
Verified cryptographic implementations:

how far can we go?

Gilles Barthe

IMDEA Software Institute, Madrid, Spain

September 30, 2014

Motivation

◮ Loss of trust in Internet

☞ Implementation bugs (HeartBleed)

☞ Logical bugs (Triple Handshake)

☞ Backdoors (Dual_EC_DRBG)

☞ Government coercion

◮ Verification as a (partial) solution: NIST standard 800-90A

is deficient because of a pervasive sloppiness in the use of

mathematics. This, in turn, prevents serious mathematical

analysis and promotes careless implementation in code.

We propose formal verification methods as a remedy.

Hales, 2013

Problems with cryptographic proofs

Proofs are error-prone and flawed

◮ In our opinion, many proofs in cryptography have become

essentially unverifiable. Our field may be approaching a

crisis of rigor. Bellare and Rogaway, 2004-2006

◮ Do we have a problem with cryptographic proofs? Yes, we

do [...] We generate more proofs than we carefully verify

(and as a consequence some of our published proofs are

incorrect). Halevi, 2005

Gap between algorithms, source code and machine code

◮ Omitting one fine-grained detail from a formal analysis can

have a large effect on how that analysis applies in practice.

Degabriele, Paterson, and Watson, 2011

◮ Real-world crypto is breakable; is in fact being broken; is

one ongoing disaster area in security. Bernstein, 2013

OAEP: history

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

2011

BGLZ

1994 1996

Kocher

1998

Bleichenbacher

2001

Manger

2010

Strenzke

2013

ABBD

Provable security of OAEP — algorithmic level

Game INDCCA(A) :
(sk , pk)← K();

(m0,m1)← A
G,H,D

1 (pk);
b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← AG,H,D

2 (c⋆);
return (b′ = b)

Provable security of OAEP — algorithmic level

Game INDCCA(A) :
(sk , pk)← K();

(m0,m1)← A
G,H,D

1 (pk);
b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← AG,H,D

2 (c⋆);
return (b′ = b)

Game sPDOW(I)
(sk , pk)← K();
y0

$← {0, 1}n0 ;
y1

$← {0, 1}n1 ;
y ← y0 ‖y1;
x⋆ ← fpk (y);
Y ′ ← I(x⋆);
return (y0 ∈ Y ′)

Provable security of OAEP — algorithmic level

Game INDCCA(A) :
(sk , pk)← K();

(m0,m1)← A
G,H,D

1 (pk);
b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← AG,H,D

2 (c⋆);
return (b′ = b)

Encryption
EOAEP(pk)(m) :
r $← {0, 1}k0 ;
s ← G(r)⊕ (m‖0k1);
t ← H(s) ⊕ r ;
return fpk (s ‖ t)

Decryption . . .

Game sPDOW(I)
(sk , pk)← K();
y0

$← {0, 1}n0 ;
y1

$← {0, 1}n1 ;
y ← y0 ‖y1;
x⋆ ← fpk (y);
Y ′ ← I(x⋆);
return (y0 ∈ Y ′)

Provable security of OAEP — algorithmic level

Game INDCCA(A) :
(sk , pk)← K();

(m0,m1)← A
G,H,D

1 (pk);
b $← {0, 1};
c⋆ ← Epk (mb);

b′ ← AG,H,D

2 (c⋆);
return (b′ = b)

Encryption
EOAEP(pk)(m) :
r $← {0, 1}k0 ;
s ← G(r)⊕ (m‖0k1);
t ← H(s) ⊕ r ;
return fpk (s ‖ t)

Decryption . . .

Game sPDOW(I)
(sk , pk)← K();
y0

$← {0, 1}n0 ;
y1

$← {0, 1}n1 ;
y ← y0 ‖y1;
x⋆ ← fpk (y);
Y ′ ← I(x⋆);
return (y0 ∈ Y ′)

FOR ALL IND-CCA adversary A against (K, EOAEP,DOAEP),
THERE EXISTS a sPDOW adversary I against (K, f, f−1) st

∣∣PrIND-CCA(A)[b
′ = b]− 1

2

∣∣ ≤ PrPDOW(I)[y0 ∈ Y ′] +
3qD qG+q2

D+4qD+qG

2k0
+ 2qD

2k1

and

tI ≤ tA + qD qG qH Tf

Implementation of OAEP

Decryption DOAEP(sk)(c) :

(s, t)← f−1
sk (c);

r ← t ⊕H(s);

if ([s ⊕G(r)]k1
=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

Decryption DPKCS-C(sk)(res, c) :
if (c ∈ MsgSpace(sk)) then

{ (b0, s, t)← f−1
sk (c);

h← MGF (s, hL); i ← 0;
while (i < hLen + 1)
{ s[i]← t[i] ⊕ h[i]; i ← i + 1; }
g ← MGF (r , dbL); i ← 0;
while (i < dbLen)
{ p[i]← s[i]⊕ g[i]; i ← i + 1; }
l ← payload_length(p);
if (b0 = 08 ∧ [p]hLen

l = 0..01∧
[p]hLen = LHash)

then

{rc ← Success;
memcpy(res, 0, p, dbLen − l, l); }

else {rc ← DecryptionError ; } }
else {rc ← CiphertextTooLong; }

return rc;

Computer-aided cryptographic proofs

provable security

=
deductive relational verification of parametrized probabilistic programs

◮ adhere to cryptographic practice

☞ same proof techniques

☞ same guarantees

☞ same level of abstraction

◮ leverage existing verification techniques and tools

☞ program logics, VC generation, invariant generation

☞ SMT solvers, theorem provers, proof assistants

EasyCrypt
(B. Grégoire, P.-Y. Strub, F. Dupressoir, B. Schmidt, C. Kunz)

◮ Initially a weakest precondition calculus for pRHL

◮ Now a full-fledged proof assistant

☞ proof engine inspired from SSREFLECT

☞ backend to SMT solvers and CAS

☞ embedding rich probabilistic language (w/ modules)

☞ probabilistic Relational Hoare Logic for game hopping

☞ probabilistic Hoare Logic for bounding probabilities

☞ ambient logic

☞ reasoning in the large

A language for cryptographic games

C ::= skip skip

| V ← E assignment

| V $← D random sampling

| C; C sequence

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

◮ E : (higher-order) expressions

◮ D: discrete sub-distributions

◮ P: procedures

}
user extensible

. oracles: concrete procedures

. adversaries: constrained abstract procedures

Reasoning about programs

◮ Probabilistic Hoare Logic

� {P}c{Q} ⋄ δ

◮ Probabilistic Relational Hoare logic

� {P} c1 ∼ c2 {Q}

◮ Ambient logic

pRHL: a relational Hoare logic for games

◮ Judgment

� {P} c1 ∼ c2 {Q}

◮ Validity

∀m1,m2. (m1,m2) � P =⇒ (Jc1K m1, Jc2K m2) � Q♯

◮ Proof rules

� {P ∧ e〈1〉} c1 ∼ c {Q} � {P ∧ ¬e〈1〉} c2 ∼ c {Q}

� {P} if e then c1 else c2 ∼ c {Q}

P → e〈1〉=e′〈2〉

� {P ∧ e〈1〉} c1 ∼ c′
1 {Q} � {P ∧ ¬e〈1〉} c2 ∼ c′

2 {Q}

� {P} if e then c1 else c2 ∼ if e′ then c′
1 else c′

2 {Q}

+ random samplings, procedures, adversaries. . .

◮ Verification condition generator

Deriving probability claims

Assume � {P} c1 ∼ c2 {Q} and (m1,m2) |= P

Equivalence

◮ If Q △
=

∧
x∈X x〈1〉 = x〈2〉 and FV(A) ⊆ X then

Prc1,m1
[A] = Prc2,m2

[A]

◮ If Q △
= A〈1〉 ⇔ B〈2〉 then

Prc1,m1
[A] = Prc2,m2

[B]

Conditional equivalence

◮ If Q △
= ¬F 〈2〉 ⇒

∧
x∈X x〈1〉 = x〈2〉 and FV(A) ⊆ X then

Prc1,m1
[A]− Prc2,m2

[A] ≤ Prc2,m2
[F]

◮ If Q △
= ¬F 〈2〉 ⇒ (A〈1〉 ⇔ B〈2〉) then

Prc1,m1
[A]− Prc2,m2

[B] ≤ Prc2,m2
[F]

Case studies

◮ Public-key encryption

◮ Signatures

◮ Hash designs

◮ Block ciphers

◮ Zero-knowledge protocols

◮ AKE protocols

◮ Verifiable computation

◮ Differential privacy, smart meterting

Provable security of C and executable code
◮ C-mode using base-offset representation of arrays

☞ no aliasing or overlap possible

☞ pointer arithmetic only within an array

◮ Reductionist argument for x86 executable code:

☞ FOR ALL adversary that breaks the x86 code,

☞ THERE EXISTS an adversary that breaks the C code

◮ Use verified compiler to ensure semantic preservation

CompCert (Leroy, 2006)

Security against side-channel attacks

Recipes for security disaster

◮ Branch on secrets

☞ Lead to timing attacks

☞ PKCS encryption. . .

◮ Array accesses with high indices (cache-based attacks)

☞ Lead to cache-based attacks

☞ AES, DES. . .

◮ Define static analysis on x86 code

◮ Extend reductionist argument

☞ FOR ALL adversary that breaks the x86 code,

☞ IF x86 code passes static analysis,

☞ THERE EXISTS an adversary that breaks the C code

◮ May depend on system-level countermeasures

☞ Use stealth cache for sensitive accesses

☞ Predictive mitigation for timing

Applications to formally verified implementations
◮ PKCS encryption

☞ INDCCA in the program counter model

☞ Uses constant-time modular exponentiation

◮ Constant-time cryptography: Salsa, SHA, TEA

◮ “Almost” constant-time cryptography: AES, DES, RC4

◮ Vectorized implementations

Challenge

◮ Highly-optimized implementations are written in assembly

◮ Cannot use verified compilers

◮ Alternative: verified decompilers; equivalence checking

Automatic analysis of masked implementations

◮ Security in t-threshold probing model is non-interference
for any t intermediate values

Non-interference t intermediate values is a standard

program verification model.
Easily handled by EasyCrypt.

◮ Non-interference for any t intermediate values is hard.

Size of programs grows with masking order

Number of sets to test explodes as masking order grows

Our Solution: Large observation sets

◮ Given a set of intermediate values known to be safe,

efficiently extend it as much a possible.

◮ Recursively check t non-interference with variables not

captured.

◮ Recursively check t non-interference for sets that straddle

both subsets.

◮ Still exponential, but pretty good in practice.

Improvement: sliding window algorithms
Exploiting the power of refresh gadgets

Intuition: variables are probabilistically independent if they are

◮ syntactically independent

◮ dependent, but dependency through many refresh

gadgets,

Formally:

◮ make dependency graph weighted

◮ define distance between sets of program points (two sets

are far away if their distance exceeds the order)

◮ show that observation sets that can be partitioned into far

away sets need not be considered

Key property:

◮ Inputs and outputs independent, unless intermediate

computations is observed

Synthesis of fault attacks

◮ Increasing need for secure chips

◮ Must resist physical attacks

◮ Countermeasures have a cost

◮ Lack of formal proofs/models

◮ Sophisticated attacks

☞ physical tampering (laser. . .)

☞ advanced mathematical algorithms (LLL)

Approach

◮ Identify post-conditions that could lead to attacks

◮ Empirically evaluate their complexity

◮ Use syntax-guided synthesis for finding fault attacks

◮ Realize attacks

Found several new attacks on RSA and ECDSA signatures

Syntax-guided synthesis

Goal

Given implementation c and fault condition φ, find faulted ĉ st

{⊤}ĉ{φ}

◮ Propagate fault condition backwards

◮ At each step

☞ select real or faulted instruction

☞ compute weakest precondition

☞ perform logical simplifications

◮ Success if precondition entails computed VC

Issues:

◮ Loops: use invariant finding techniques

◮ Search space: use pruning

Example: RSA signatures

1: function SIGNRSA–CRT(m)

2: M ← µ(m) ∈ ZN

3: S′
p ← EXPLADDER(M mod p,dp,p,q

−1 mod p)

4: S′
q ← EXPLADDER(M mod q,dq,q,p

−1 mod q)
5: S ← S′

q · p + S′
p · q mod N

6: return S

7: end function

Example: almost full linear combinations

Assume that N = pq such that p,q are prime and p,q < 2n/2

Theorem (Informal)

One can efficiently factor N given sufficiently many values S st

∃x , y < 2n/2−ε. S = x · p + y · q

Implement attack in SAGE to find minimal number of values ℓ

p,q 512 (bits) 1024 (bits)

x , y 464 472 480 496 968 976 984 992

ℓ 22 26 33 74 37 44 53 67

Modular exponentiation
1: function EXPLADDER(x , e,q, c)

2: x̄ ← CIOS(x ,R2 mod q)
3: A← R mod q

4: for i = t down to 0 do
5: if ei = 0 then
6: x̄ ← CIOS(A, x̄)
7: A← CIOS(A,A)
8: else if ei = 1 then
9: A← CIOS(A, x̄)

10: x̄ ← CIOS(x̄ , x̄)
11: end if
12: end for

13: A← CIOS(A, c)
14: return A

15: end function

1: function CIOS(x , y)

2: a← 0

3: y0 ← y mod b

4: for j = 0 to k − 1 do
5: a0 ← a mod b

6: uj ← (a0 + xj · y0) · q
′ mod b

7: a←

⌊

a + xj · y + uj · q

b

⌋

8: end for

9: if a ≥ q then a← a− q

10: end if
11: return a

12: end function

◮ Set k = 0 (skip loop)

◮ Increase value of k and set q′ = 0 (both 1
2 -exponentiations)

◮ Double value of k and set q′ = 0 (one 1
2-exponentiation)

◮ Set q′ = 0 (one 1
2
-exponentiation, Garner recombination)

Synthesis of cryptographic constructions

Do the cryptosystems reflect [...] the situations that are being catered

for? Or are they accidents of history and personal background that

may be obscuring fruitful developments? [...] We must systematize

their design so that a new cryptosystem is a point chosen from a

well-mapped space, rather than a laboriously devised construction.

(Adapted from Landin, 1966. The next 700 programming languages)

Variants of OAEP

◮ About 200 variants in the literature

◮ About 106 − 108 candidates schemes of “reasonable” size

◮ Interactive verification is infeasible (even for 200 schemes)

◮ Can we automate analysis for finding attacks or proofs?

Approach

An algebraic view of padding-based schemes

Encryption algorithms are modelled as algebraic expressions

E ::= m input message

| 0 zero bitstring

| R uniform random bitstring

| E ⊕ E xor

| E || E concatenation

| [E]ss projection

| H(E) hash

| f (E) trapdoor permutation

Decryption algorithms use a mild extension of the language

Attack finding

Apply tools from symbolic cryptography

◮ Simple filters, eg

☞ is decryption possible without a key? m || f (r)
☞ is encryption randomized? f (m)
☞ is randomness extractable without a key? r || f (m ⊕ r)

◮ Then, static equivalence

e ⊢ e1 e ⊢ e2

e ⊢ e1 ‖e2

[Conc]
e ⊢ e1 e ⊢ e2

e ⊢ e1 ⊕ e2

[Xor]

e ⊢ e

e ⊢ [e]ℓn
[Proj]

e ⊢ e1 ⊢ e1
.
= e2

e ⊢ e2

[Conv]

e ⊢ e′

e ⊢ H(e′)
[H]

e ⊢ e′

e ⊢ f (e′)
[F]

e ⊢ e′

e ⊢ f−1(e′)
[Finv]

Proof finding

Domain-specific computational logic

◮ Chosen-plaintext security c :p ϕ

◮ Chosen-ciphertext security (c,D) :p ϕ

Events

◮ Guess: adversary guesses bit b′ correctly

◮ Ask(e,H): adversary queries hash oracle with e

Few proof principles: for chosen-plaintext security,

◮ Optimistic sampling: replace e ⊕ r by r if r is fresh

◮ Fundamental Lemma: replace H(e) by fresh r

◮ Failure event: Ask(e,H) has low prob. if e has high entropy

☞ Symbolic entropy of e: maximal fresh |~r | st e ⊢ ~r

◮ One-wayness: Ask(e,H) has low prob. if reduction exists

☞ Symbolic reduction: do f (r)‖m‖ r ′ ⊢ c and e ⊢ r hold?

Evaluation: chosen-plaintext security

SIZE TOTAL PROOF ATTACK UNDECIDED

4 2
1 1 0

(50.00%) (50.00%) (0.00%)

5 44
8 36 0

(18.18%) (81.82%) (0.00%)

6 335
65 270 0

(19.40%) (80.60%) (0.00%)

7 3263
510 2735 18

(15.63%) (83.82%) (0.55%)

8 32671
4430 27894 347

(13.56%) (85.38%) (1.06%)

9 350111
43556 301679 4876

(12.44%) (86.17%) (1.39%)

10 644563
67863 569314 7386

(10.53%) (88.33%) (1.15%)

Total 1030989
116433 901929 12627

(11.29%) (87.48%) (1.22%)

Evaluation: chosen-ciphertext security

SIZE PROOF ATTACK NR UNDECIDED

4
0 2 0 0

(0.00%) (100.00%) (0.00%) (0.00%)

5
0 13 0 0

(0.00%) (100.00%) (0.00%) (0.00%)

6
1 96 5 0

(0.98%) (94.12%) (4.90%) (0.00%)

7
45 739 45 62

(5.05%) (82.94%) (5.05%) (6.96%)

8
536 6531 306 1192

(6.26%) (76.25%) (3.57%) (13.92%)

9
7279 62356 3035 16496

(8.16%) (69.93%) (3.40%) (18.50%)

10
20140 112993 12794 32397

(11.29%) (63.36%) (7.17%) (18.17%)

Total
28001 182730 16185 50147

(10.11%) (65.95%) (5.84%) (18.10%)

Minimality in cryptography

◮ OAEP (1994):

f ((m‖0)⊕G(r) ‖ r ⊕ H((m‖0)⊕G(r)))

◮ SAEP (2001):

f (r ‖ (m‖0)⊕G(r))

◮ ZAEP (2012):

f (r || m ⊕G(r))

☞ bit-optimal, redundancy-free

☞ INDCCA secure for RSA with exponent 2 and 3

EasyCrypt toolchain

ZooCrypt AutoBatch GGA

EasyCryptUser Why3

CertiCrypt CompCert

StealthCert

Conclusion

◮ Solid foundation for cryptographic proofs

◮ Used for emblematic case studies

◮ Narrowing the gap between proofs and code

◮ Automated analysis for primitives and assumptions

Further directions

◮ synthesis and automation (proof theory of cryptography)

◮ composition and verification of cryptographic systems

◮ verified implementations (of standards)

◮ (relational) verification of probabilistic programs:

differential privacy, mechanism design, machine learning

http://www.easycrypt.info

