

a, b 10, 01 Sensitive
activityd r1 r2 r3

mov r1 r0 ? 0 ? ? 0
mov r1 a ? 10 ? ? 1
and r1 r1 #3 ? 10 ? ? 0
shl r1 r1 #1 ? 100 ? ? 2
shl r1 r1 #1 ? 1000 ? ? 2
mov r2 r0 ? 1000 0 ? 0
mov r2 b ? 1000 01 ? 1
and r2 r2 #3 ? 1000 01 ? 0
orr r1 r1 r2 ? 1001 01 ? 1
mov r3 r0 ? 1001 01 0 0
mov r3 !r1,and ? 1001 01 10 3
mov d r0 0 1001 01 10 0
mov d r3 10 1001 01 10 1

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 22 / 37

Formally Proving the Absence of Leakage

I Example execution for and.

a, b 01, 10 Sensitive
activityd r1 r2 r3

mov r1 r0 ? 0 ? ? 0
mov r1 a ? 01 ? ? 1
and r1 r1 #3 ? 01 ? ? 0
shl r1 r1 #1 ? 010 ? ? 2
shl r1 r1 #1 ? 0100 ? ? 2
mov r2 r0 ? 0100 0 ? 0
mov r2 b ? 0100 10 ? 1
and r2 r2 #3 ? 0100 10 ? 0
orr r1 r1 r2 ? 0110 10 ? 1
mov r3 r0 ? 0110 10 0 0
mov r3 !r1,and ? 0110 10 10 3
mov d r0 0 0110 10 10 0
mov d r3 10 0110 10 10 1

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 22 / 37

Formally Proving the Absence of Leakage

I Example execution for and.

a, b 01, 01 Sensitive
activityd r1 r2 r3

mov r1 r0 ? 0 ? ? 0
mov r1 a ? 01 ? ? 1
and r1 r1 #3 ? 01 ? ? 0
shl r1 r1 #1 ? 010 ? ? 2
shl r1 r1 #1 ? 0100 ? ? 2
mov r2 r0 ? 0100 0 ? 0
mov r2 b ? 0100 01 ? 1
and r2 r2 #3 ? 0100 01 ? 0
orr r1 r1 r2 ? 0101 01 ? 1
mov r3 r0 ? 0101 01 0 0
mov r3 !r1,and ? 0101 01 01 3
mov d r0 0 0101 01 01 0
mov d r3 01 0101 01 01 1

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 22 / 37

Formally Proving the Absence of Leakage

Computed Proof of Constant Activity

I Our tool does this verification automatically for the whole program.

I It uses symbolic computations to keep track of possible leakages.

I The strategy is to simulate a CPU and memory in software, and
compute with sets of values.

I Initially, all sensitive data values can be either 0 or 1.
I At each cycle and for each possible combination of actual values:

I it looks at the Hamming weight of values and Hamming distance of
updates in registers, memory, and addresses; and

I if one can have different values, it reports a leak.

I This verification is independent from the code transformation.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 23 / 37

Formally Proving the Absence of Leakage

Hardware Characterization

I The DPL countermeasure heavily relies on the indistinguishable
resources hypothesis on the hardware.

I This property is generally not true in non-specialized hardware.

I Using the bits whose leakage are the most similar will maximize the
relevancy of our leakage model.

I Profiling the hardware allows to find them.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 24 / 37

Case Study: present on an AVR Micro-Controller

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 25 / 37

Case Study: present on an AVR Micro-Controller

Profiling the AVR Micro-Controller

0.0

1.0

0.5

N
IC

V

Time (restarts for each bit)
bit 0 bit 5bit 3bit 1 bit 6bit 4bit 2 bit 7

Leakage level during unprotected encryption for each bit of the ATmega163.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 26 / 37

Case Study: present on an AVR Micro-Controller

Generating Balanced AVR Assembly

r1 ← r0
r1 ← a
r1 ← r1 ∧ 6
r1 ← r1 � 1
r1 ← r1 � 1
r2 ← r0
r2 ← b
r2 ← r2 ∧ 6
r1 ← r1 ∨ r2
r3 ← r0
r3 ← op[r1]
d ← r0
d ← r3

DPL macro for d = a op b on the ATmega163.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 27 / 37

Case Study: present on an AVR Micro-Controller

Cost of the Countermeasure

bitslice DPL cost

code (B) 1620 3056 ×1.88
RAM (B) 288 352 +64

#cycles 78, 403 235, 427 ×3
DPL cost.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 28 / 37

Case Study: present on an AVR Micro-Controller

Attacks

I We attacked three implementations:
I a bitsliced but unprotected one,
I a DPL protected one using the two less significant bits,
I a DPL protected one taking the hardware characterization into account.

I We took 100, 000 execution traces.

I We computed the success rate of using monobit CPA of the output
of the S-Box as a model.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 29 / 37

Case Study: present on an AVR Micro-Controller / Attacks

Results

I The unprotected implementation breaks using about 400 traces.

I The poorly balanced one is still not broken using 100, 000 traces.

→ But we want to show that the hardware characterization is beneficial!

I Let’s make the attacker “cheat”.

I We used our knowledge of the key to select a narrow part of the
traces where we knew that the attack would work.

I We used the NICV to select the point where the signal-to-noise ratio
of the CPA attack is the highest.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 30 / 37

Case Study: present on an AVR Micro-Controller / Attacks

Results

I The unprotected implementation breaks using about 400 traces.

I The poorly balanced one is still not broken using 100, 000 traces.

→ But we want to show that the hardware characterization is beneficial!

I Let’s make the attacker “cheat”.

I We used our knowledge of the key to select a narrow part of the
traces where we knew that the attack would work.

I We used the NICV to select the point where the signal-to-noise ratio
of the CPA attack is the highest.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 30 / 37

Case Study: present on an AVR Micro-Controller / Attacks

Results for the “Cheating Attacker”

I The unprotected implementation breaks using 138 traces.

I The poorly balanced one breaks using 1, 470 traces.

I The better balanced one breaks using 4, 810 traces.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 31 / 37

Case Study: present on an AVR Micro-Controller / Attacks

Results for the “Cheating Attacker”: unprotected

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice, unprotected

Traces count

Su
cc

es
s

ra
te

80% Success rate : 138 traces

0 50 100 150 200 250 300 350 400 450

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

CPA for all 16 guesses (correct one in black), after 400 traces

Time (# of samples (x1000))
C

or
re

la
tio

n

Monobit CPA attack on unprotected bitslice implementation.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 32 / 37

Case Study: present on an AVR Micro-Controller / Attacks

Results for the “Cheating Attacker”: poorly balanced

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice DPL, poorly balanced

Traces count

Su
cc

es
s

ra
te

80% Success rate : 1470 traces (optimistic)

0 5 10 15 20 25 30 35 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CPA for all 16 guesses (correct one in black), after 9000 traces

Time (# of samples (x1000))
C

or
re

la
tio

n

Monobit CPA attack on poorly balanced DPL implementation (bits 0 and 1).

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 33 / 37

Case Study: present on an AVR Micro-Controller / Attacks

Results for the “Cheating Attacker”: better balanced

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bitslice DPL, better balanced

Traces count

Su
cc

es
s

ra
te

80% Success rate : 4810 traces

0 5 10 15 20 25 30 35 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

CPA for all 16 guesses (correct one in black), after 9000 traces

Time (# of samples (x1000))
C

or
re

la
tio

n

Monobit CPA attack on better balanced DPL implementation (bits 1 and 2).

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 34 / 37

Conclusions

I Automatic and proven correct code protection.

I Independent formal proof of constant activity according to a leakage
model.

I Hardware characterization method to increase the leakage model
relevancy.

I Provably balanced DPL protected implementation or present:
I At least 250 times more resistant to power analysis attacks.
I SNR divided by at least 16.
I Only 3 (or 24) times slower.

→ Software balancing countermeasures are realistic.

http://pablo.rauzy.name/sensi/paioli.html

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 35 / 37

http://pablo.rauzy.name/sensi/paioli.html

Perspectives

I The pair of bits used for the DPL protocol could change during the
execution or chosen at random for each execution.

I Unused bits could be randomized instead of being zero in order to
add noise on top of balancing.

I Randomness could be used to mask the computation.
I Also:

I our methods and tools need to be further tested in other experimental
settings;

I although the mapping from the internal assembly of our tool to the
concrete assembly is straightforward, it would be better to have a
formal correctness proof of the mapping;

I our work would also benefit from automated bitslicing.

We believe formal methods have a bright future concerning the certification of side-channel
attacks countermeasures for trustable cryptosystems.

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 36 / 37

That was it. Questions?

Motivation
Power Analysis
Countermeasures

Dual-rail with Precharge Logic
DPL in Software
DPL Macro

Generation of DPL Protected Assembly Code
Generic Assembly Language
Code Transformation
Correctness Proof of the Transformation

Formally Proving the Absence of Leakage
Computed Proof of Constant Activity
Hardware Characterization

Case Study: present on an AVR Micro-Controller
Profiling the AVR Micro-Controller
Generating Balanced AVR Assembly
Cost of the Countermeasure
Attacks

Conclusions
Perspectives

rauzy@enst.fr

Open access and always up-to-date version of the paper:

IACR ePrint 2013/554

Pablo Rauzy (Telecom ParisTech) Formal Security Against Power Analysis PROOFS 2014 37 / 37

http://eprint.iacr.org/2013/554

	Motivation
	Power Analysis
	Countermeasures

	Dual-rail with Precharge Logic
	Generation of DPL Protected Assembly Code
	Formally Proving the Absence of Leakage
	Case Study: present on an AVR Micro-Controller
	Conclusions
	Perspectives

