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Motivation

◮ Loss of trust in Internet

☞ Implementation bugs (HeartBleed)

☞ Logical bugs (Triple Handshake)

☞ Backdoors (Dual_EC_DRBG)

☞ Government coercion

◮ Verification as a (partial) solution: NIST standard 800-90A

is deficient because of a pervasive sloppiness in the use of

mathematics. This, in turn, prevents serious mathematical

analysis and promotes careless implementation in code.

We propose formal verification methods as a remedy.

Hales, 2013



Problems with cryptographic proofs

Proofs are error-prone and flawed

◮ In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a

crisis of rigor. Bellare and Rogaway, 2004-2006

◮ Do we have a problem with cryptographic proofs? Yes, we

do [...] We generate more proofs than we carefully verify

(and as a consequence some of our published proofs are

incorrect). Halevi, 2005

Gap between algorithms, source code and machine code

◮ Omitting one fine-grained detail from a formal analysis can

have a large effect on how that analysis applies in practice.

Degabriele, Paterson, and Watson, 2011

◮ Real-world crypto is breakable; is in fact being broken; is

one ongoing disaster area in security. Bernstein, 2013
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Provable security of OAEP — algorithmic level
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2 (c⋆);
return (b′ = b)
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FOR ALL IND-CCA adversary A against (K, EOAEP,DOAEP),
THERE EXISTS a sPDOW adversary I against (K, f, f−1) st

∣∣PrIND-CCA(A)[b
′ = b]− 1

2

∣∣ ≤ PrPDOW(I)[y0 ∈ Y ′] +
3qD qG+q2

D+4qD+qG

2k0
+ 2qD

2k1

and

tI ≤ tA + qD qG qH Tf



Implementation of OAEP

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕H(s);

if ([s ⊕G(r)]k1
=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

Decryption DPKCS-C(sk)(res, c) :
if (c ∈ MsgSpace(sk)) then

{ (b0, s, t)← f−1
sk (c);

h← MGF (s, hL); i ← 0;
while (i < hLen + 1)
{ s[i]← t[i] ⊕ h[i]; i ← i + 1; }
g ← MGF (r , dbL); i ← 0;
while (i < dbLen)
{ p[i]← s[i]⊕ g[i]; i ← i + 1; }
l ← payload_length(p);
if (b0 = 08 ∧ [p]hLen

l = 0..01∧
[p]hLen = LHash)

then

{rc ← Success;
memcpy(res, 0, p, dbLen − l, l); }

else {rc ← DecryptionError ; } }
else {rc ← CiphertextTooLong; }

return rc;



Computer-aided cryptographic proofs

provable security

=
deductive relational verification of parametrized probabilistic programs

◮ adhere to cryptographic practice

☞ same proof techniques

☞ same guarantees

☞ same level of abstraction

◮ leverage existing verification techniques and tools

☞ program logics, VC generation, invariant generation

☞ SMT solvers, theorem provers, proof assistants



EasyCrypt
(B. Grégoire, P.-Y. Strub, F. Dupressoir, B. Schmidt, C. Kunz)

◮ Initially a weakest precondition calculus for pRHL

◮ Now a full-fledged proof assistant

☞ proof engine inspired from SSREFLECT

☞ backend to SMT solvers and CAS

☞ embedding rich probabilistic language (w/ modules)

☞ probabilistic Relational Hoare Logic for game hopping

☞ probabilistic Hoare Logic for bounding probabilities

☞ ambient logic

☞ reasoning in the large



A language for cryptographic games

C ::= skip skip

| V ← E assignment

| V $← D random sampling

| C; C sequence

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

◮ E : (higher-order) expressions

◮ D: discrete sub-distributions

◮ P: procedures

}
user extensible

. oracles: concrete procedures

. adversaries: constrained abstract procedures



Reasoning about programs

◮ Probabilistic Hoare Logic

� {P}c{Q} ⋄ δ

◮ Probabilistic Relational Hoare logic

� {P} c1 ∼ c2 {Q}

◮ Ambient logic



pRHL: a relational Hoare logic for games

◮ Judgment

� {P} c1 ∼ c2 {Q}

◮ Validity

∀m1,m2. (m1,m2) � P =⇒ (Jc1K m1, Jc2K m2) � Q♯

◮ Proof rules

� {P ∧ e〈1〉} c1 ∼ c {Q} � {P ∧ ¬e〈1〉} c2 ∼ c {Q}

� {P} if e then c1 else c2 ∼ c {Q}

P → e〈1〉=e′〈2〉

� {P ∧ e〈1〉} c1 ∼ c′
1 {Q} � {P ∧ ¬e〈1〉} c2 ∼ c′

2 {Q}

� {P} if e then c1 else c2 ∼ if e′ then c′
1 else c′

2 {Q}

+ random samplings, procedures, adversaries. . .

◮ Verification condition generator



Deriving probability claims

Assume � {P} c1 ∼ c2 {Q} and (m1,m2) |= P

Equivalence

◮ If Q △
=

∧
x∈X x〈1〉 = x〈2〉 and FV(A) ⊆ X then

Prc1,m1
[A] = Prc2,m2

[A]

◮ If Q △
= A〈1〉 ⇔ B〈2〉 then

Prc1,m1
[A] = Prc2,m2

[B]

Conditional equivalence

◮ If Q △
= ¬F 〈2〉 ⇒

∧
x∈X x〈1〉 = x〈2〉 and FV(A) ⊆ X then

Prc1,m1
[A]− Prc2,m2

[A] ≤ Prc2,m2
[F ]

◮ If Q △
= ¬F 〈2〉 ⇒ (A〈1〉 ⇔ B〈2〉) then

Prc1,m1
[A]− Prc2,m2

[B] ≤ Prc2,m2
[F ]



Case studies

◮ Public-key encryption

◮ Signatures

◮ Hash designs

◮ Block ciphers

◮ Zero-knowledge protocols

◮ AKE protocols

◮ Verifiable computation

◮ Differential privacy, smart meterting



Provable security of C and executable code
◮ C-mode using base-offset representation of arrays

☞ no aliasing or overlap possible

☞ pointer arithmetic only within an array

◮ Reductionist argument for x86 executable code:

☞ FOR ALL adversary that breaks the x86 code,

☞ THERE EXISTS an adversary that breaks the C code

◮ Use verified compiler to ensure semantic preservation

CompCert (Leroy, 2006)



Security against side-channel attacks

Recipes for security disaster

◮ Branch on secrets

☞ Lead to timing attacks

☞ PKCS encryption. . .

◮ Array accesses with high indices (cache-based attacks)

☞ Lead to cache-based attacks

☞ AES, DES. . .

◮ Define static analysis on x86 code

◮ Extend reductionist argument

☞ FOR ALL adversary that breaks the x86 code,

☞ IF x86 code passes static analysis,

☞ THERE EXISTS an adversary that breaks the C code

◮ May depend on system-level countermeasures

☞ Use stealth cache for sensitive accesses

☞ Predictive mitigation for timing



Applications to formally verified implementations
◮ PKCS encryption

☞ INDCCA in the program counter model

☞ Uses constant-time modular exponentiation

◮ Constant-time cryptography: Salsa, SHA, TEA

◮ “Almost” constant-time cryptography: AES, DES, RC4

◮ Vectorized implementations

Challenge

◮ Highly-optimized implementations are written in assembly

◮ Cannot use verified compilers

◮ Alternative: verified decompilers; equivalence checking



Automatic analysis of masked implementations

◮ Security in t-threshold probing model is non-interference
for any t intermediate values

Non-interference t intermediate values is a standard

program verification model.
Easily handled by EasyCrypt.

◮ Non-interference for any t intermediate values is hard.

Size of programs grows with masking order

Number of sets to test explodes as masking order grows



Our Solution: Large observation sets

◮ Given a set of intermediate values known to be safe,

efficiently extend it as much a possible.

◮ Recursively check t non-interference with variables not

captured.

◮ Recursively check t non-interference for sets that straddle

both subsets.

◮ Still exponential, but pretty good in practice.



Improvement: sliding window algorithms
Exploiting the power of refresh gadgets

Intuition: variables are probabilistically independent if they are

◮ syntactically independent

◮ dependent, but dependency through many refresh

gadgets,

Formally:

◮ make dependency graph weighted

◮ define distance between sets of program points (two sets

are far away if their distance exceeds the order)

◮ show that observation sets that can be partitioned into far

away sets need not be considered

Key property:

◮ Inputs and outputs independent, unless intermediate

computations is observed



Synthesis of fault attacks

◮ Increasing need for secure chips

◮ Must resist physical attacks

◮ Countermeasures have a cost

◮ Lack of formal proofs/models

◮ Sophisticated attacks

☞ physical tampering (laser. . . )

☞ advanced mathematical algorithms (LLL)

Approach

◮ Identify post-conditions that could lead to attacks

◮ Empirically evaluate their complexity

◮ Use syntax-guided synthesis for finding fault attacks

◮ Realize attacks

Found several new attacks on RSA and ECDSA signatures



Syntax-guided synthesis

Goal

Given implementation c and fault condition φ, find faulted ĉ st

{⊤}ĉ{φ}

◮ Propagate fault condition backwards

◮ At each step

☞ select real or faulted instruction

☞ compute weakest precondition

☞ perform logical simplifications

◮ Success if precondition entails computed VC

Issues:

◮ Loops: use invariant finding techniques

◮ Search space: use pruning



Example: RSA signatures

1: function SIGNRSA–CRT(m)

2: M ← µ(m) ∈ ZN

3: S′
p ← EXPLADDER(M mod p,dp,p,q

−1 mod p)

4: S′
q ← EXPLADDER(M mod q,dq,q,p

−1 mod q)
5: S ← S′

q · p + S′
p · q mod N

6: return S

7: end function



Example: almost full linear combinations

Assume that N = pq such that p,q are prime and p,q < 2n/2

Theorem (Informal)

One can efficiently factor N given sufficiently many values S st

∃x , y < 2n/2−ε. S = x · p + y · q

Implement attack in SAGE to find minimal number of values ℓ

p,q 512 (bits) 1024 (bits)

x , y 464 472 480 496 968 976 984 992

ℓ 22 26 33 74 37 44 53 67



Modular exponentiation
1: function EXPLADDER(x , e,q, c)

2: x̄ ← CIOS(x ,R2 mod q)
3: A← R mod q

4: for i = t down to 0 do
5: if ei = 0 then
6: x̄ ← CIOS(A, x̄)
7: A← CIOS(A,A)
8: else if ei = 1 then
9: A← CIOS(A, x̄)

10: x̄ ← CIOS(x̄ , x̄)
11: end if
12: end for

13: A← CIOS(A, c)
14: return A

15: end function

1: function CIOS(x , y )

2: a← 0

3: y0 ← y mod b

4: for j = 0 to k − 1 do
5: a0 ← a mod b

6: uj ← (a0 + xj · y0) · q
′ mod b

7: a←

⌊

a + xj · y + uj · q

b

⌋

8: end for

9: if a ≥ q then a← a− q

10: end if
11: return a

12: end function

◮ Set k = 0 (skip loop)

◮ Increase value of k and set q′ = 0 (both 1
2 -exponentiations)

◮ Double value of k and set q′ = 0 (one 1
2-exponentiation)

◮ Set q′ = 0 (one 1
2
-exponentiation, Garner recombination)



Synthesis of cryptographic constructions

Do the cryptosystems reflect [...] the situations that are being catered

for? Or are they accidents of history and personal background that

may be obscuring fruitful developments? [...] We must systematize

their design so that a new cryptosystem is a point chosen from a

well-mapped space, rather than a laboriously devised construction.

(Adapted from Landin, 1966. The next 700 programming languages)



Variants of OAEP

◮ About 200 variants in the literature

◮ About 106 − 108 candidates schemes of “reasonable” size

◮ Interactive verification is infeasible (even for 200 schemes)

◮ Can we automate analysis for finding attacks or proofs?



Approach



An algebraic view of padding-based schemes

Encryption algorithms are modelled as algebraic expressions

E ::= m input message

| 0 zero bitstring

| R uniform random bitstring

| E ⊕ E xor

| E || E concatenation

| [E ]ss projection

| H(E) hash

| f (E) trapdoor permutation

Decryption algorithms use a mild extension of the language



Attack finding

Apply tools from symbolic cryptography

◮ Simple filters, eg

☞ is decryption possible without a key? m || f (r)
☞ is encryption randomized? f (m)
☞ is randomness extractable without a key? r || f (m ⊕ r)

◮ Then, static equivalence

e ⊢ e1 e ⊢ e2

e ⊢ e1 ‖e2

[Conc]
e ⊢ e1 e ⊢ e2

e ⊢ e1 ⊕ e2

[Xor]

e ⊢ e

e ⊢ [e]ℓn
[Proj]

e ⊢ e1 ⊢ e1
.
= e2

e ⊢ e2

[Conv]

e ⊢ e′

e ⊢ H(e′)
[H]

e ⊢ e′

e ⊢ f (e′)
[F]

e ⊢ e′

e ⊢ f−1(e′)
[Finv]



Proof finding

Domain-specific computational logic

◮ Chosen-plaintext security c :p ϕ

◮ Chosen-ciphertext security (c,D) :p ϕ

Events

◮ Guess: adversary guesses bit b′ correctly

◮ Ask(e,H): adversary queries hash oracle with e

Few proof principles: for chosen-plaintext security,

◮ Optimistic sampling: replace e ⊕ r by r if r is fresh

◮ Fundamental Lemma: replace H(e) by fresh r

◮ Failure event: Ask(e,H) has low prob. if e has high entropy

☞ Symbolic entropy of e: maximal fresh |~r | st e ⊢ ~r

◮ One-wayness: Ask(e,H) has low prob. if reduction exists

☞ Symbolic reduction: do f (r)‖m‖ r ′ ⊢ c and e ⊢ r hold?



Evaluation: chosen-plaintext security

SIZE TOTAL PROOF ATTACK UNDECIDED

4 2
1 1 0

(50.00%) (50.00%) (0.00%)

5 44
8 36 0

(18.18%) (81.82%) (0.00%)

6 335
65 270 0

(19.40%) (80.60%) (0.00%)

7 3263
510 2735 18

(15.63%) (83.82%) (0.55%)

8 32671
4430 27894 347

(13.56%) (85.38%) (1.06%)

9 350111
43556 301679 4876

(12.44%) (86.17%) (1.39%)

10 644563
67863 569314 7386

(10.53%) (88.33%) (1.15%)

Total 1030989
116433 901929 12627

(11.29%) (87.48%) (1.22%)



Evaluation: chosen-ciphertext security

SIZE PROOF ATTACK NR UNDECIDED

4
0 2 0 0

(0.00%) (100.00%) (0.00%) (0.00%)

5
0 13 0 0

(0.00%) (100.00%) (0.00%) (0.00%)

6
1 96 5 0

(0.98%) (94.12%) (4.90%) (0.00%)

7
45 739 45 62

(5.05%) (82.94%) (5.05%) (6.96%)

8
536 6531 306 1192

(6.26%) (76.25%) (3.57%) (13.92%)

9
7279 62356 3035 16496

(8.16%) (69.93%) (3.40%) (18.50%)

10
20140 112993 12794 32397

(11.29%) (63.36%) (7.17%) (18.17%)

Total
28001 182730 16185 50147

(10.11%) (65.95%) (5.84%) (18.10%)



Minimality in cryptography

◮ OAEP (1994):

f ((m‖0)⊕G(r) ‖ r ⊕ H((m‖0)⊕G(r)))

◮ SAEP (2001):

f (r ‖ (m‖0)⊕G(r))

◮ ZAEP (2012):

f (r || m ⊕G(r))

☞ bit-optimal, redundancy-free

☞ INDCCA secure for RSA with exponent 2 and 3



EasyCrypt toolchain

ZooCrypt AutoBatch GGA

EasyCryptUser Why3

CertiCrypt CompCert

StealthCert



Conclusion

◮ Solid foundation for cryptographic proofs

◮ Used for emblematic case studies

◮ Narrowing the gap between proofs and code

◮ Automated analysis for primitives and assumptions

Further directions

◮ synthesis and automation (proof theory of cryptography)

◮ composition and verification of cryptographic systems

◮ verified implementations (of standards)

◮ (relational) verification of probabilistic programs:

differential privacy, mechanism design, machine learning

http://www.easycrypt.info


