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Overview



Father of Information Theory

Figure : Claude Shannon (1916-2001)

Shannon’s two foundational papers from Bell System Technical
Journal:
“A Mathematical Theory of Communication” on Information
Theory (1948)
“Communication Theory of Secrecy Systems” on Cryptography
(1949)



What is a code?

• Let A be a finite alphabet. Usually A = Z2,Zp (in general
Fq, Zm, chain rings, Galois rings, or Frobenius rings).

• An := {(x1, · · · , xn)|xi ∈ A}.
• An (error-correcting) code C over A is a subset of An (with

at least two elements).
• Elements of C are called codewords.
• A code over Z2 is called a binary code.
• The weight of x = (x1, · · · , xn) is the number of nonzero

coordinates, denoted by wt(x). For example,
wt(0,1,2,1,0) = 3.

• The Hamming distance d(x,y) between x,y ∈ An is
wt(x− y). For example, if x = (1,0,0,1,0) and
y = (0,0,1,0,0), then their Hamming distance is 3.



Linear codes: most useful codes

• A linear code C of length n and dimension k over Zp:= a
k -dimensional subspace of Zn

p.
• We denote C by an [n, k ] linear code over Zp.
• The minimum distance (weight) d of a linear code C:=the

minimum of wt(x), x 6= 0 ∈ C.
• We denote it by an [n, k ,d ] code. Given n and k , d can be

at most n − k + 1 (Singleton’ bound).
• A set of k columns of an [n, k ,d ] code is called an

information set if it is linearly independent.



How many errors can correct?

Theorem
Any [n, k ,d ] linear code can correct up to t = bd−1

2 c errors (by
the nearest neighbor decoding).



Preliminaries

• Let C be a linear [n, k ,d ] code over finite field GF (q) of
length n, dimension k and minimum distance d .

• The Euclidean inner product of x = (x1, . . . , xn) and
y = (y1, . . . , yn) in GF (q)n is x · y =

∑n
i=1 xiyi .

• The dual of C, denoted by C⊥ is the set of vectors
orthogonal to every codeword of C under the Euclidean
inner product.

• If C = C⊥, C is called self-dual (sd), and if C ⊂ C⊥,
self-orthogonal.



Preliminaries-continued

• The weight enumerator of C is the polynomial
WC(X ,Y ) =

∑n
i=0 AiX n−iY i , where Ai is the number of

codewords of weight i .
• A code C is called formally self-dual (f.s.d.) if

WC⊥(x , y) = WC(x , y).
• Of course any self-dual code is an f.s.d. code but an

f.s.d. code is not necessarily self-dual.
• A code C is divisible by δ provided all codewords have

weights divisible by an integer δ, called a divisor of C.



Example: Extended Hamming [8,4,4] Code

• Let C have generator matrix

G =


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


• C is the famous extended Hamming [8,4] code with

minimum distance d = 4.
• C is self-dual.
• Weight Distribution: A0 = 1,A4 = 14,A8 = 1.
• divisor δ = 4.



Why Self-dual codes?

• One of the most interesting classes of linear codes
• Connections with group theory, design theory, Euclidean

lattices, modular forms, quantum codes
• Many optimal linear codes are often

self-orthogonal/self-dual.
• They are also asymptotically good.

Question: Is there an interesting superclass of self-dual codes?
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Complementary Information Set Codes

• A binary linear code of length 2n and dimension n is called
Complementary Information Set (CIS) with a partitition L,R
if there is an information set L whose complement R is also
an information set.
[Claude Carlet, Philippe Gaborit, Jon-Lark Kim, and Patrick Sole, “A new class of codes for Boolean

masking of cryptographic computations”, IEEE Trans. Inform. Theory, VOL. 58, NO. 9, Sep. 2012, pp.

6000-6011.]

• We call the partition [1..n], ..., [n + 1..2n] the systematic
partition.

• Systematic self-dual codes are CIS with the systematic
partition.

• It is also clear that the dual of a CIS code is CIS.
• Hence CIS codes are a natural generalization of self-dual

codes.



Walsh Hadamard transform
• An vectorial Boolean function F is any map from Fn

2 → Fn
2.

• Its Walsh Hadamard transform of F at (a,b) is defined as

WF (a,b) =
∑
x∈Fn

2

(−1)a·x+b·F (x),

where a · x denotes the scalar product of vectors a and x .
• If f is a Boolean function with domain Fk

2 and range F2,
then the Fourier transform f̂ of f at a is defined by

f̂ (a) =
∑

x∈Fk
2

f (x)(−1)a·x =
∑

x∈supp(f )
(−1)a·x ,

where supp(f ) is the support of function f .
• We note that for a 6= 0,

WF1(a,b) = 0 if and only if b̂ · F1(a) = 0. (1)



Motivations
CIS codes have an application in cryptography, in the
framework of counter-measures to side channel attacks on
smartcards.



Motivations

• Assuming a systematic unrestricted code C of length 2n of
the form

C = {(x ,F (x))| x ∈ Fn
2},

the vectorial Boolean function is constructed as the map
x 7→ F (x).

• In that setting C is CIS by definition iff F is a bijection.
• When C is a linear code, we can also consider a

systematic generator matrix (I,A) of the code, where I is
the identity matrix of order n and A is a square matrix of
order n. Then F (x) = xA, and the CIS condition reduces to
the fact that A is nonsingular.



Motivations-continued
The physical implementation of cryptosystems on devices such
as smart cards leaks information.



Motivations-continued
• This information can be used in differential power analysis

or in other kinds of side channel attacks.
• These attacks can be disastrous if proper

counter-measures are not included in the implementation.
• Until recently, it was believed that for increasing the

resistance to attacks, new masks have to be added,
thereby increasing the order of the countermeasure.
[M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. Proceedings of CHES 2010,

LNCS 6225 (2010) pp. 413-427]

• Change the variable representation (say x) into
randomized shares m1,m2, . . . ,mt+1 called masks such
that x = m1 + m2 + · · ·+ mt+1 where + is a group
operation - in practice, the XOR.

• At the order t = 1, the masks are given by
(m1,m2) = (m1, x + m1). If both m1 and x + m1 are known,
then x is obtained, hence not secure.



Motivations-continued

• It is shown that another option consists in encoding the
some of masks, which is much less costly than adding
fresh masks.
[H. Maghrebi, S. Guilley and J.-L. Danger. Leakage Squeezing Countermeasure Against High-Order

Attacks. Proceedings of WISTP, LNCS 6633, pp. 208-223, 2011]

• For example, at the order t = 1, using a vectorial Boolean
function F , we consider the ordered pair (F (m1), x + m1).

• Notably, it is demonstrated that the same effect as adding
several masks can be obtained by the encoding of one
single mask.
[H. Maghebi, S. Guilley, C. Carlet and J.-L. Danger. Classification of High-Order Boolean Masking Schemes

and Improvements of their Efficiency. http://eprint.iacr.org/2011/520]



Graph Correlation Immune Functions

• This method, called leakage squeezing, uses vectorial
Boolean functions - more precisely, permutations
F : Fn

2 → Fn
2, such that, given some integer d as large as

possible, for every pair of vectors a,b ∈ Fn
2 such that (a,b)

is nonzero and has Hamming weight < d , the value of the
Walsh Hadamard transform of F at (a,b), is null.

• We call such functions d-GCI, for Graph Correlation
Immune.

• Thus a d-GCI function is a protection against an attack of
order d .

Proposition (Maghebi, et. al, 2011)
The existence of a linear d-GCI function of n variables is
equivalent to the existence of a CIS code of parameters
[2n,n,≥ d ] with the systematic partition.



General construction

Lemma
If a [2n,n] code C has generator matrix (I,A) with A invertible
then C is CIS with the systematic partition. Conversely, every
CIS code is equivalent to a code with a generator matrix in that
form.
In particular this lemma applies to systematic self dual codes
whose generator matrix (I,A) satisfies AAT = I.

Lemma
Let f (x) be a polynomial over F2 of degree less than n. Then,
gcd(f (x), xn − 1) = 1 if and only if the circulant matrix
generated by f (x) has F2-rank n.



General construction- continued

Proposition
The double circulant code whose generator matrix is
represented by (1, f (x)) satisfying Lemma is a CIS code.

Proposition
If a [2n,n] code C has generator matrix (I,A) with rk(A) < n/2
then C is not CIS .



Rank criterion for linear codes

Theorem
Let Σ denote the set of columns of the generator matrix of a
[2n,n] linear code C.
C is CIS iff ∀B ⊆ Σ, rk(B) ≥ |B|/2.
The proof uses matroid theory and Edmonds’ matroid base
packing theorem: A matroid on a set S contain k disjoint bases
iff

∀U ⊆ S, k(rk(S)− rk(U)) ≤ |S \ U|.

Apply to the matroid of the columns of the generator matrix
under linear dependence, with

S = Σ, k = 2, rk(Σ) = n, |Σ| = 2n.



SRG and DRT

• Let A be an integral matrix with 0, 1 valued entries.
• We say that A is the adjacency matrix of a strongly regular

graph (SRG) of parameters (n, κ, λ, µ) if A is symmetric, of
order n, verifies AJ = JA = κJ and satisfies

A2 = κI + λA + µ(J − I − A)

• We say that A is the adjacency matrix of a doubly regular
tournament (DRT) of parameters (n, κ, λ, µ) if A is
skew-symmetric, of order n, verifies AJ = JA = κJ and
satisfies

A2 = λA + µ(J − I − A)

where I, J are the identity and all-one matrices of order n.



CIS codes from SRG and DRT

In the next result we identify A with its reduction mod 2.

Proposition
Let C be the linear binary code of length 2n spanned by the
rows of (I,M). With the above notation, C is CIS if A is the
adjacency matrix of a
• SRG of odd order with κ, λ both even and µ odd and if

M = A + I
• DRT of odd order with κ, µ odd and λ even and if M = A
• SRG of odd order with κ even and λ, µ both odd and if

M = A + J
• DRT of odd order with κ even and λ, µ both odd and if

M = A + J



Quadratic Double Circulant Codes

Let q be an odd prime power. Let Q be the q by q matrix with
zero diagonal and qij = 1 if j − i is a square in GF (q) and zero
otherwise. (This Q is a modified Jacobsthal matrix.)

Corollary
If q = 8j + 5 then the span of (I,Q + I) is CIS. If q = 8j + 3 then
the span of (I,Q) is CIS.

Proof
It is well-known that if q = 4k + 1 then Q is the adjacency
matrix of a SRG with parameters (q, q−1

2 , q−5
4 , q−1

4 ). If
q = 4k + 3 then Q is the adjacency matrix of a DRT with
parameters (q, q−1

2 , q−3
4 , q+1

4 ). The result follows by the
previous proposition.
The codes obtained in that way are Quadratic Double Circulant
codes (Gaborit, 2002).



Existence of an optimal code that is not CIS

Proposition
If C is a [2n,n] code whose dual has minimum weight 1 then C
is not CIS.

Proposition
There exists a least one optimal binary code that is not CIS.

Proof:
The [34,17,8] code described in the Magma package
BKLC(GF (2),34,17)) (best known linear code of length 34 and
dimension 17) is an optimal code (minimum weight 8 is the best
possible minimum distance for such a code) which dual has
minimum distance 1, and therefore is not CIS.



Classification of CIS codes of lengths ≤ 12
• Let n ≥ 2 be an integer and gn denote the cardinal of

GL(n,2) the general linear group of dimension n over
GF (2).

• It is well-known (see MacWilliams-Sloane’s book), that

gn =
n−1∏
j=0

(2n − 2j).

Proposition
The number en of equivalence classes of CIS codes of
dimension n ≥ 2 is at most gn/n!.

Proof:
Every CIS code of dimension n is equivalent to the linear span
of (I,A) for some A ∈ GL(n,2). But the columns of such an A
are pairwise linearly independent, hence pairwise distinct.
Permuting the columns of A lead to equivalent codes.



Examples

• There is a unique CIS code in length 2 namely R2 the
repetition code of length 2.

• For n = 2, the g2 = 6 invertible matrices reduce to three
under column permutation: the identity matrix I and the two

triangular matrices T1 =

(
1 1
1 0

)
, and T2 =

(
0 1
1 1

)
.

• The generator matrix (I, I) spans the direct sum R2 ⊕ R2,
while the two codes spanned by (I,T1) and (I,T2) are
equivalent to a code C3, an isodual code which is not self
dual. Thus e2 = 2 < g2/2! = 3.



Shortening

The building up construction is known for binary self-dual
codes. In this section, we extend it to CIS codes. We show that
every CIS code can be constructed in this way.

Lemma
Given a [2n,n] CIS code C with generator matrix (In|A) where A
is an invertible square matrix of order n, we can obtain a
[2(n − 1),n − 1] CIS code C′ with generator matrix (In−1|A′),
where A′ is an invertible square matrix of order n − 1.



Building up construction

Building up construction
Suppose that C is a [2n,n] CIS code C with generator matrix
(In|A), where A is an invertible matrix with n rows r1, . . . , rn.
Then for any two vectors x = (x1, · · · , xn) and y = (y1, · · · , yn)T

the following matrix G1 generates a [2(n + 1),n + 1] CIS code
C1 with the systematic partition:

G1 =


1 0 0 · · · 0 z1 x
0 1 0 · · · 0 y1 r1
0 0 1 · · · 0 y2 r2
...

...
...

...
0 0 0 · · · 1 yn rn

 , (2)

where ci ’s satisfy x =
∑n

i=1 ci ri and z1 = 1 +
∑n

i=1 ciyi .



Example
• Let us consider a [6,3,3] CIS code C whose generator

matrix is given below.

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 1

 .

• In order to apply the building-up construction, we take for
example x = (1,1,0) and y = (1,1,0)T . Then
c1 = c2 = 1, c3 = 0. Hence z = 1.

• In fact, we get the extended Hamming [8,4,4] code whose
generator matrix is given below.

G1 =


1 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

 .



Converse of the building up construction

Proposition
Any [2n,n] CIS code C is equivalent to a [2n,n] CIS code with
the systematic partition which is constructed from a
[2(n− 1),n− 1] CIS code by using the building up construction.



Counting formula similar to mass formula

Proposition
Let n ≥ 2. Let C be the set of all [2n,n] CIS codes and let S2n
act on C as column permutations of the codes in C. Let
C1, . . . ,Cs be representatives from every equivalence class of
C under the action of S2n. Let Csys be the set of all [2n,n] CIS
codes with generator matrix (In|A) with A invertible. Suppose
that each Ci ∈ Csys (1 ≤ i ≤ s). Then we have

gn =
s∑

j=1

|OrbS2n (Cj) ∩ Csys|, (3)

where OrbS2n (Cj) denotes the orbit of Cj under S2n.



Classification of CIS codes of lengths 2,4

We classify all CIS codes of lengths up to 12 up to equivalence
using the building up method. It is easy to see that any CIS
code has minimum distance ≥ 2.

• 2n = 2. It is clear that there is a unique CIS code of length
2, whose generator matrix is [11].

• 2n = 4. Applying Proposition (building-up) to the repetition
code of generator matrix [1 1], we show that there are
exactly two CIS codes of length 4. Their generator
matrices are (I|A2,1) and (I|A2,2), where

A2,1 =

(
1 0
0 1

)
,A2,2 = T2 =

(
0 1
1 1

)



Classification of CIS codes of length 6

Proposition
There are exactly six CIS codes of length 6. Only one code has
d = 3 and the rest have d = 2.

(I|A), where A is one of the following. 1 0 0
0 1 0
0 0 1

 ,

 1 0 0
1 1 0
0 0 1

 ,

 1 0 0
1 1 0
1 0 1

 , 0 1 0
1 1 0
1 0 1

 ,

 1 1 1
0 1 0
0 0 1

 ,

 1 1 1
1 1 0
1 0 1





Summary: Classification of all CIS codes of
lengths up to 12 in the order of sd, non-sd fsd, and

none of them

2n d = 2 d = 3 d = 4 Total
2 1 (1+0+0) 1
4 2 (1+1+0) 2
6 5 (1+2+2) 1 (0+1+0) 6
8 22 (1+9+12) 4 (0+2+2) 1 (1+0+0) 27
10 156 (2+40+114) 35 (0+9+26) 4 (0+2+2) 195
12 2099 (2+318+1779) 565 (0+87+478) 41 (1+7+33) 2705

Recently, Finley Freibert (Ohio Dominican University) in his
thesis has classified all CIS codes of length 14 and all CIS
codes of length 16 and d = 4.



CIS codes of lengths ≤ 130 with record distances

Theorem
There exist optimal or best-known CIS codes of lengths
2n ≤ 130.

2n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
d 2∗ 2∗ 3∗ 4∗ 4∗ 4∗ 4∗ 5∗ 6∗ 6∗ 7∗ 8∗ 7∗ 8∗ 8∗ 8∗

code dc dc ∼dc sd dc sd sd ∼dc ∼dc nfsd id sd fsd dc dc sd

2n 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130
d 19 20 19 20 18 19 20 20 20 20 20 21 21 22 22
code bk bk qdc bk bk bk bk sc sc sd qdc xqdc bk bk sc



Long CIS codes

We begin by a well-known fact from MacWillams-Sloane.

Lemma
The number of invertible n by n matrices is ∼ c2n2

, with
c ≈ 0.29.
Denote by B(n,d) the number of matrices A such that d
columns or less of (I,A) are linearly dependent. A crude upper
bound on this function can be derived as follows.

Lemma
The quantity B(n,d) is ≤ M(n,d) where

M(n,d) =
d∑

j=2

j−1∑
t=1

(
n

j − t

)(
n
t

)
t2n(n−1).



CIS codes are asymptotically good

Denote by H(x) = −x log2 x − (1− x) log2(1− x) the binary
entropy function.

Lemma
The quantity M(n,d) is dominated by 2n2−n22nH(δ) when
d ∼ 2δn with 0 < δ < 1.

Proposition
For each δ such that H(δ) < 0.5 there are long CIS codes of
relative distance δ.

Proof:
Consider (I,A) as the parity check matrix of the CIS code and
combine the above lemmas to ensure that, asymptotically,
|GL(n,2)| >> B(n,d) showing the existence of a CIS code of
distance > d , for n large enough.



Higher-order CIS codes

• The generator matrix of a [tk , k ] code is said to be in
systematic form if these columns are at the first k
positions, that is, if it is blocked as (Ik |A) with Ik the identity
matrix of order k .

• We call a systematic code of length tk which admits t
pairwise disjoint information sets a t-CIS (unrestricted)
code.

• Therefore, 2-CIS codes mean the above CIS codes.
• Reference: “Higher-order CIS codes” by Claude Carlet,

Finley Freibert, Sylvain Guilley, Michael Kiermaier,
Jon-Lark Kim, Patrick Solé, IEEE Trans. Information
Theory, Sep. 2014.



3-CIS codes

• A pair (F1,F2) of permutations of Fk
2 forms a Correlation

Immune Pair (CIP) of strength d if and only if for every
(a,b, c) such that a,b, c ∈ Fk

2, a 6= 0, and
wH(a) + wH(b) + wH(c) ≤ d , we have b̂ · F1(a) = 0 or
ĉ · F2(a) = 0, equivalently WF1(a,b) = 0 or WF2(a, c) = 0.

• It expresses the fact that the leakage squeezing with two
masks (i.e., t = 3 shares) and two permutations F1 and F2
allows to resist high-order attacks of order d .

• We here give it the name of CIP of strength d .



Equivalent form of CIP

The definition of a CIP of strength d is equivalent to Condition
(8) in the below reference:

∀a ∈ Fk
2,a 6= 0, ∃q, r such that

wH (a) + q + r = d − 1,
∀b ∈ Fk

2,wH (b) ≤ q =⇒ b̂ · F1(a) = 0,
∀c ∈ Fk

2,wH (c) ≤ r =⇒ ĉ · F2(a) = 0.

C. Carlet, J.-L. Danger, S. Guilley, and H. Maghrebi, “Leakage
Squeezing of Order Two,” Proceedings of INDOCRYPT 2012,
Springer in LNCS 7668, pp. 120–139 (Kolkata, India). Online
version: http://eprint.iacr.org/2012/567.

http://eprint.iacr.org/2012/567


Characterization of CIP

We are now ready for the coding theoretic characterization of
CIP.

Theorem
If F1, F2 are permutations of Fk

2 then they form a CIP of strength
d if and only if the systematic code of length 3k and size 22k

C(F1,F2) = {(x + y ,F1(x),F2(y))| x , y ∈ Fk
2} (4)

has dual distance at least d + 1.



Theorem (Carlet, Danger, Guilley, Maghrebi)
If F1, F2 are linear permutations of Fk

2, then they form a CIP of
strength d if and only if the [3k , k ] linear code

C(F1,F2)⊥ = {(u,G1(u),G2(u))|u ∈ Fk
2}

is 3-CIS and has minimum distance at least d + 1.
Here G1 = (F ∗1 )−1, G2 = (F ∗2 )−1 where F ∗ denotes the adjoint
operator of F , that is, the operator whose matrix is the
transpose of that of F .

Proof
The code C(F1,F2) being the set of words (x + y ,F1(x),F2(y)),
with x , y ∈ Fk

2, its dual C⊥ is the set of words (u, v ,w) such that
(x + y) · u + F1(x) · v + F2(y) · w
= x · (u + F ∗1 (v)) + y · (u + F ∗2 (w))

= 0 for everyx , y ∈ Fk
2.

Hence C⊥ is the set of words (u, v ,w) such that
u = F ∗1 (v), u = F ∗2 (w) so that
v = (F ∗1 )−1(u) = G1(u), w = (F ∗2 )−1(v) = G2(u). The result
follows.



Correlation Immune t-uple(t-CI) of strength d

More generally we make the following definition for t ≥ 2.
The t-uple F1, · · · ,Ft of permutations of Fk

2 form a Correlation
Immune t-uple (t-CI) of strength d if and only if for every
(a0, · · · ,at ) such that a0 6= 0 and wH(a0) + · · ·+ wH(at ) ≤ d ,
we have that

t∏
i=1

âi · Fi(a0) = 0.



t-CIS Partition Algorithm:
An algorithm to determine if a given linear code is t-CIS.
Input: Begin with a binary [tk , k ] code C.
Output: An answer of “Yes” if C is t-CIS (along with a column
partition) and an answer of “No” if not.

1. Let {I1, . . . , It} be a set of labeled disjoint independent subsets of M. (Note that each Ii (1 ≤ i ≤ t) can
be randomly assigned to each have order 1, or one may be given the first k indices of a standard form
matrix G.)

2. Select x ∈ M \
⋃

1≤i≤t Ii .

3. While
⋃

1≤i≤t Ii ( M do:
3.1 Initialize S0 := M. For j > 0, recursively define Sj := span(Ij′ ∩ Sj−1), where

j′ = ((j − 1) mod t) + 1. Initialize j := 0.
3.2 For the current value of j check that |Sj | ≤ t · rank(Sj ). If the inequality is false (it is immediately

clear that Edmonds’ Theorem is violated), then exit the while loop and output the set Sj with an
answer of “No.”

3.3 If x ∈ Sj , then set j := j + 1 and go back to b).
3.4 If x /∈ Sj , then check if Ij′ ∪ {x} is independent. If so then replace Ij′ with the larger independent

set and repeat the while loop with a new x ∈ M \
⋃

1≤i≤t Ii .
3.5 If Ij′ ∪ {x} is dependent, then find the unique minimal dependent set C ⊂ Ij′ ∪ {x}

(accomplished by solving the matrix equation associated with finding the linear combination of
columns in Ij′ that sum to x).

3.6 Select any x′ ∈ C \ Sj−1 and replace Ij′ with Ij′ ∪ {x} \ {x
′}, then set x := x′ and repeat the

while loop.

4. End while loop. If the while loop was not exited early, then output the partition {I1, . . . , It} of M and

answer “Yes.”



The table captions are as follows.
• bk= obtained by the command BKLC(GF (2), n, k) from Magma.

• bk*= same as bk with successive zero columns of the generator matrix replaced in order by successive
columns of the identity matrix of order k. Trivially the generator matrix of bk has < k zero columns.

• qc= quasi-cyclic.

The following tables show that all 3-CIS codes of dimension 3 to 85 have the best known minimum distance among
all linear [n, k ] codes, and in fact the best possible minimum distance for n ≤ 36.

n 6 9 12 15 18 21 24 27 30 33 36 39
k 2 3 4 5 6 7 8 9 10 11 12 13
d 4 4 6 7 8 8 8 10 11 12 12 12
code qc qc bk bk bk bk* bk* bk bk bk bk* bk*

n 123 126 129 132 135 138 141 144 147 150 153 156 159 162
k 41 42 43 44 45 46 47 48 49 50 51 52 53 54
d 29 31 32 ? 32 32 32 32 34 34 33 34 34 35
code bk* bk* bk* ? bk* bk* bk* bk* bk bk* bk bk* bk* bk

n 165 168 171 174 177 180 183 186 189 192 195 198 201 204
k 55 56 57 58 59 60 61 62 63 64 65 66 67 68
d 36 36 36 36 36 38 38 38 40 41 42 42 42 41
code bk* bk* bk* bk* bk* bk bk* bk* bk bk bk bk* bk* bk

We have checked that the best known linear [132, 44, 32] code in the Magma database is not 3-CIS.



Optimal t-CIS codes with 5 ≤ t ≤ 256

• For 1 ≤ k ≤ b256/tc except for k = 37, we have checked
that there are 4-CIS [tk , k ] codes that are either bk or bk∗.
We have checked that the best known linear [148,37,41]
code in the Magma database is not 4-CIS.

• For 5 ≤ t ≤ 256 and 1 ≤ k ≤ b256/tc, all the best known
codes in the Magma database have been checked. We
conclude that there are t-CIS [tk , k ] codes that are either
bk or bk∗.



Conclusion

We show the following.
• Introduce a new class of CIS codes.
• In length 2n these codes are, when in systematic form, in

one to one correspondence with linear bijective vectorial
Boolean functions in n variables.

• Classify CIS codes of lengths ≤ 12 and give optimal or
best known CIS codes of lengths ≤ 130 and discuss an
asymptotic bound.

• Introduce t-CIS codes of rate 1/t with t pairwise disjoint
information sets and find optimal t-CIS codes.



Future Work

For the future work,

• More generally, does the CIS property involves an upper
bound on the minimum distance?

• Finally, it is worth studying CIS codes over other fields than
F2, and also over Z4.

• More constructions and classifications of t-CIS codes are
desired.

• For a connection of multiply constant-weight codes with
PUFs, see ref [3].
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