
PROOFS workshop:

pre-proceedings

�Security Proofs for Embedded Systems�

Leuven, Belgium

Thursday, September 13rd, 2012

2

Preface

On behalf of the steering committee, we are glad to welcome you to this �rst edition of
PROOFS.

The goal of the PROOFS workshop is to promote methodologies that increase the
con�dence level in the security of embedded systems.

Embedded system security too frequently consists in security by obscurity solutions
(except, of course, for high-security solutions produced by specialized �rms, for instance
in the smartcard industry). This has obvious drawbacks:

• it requires costly black-box evaluation,

• there is no certainty about the correctness of the security, etc.

Formal methods allow to increase the trust level of digital systems, especially those
that embed cryptography. They are very appealing, for the following reasons:

• they are mature in theory, and there are o�-the-shelf tried and tested methods and
tools,

• they have been applied both on software and hardware for a long time, mainly for
safety and conformance tests, but also sometimes for security assessment.

Some important security features (random number generation, physically unclonable
functions, side-channel resistance, etc.) rely on analog devices. Their correct functioning
can be ascertained by techniques such as physical modeling and unitary experimental
testing. But in general, physical models are better evaluated by mathematical methods,
which encompass �formal methods�.

An important objective for the PROOFS workshop is to bridge the gap between
both topics, and therefore to pave the way to �security by clarity� in the design and the
evaluation of embedded systems.

4

Forewords

For this �rst edition, the PROOFS workshop will be held on one day, with a program
that includes:

• three contributed talks,

• three invited talks,

• two short talks in the �WiP� (work in progress) sessions,

• one round-table.

Enjoy the workshop!

Venue of the PROOFS'2012 workshop: College de Valk.

Acknowledgements: We are grateful to TELECOM-ParisTech for the generous
sponsorship of the workshop, and K.U.Leuven for the perfect help in its organization.
Personal thanks to Jean-Luc Danger for the logo and more . . . , and to Svetla Nikova for
her care to make PROOFS workshop an enjoyable day!

The programme committee (PC, listed at page 111) reviewed the papers, using the
easychair conference management system. Each submission has been evaluated by three
PC members. The submissions that involved at least one PC member as co-author
have been evaluated by four PC members (of course excluding those who cosigned the
submission).

Up-to-date information can be found on the workshop permanent web site:

http://www.proofs-workshop.org/

6

http://www.telecom-paristech.fr/eng/
http://www.kuleuven.be/english
http://www.easychair.org/
http://www.proofs-workshop.org/

Contents

Preface . 3

Forewords . 5

1 PROOFS Program . 8

2 Contributed Paper #1: �A formal study of two physical countermea-

sures against side channel attacks�, by Sébastien Briais, Sylvain Guilley

and Jean-Luc Danger . 9

3 Contributed Paper #2: �Formal veri�cation of an implementation of

CRT-RSA Vigilant's algorithm�, by Maria Christo�, Boutheina Chetali,

Louis Goubin and David Vigilant . 28

4 Contributed Paper #3: �Toward A Taxonomy of Communications Se-

curity Models�, by Mark Brown . 49

5 Invited Paper #1: �Understanding the reasons for the side-channel

leakage is indispensable for secure design�, by Werner Schindler . . 75

6 Invited Paper #2: �Toward Formal Design of Cryptographic Processors

Based on Galois Field Arithmetic�, by Naofumi Homma 91

7 Invited Paper #3: �Analysing Cryptographic Hardware Interfaces with

Tookan�, by Graham Steel . 92

Committees . 111

Program of PROOFS

Leuven, Belgium. Thursday September 13rd, 2012

8h15–9h00 Registration, at College de Valk

9h00–9h15 Opening – Welcome, presentation of PROOFS

9h15–10h15 Invited talk #1 Chair: Stefan Mangard.

• “Understanding the reasons for the side-channel leakage is indis-
pensable for secure design”, by Werner Schindler.

10h15–10h30 Coffee break

10h30–12h00 Submitted papers session Chair: Svetla Nikova.

• Contributed talk #1, “A formal study of two physical countermea-
sures against side channel attacks”, by Sébastien Briais, Sylvain Guilley
and Jean-Luc Danger.

• Contributed talk #2, “Formal verification of an implementation of
CRT-RSA Vigilant’s algorithm”, by Maria Christofi, Boutheina Chetali,
Louis Goubin and David Vigilant.

• Contributed talk #3, “Toward A Taxonomy of Communications Se-
curity Models”, by Mark Brown.

12h00–13h30 Lunch, at Alma cafeteria

13h30–14h30 Invited talk #2 Chair: Éliane Jaulmes.

• “Toward Formal Design of Cryptographic Processors Based on
Galois Field Arithmetic”, by Naofumi Homma.

14h30–15h30 Invited talk #3 Chair: Louis Goubin.

• “Analysing Cryptographic Hardware Interfaces with Tookan”, by
Graham Steel.

15h30–16h00 Coffee break

16h00–16h30 Round-table and Q&A with the audience

16h30–16h35 Wrap-up

8

A formal study of two physical countermeasures
against side channel attacks

Sébastien Briais1, Sylvain Guilley2, and Jean-Luc Danger2

1 Secure-IC
sebastien.briais@secure-ic.com

2 Telecom Paristech
sylvain.guilley@telecom-paristech.fr,
jean-luc.danger@telecom-paristech.fr

Abstract. Secure electronic circuits must implement countermeasures
against a wide range of attacks. Often, the protection against side channel
attacks requires to be tightly integrated within the functionality to be
protected. It is now part of the designer’s job to implement them. But this
task is known to be error-prone, and with current development processes,
countermeasures are evaluated often very late (at circuit fabrication).
In order to improve the confidence of the designer in the efficiency of the
countermeasure, we suggest in this article to resort to formal methods
early in the design flow for two reasons. First of all, we intend to check
that the process of transformation of the design from the vulnerable de-
scription to the protected one does not alter the functionality. Second,
we wish to prove that the security properties (that can derive from a
formal security functional specification) are indeed met after transfor-
mation. Our first contribution is to show how such a framework can be
setup (in COQ) for netlist-level protections. The second contribution is
to illustrate that this framework indeed allows to detect vulnerabilities
in dual-rail logics.

1 Introduction

More and more electronic circuits are entrusted with security functions. In par-
ticular, they must make sure the information they process, that can be sensitive,
is well kept secret. For this reason, electronic circuits must be prepared to be
attacked. Thus, it is important that they are properly protected against a wide
range of attacks, in particular against side-channel attacks. In practice, to thwart
those attacks, extra logic is required: its role is to mask the sensitive data or bal-
ance the leakage. From a design point of view, the countermeasure is either coded
manually, or implemented automatically by a tool.

In both cases, it would be relevant to ascertain that the functionality remains
unchanged after the application of the countermeasure, and that the counter-
measure is implemented as intended. But currently, these verifications are seldom
carried out: mostly, real attacks are tried after the product is produced, without
further formal investigations of the countermeasure after it is applied. The pur-
pose of this paper is to illustrate that the application of a countermeasure can

9

be formally verified. All the modelisations and proofs of lemmas given in this
paper have been obtained in the COQ [4] formal proof assistant.

Some efforts have already been led in order to formally study electronic
circuits and their correctness [10, 5, 2]. The present article differs from these
previous works in the sense that its objective is not only to study functional
correctness of circuits but also to study security properties of hardware counter-
measures.

The rest of the paper is structured as follows. In Sec. 2, the studied coun-
termeasures are presented, and described informally. In Sec. 3, a framework to
reason on combinational circuits is detailed. Some convenient circuits are defined
in appendix (Sec. A). The application of these tools to the formal description
of a single-to-dual-rail transformation is carried out in Sec. 4. It allows to show
weaknesses present in WDDL but absent from BCDL. Finally, conclusions are
given in Sec. 5. This last section also extends the presented methodology to other
kinds of dual-rail circuits.

2 Dual-rail Precharge Logic

2.1 Overview

Dual-rail Precharge Logic (DPL) is a class of logic-level countermeasures. It
aims at making the device activity constant and independent of the data being
processed. In this logic style, a signal is represented by a pair of wires, hence
the dual-rail qualifier. A cycle of computation is composed of two phases: (1)
a precharge phase where each pair of wires is discharged by propagating the
NULL value through the combinational part of circuit and (2) an evaluation
phase where the data is processed by the combinational part of the circuit and
in which exactly one wire among each pair toggles its state, depending on the
logical value the dual-rail conveys. This protocol is depicted in Fig. 1.

NULL0

VALID1

NULL1

VALID0

Precharge:

Evaluation:
(output disclosed)

ph
ase

Fig. 1. Separable dual-rail encoding with precharge, yielding a constant activity

Several DPL have been invented along the years: WDDL [13], MDPL [11],
DRSL [3], STTL [12], BCDL [8] and SDDL [7] to cite a few.

Each of these proposals succeeds in making the device activity constant.
Nonetheless, they differ on some implementation-level aspects. We focus in the
sequel on the specific characteristics of WDDL and BCDL.

10

2.2 Two examples

In this section, an informal description of WDDL (Wave Dynamic Differential
Logic) and Balanced Cell-based Differential Logic (BCDL) is provided.

WDDL consists in a separable logic to implement the true and false halves.
Glitches are partial transitions of the nets that are due to races between signals.
It is known that they can be responsible for data-dependent leakage [9]. To avoid
glitches, WDDL focuses on positive gates. Thus, only AND and OR primitives
are used.

Now, AND and OR functions have “short-cut” evaluation. If one input is one,
the AND gate has to wait for the second input before evaluating, whereas the OR
gate can evaluate one at once. This effect can happen in both evaluation and
precharge phases, and cause data-dependent toggling date. During one phase
(evaluation or precharge), the activity is constant, but decomposes into events
that are data-dependent within the phase (due to small delays between the
signals).

BCDL ensures the data-independence of the gates toggling date, thanks to a
synchronisation of the inputs at evaluation. The precharge has the functionality
to reset all the nodes. Thus, it can be always anticipated, which is implemented
by a global signal. This way, BCDL fixes the early propagation effect, and also
exhibits no glitches, since by construction a BCDL gate is evaluated only once.

2.3 Vulnerabilities

In DPL styles, the registers can be balanced easily, because they merely imple-
ment the “identity function”. One way to balance them is to be especially careful
at the place-and-route stage. For instance, both in ASIC and FPGA technologies,
it is possible to set placement constraints on the two dual registers. If placement
constraints are not enough (for instance because the routing would also deserve
a similar symmetry), another solution consists in applying a dedicated counter-
measures built on top of DPL circuits. A strategy such as “path switching” [1]
can be easily applied to the registers. It consist in saving the true (resp. false)
variable in either the true (resp. false) or the false (resp. true) register half,
depending on a random variable. The functionality remains unchanged, but the
leakage is balanced at the first order).

Therefore, in the sequel, we focus on the leakage generated by the combina-
tional logic. These gates are more delicate to perfectly balance, and are more sus-
ceptible to cause two major flaws previously mentioned: data dependent glitches
and early propagation.

3 Combinational circuits

In this section, we define a formalism that allows to reason about combinational
circuits.

11

3.1 Syntax

Intuitively, a combinational circuit is a directed acyclic graph whose nodes repre-
sent logical gates, and whose edges, which represent wires, are ordered. Despite
the fact that this definition is perfectly rigorous from a mathematical point of
view, it already involves some heavy mathematical notions which will not ease
further reasoning about these objects. So, rather than using this rough defini-
tion, we define the combinational circuits as being terms of a process algebra
that we define below.

Definition 1 (Combinational circuits). Let G be a set of logical gates. The
set of combinational circuits over G is defined inductively by (1) the empty circuit
0 is a combinational circuit, (2) any gate g ∈ G is a combinational circuit, (3) a
single wire I is a combinational circuit, (4) a fork Y, which duplicates a single
wire in two wires, is a combinational circuit, (5) a swap X of two wires is a
combinational circuit, and if P and Q are two combinational circuits then so are
(6) their parallel composition P ||Q and (7) their sequential composition P ; Q.

Note that by definition, a combinational circuit does not contain any loop.
Regarding the wiring primitives, we have made the choice of minimality.

Thus, we have considered a single wire I instead of a ribbon cable, a single swap
X instead of a generalised permutation operator, and a simple fork Y instead
of a generalised fork that would have replicated a single wire multiple times.
This choice, which has no impact on the expressiveness of the calculus (since
the generalised operators can easily be defined in terms of these simple ones),
allows us to easily define transformations on circuits. Some useful circuits that
rotate wires, that interleave or deinterleave wires, or that duplicate wires are
thus defined in Section A.

Example 1. We assume that the set of gates contains a xor gate, and an and
gate, i.e. we assume that {xor, and} ⊆ G. The half-adder depicted below is
represented by the term Half :=(Y ||Y) ; (I ||X || I) ; (and || xor).

and

xor

As a convenient circuit, we define, for n ∈ N, In which intuitively represents
a straight ribbon cable composed of n wires as I0 :=0 and In+1 := I || In.

In the sequel, we let G be a fixed set of gates and we consider combinational
circuits over G, unless stated otherwise.

3.2 Well-formedness

By definition, a combinational circuit does not contain any loop. However, some
circuits might be ill-formed. This can happen when composing sequentially two

12

circuits P and Q if the number of outputs of P is different from the number of
inputs of Q. To exclude these ill-formed circuits, we define a simple type system
on combinational circuits. For this, we assume that each gate g ∈ G has a type
(mg, ng) where mg is the fan-in (number of inputs) of the gate g and ng is the
fan-out (number of outputs) of the gate g. In other words, we assume that we
have a typing function T : G → N× N.

Definition 2 (well-formed circuits). Let P be a combinational circuits over
G. We say that P is well-formed and has m inputs and n outputs — written
P : m⊗n — if and only if there exists a typing derivation using the rules of the
type system given below. Otherwise, P is said to be ill-formed.

T (g) = (m,n)

g : m⊗ n g ∈ G
0 : 0⊗ 0 I : 1⊗ 1 Y : 1⊗ 2 X : 2⊗ 2

P1 : m1 ⊗ n1 P2 : m2 ⊗ n2

P1 ||P2 : m1 +m2 ⊗ n1 + n2

P1 : m⊗ n P2 : n⊗ p
P1 ; P2 : m⊗ p

We comment briefly the rule for sequential composition as it is the source
of potential ill-formedness. This rule states that for P ; Q to be well-formed, we
must have that (1) P is well-formed, (2) Q is well-formed and (3) the number of
outputs of P is equal to the number of inputs of Q.

Example 2. Continuing Example 1, we assume that the and gate and and the
xor gate xor have 2 inputs and 1 output, i.e. that T (and) = (2, 1) and T (xor) =
(2, 1). Then Half is well-formed and has 2 inputs and 2 outputs, i.e. Half : 2⊗2.

Lemma 1 (uniqueness of type). Let P be a circuit. If P : n ⊗ m and P :
n′ ⊗m′ then n = n′ and m = m′.

3.3 Semantics

We interpret combinational circuits by partial functions on words over an alpha-
bet Σ. Before defining the formal semantics of circuits, we recall briefly some
definitions about languages to fix terminology and notations.

An alphabet is a finite set, whose elements are called letters. A word u over
an alphabet Σ is a finite sequence of letters u = u1 · . . . · un where ui ∈ Σ for
any i. We note Σ∗ the set of words over Σ. If u = u1 · . . . · un is a word over Σ,
we note |u| = n its length. The set of words of length n ∈ N is written Σn. We
note ε the empty word, i.e. the unique word of length 0. If u = u1 · . . . · un ∈ Σ∗
and v = v1 · . . . · vp ∈ Σ∗, the concatenation u • v of u and v is defined by
u • v = u1 · . . . · un · v1 · . . . · vp of length |u • v| = |u| + |v|. A language L over
Σ is a subset of Σ∗. If L1, L2 ⊆ Σ∗, we let L1 • L2 :={u • v | u ∈ L1 ∧ v ∈ L2}.
If L ⊆ Σ∗ and n ∈ N, we define Ln as L0 :={ε} and Ln+1 :=L • Ln. Finally, we
define the Kleene closure of L to be L∗ :=

⋃
i∈N

Li.

13

In the following, we let Σ be an alphabet. By abuse of notations, we will
identify each letter a ∈ Σ with the word a ∈ Σ∗ of length 1.

In order to define the semantics of circuits, we assume that each gate g ∈ G is
interpreted by a partial function E(g) : Σ∗ ⇀ Σ∗, which is defined consistently
with respect to the type of g, i.e. if T (g) = (m,n) then the definition domain of
E(g) is Σm and its image is included in Σn.

Definition 3. Let P be a combinational circuit over G and x, y ∈ Σ∗. We say
that P computes y on x — written P x y — if and only if there exists a
derivation of P x y according to the following inductive rules.

x ∈ Σ∗ E(g)(x) = y ∈ Σ∗
g x y

g ∈ G
0 ε ε I a a

a ∈ Σ

Y a aa
a ∈ Σ

X ab ba
a, b ∈ Σ

P1 x1 y1 P2 x2 y2

P1 ||P2 x1 • x2 y1 • y2

P1 x y P2 y z

P1 ; P2 x z

The next lemma summarises some important results about the semantics of
circuits.

Lemma 2. Let P be a combinational circuit, x, y, z ∈ Σ∗ and m,n ∈ N.
– Computation is deterministic.

If P x y and P x z then y = z.
– Existence of a computation implies well-formedness.

If P x y then P : |x| ⊗ |y|.
As a consequence, we have that if P x y and P : m ⊗ n then |x| = m
and |y| = n.

– A well-formed circuit with m inputs and n outputs computes over Σm.
If P : m⊗ n and |x| = m then there exists y such that P x y.
According to the previous results, we thus have that the definition domain of
a well-formed circuit with m inputs and n outputs is Σm and its image is
included in Σn.

3.4 Functional equivalence, structural congruence

Functional equivalence Intuitively, functional equivalence relates any two
circuits which compute the same function. It is formally defined below.

Definition 4 (functional equivalence). Two circuits P and Q are function-
ally equivalent, written P ' Q, if and only if

∀x, y ∈ Σ∗ : P x y ⇐⇒ Q x y

An important result, that allows compositional reasoning, is that functional
equivalence is a congruence. We formally state this result below.

14

Definition 5 (contexts, congruence). A context C[] is a circuit with a
hole [] inside. Formally, the syntax of contexts is given below.

C[] ::=[] | C[] ||Q | P ||C[] | C[] ; Q | P ; C[]

If P is a circuit and C[] is a context, we write C[P] the circuit obtained by
syntactically replacing the hole in C[] with P .

A congruence R is an equivalence relation over CG that is preserved by ev-
ery context, i.e. such that whenever PRQ then for any context C[], we have
C[P]RC[Q].

Theorem 1. ' is a congruence.

Another property of ' is that it identifies all the ill-formed circuits. Formally,
if P and Q are ill-formed, then P ' Q.

Structural congruence Intuitively, structural congruence identifies circuits
that only differ in some minor wiring details.

Definition 6. The structural congruence ≡ is the smallest congruence that sat-
isfies the following axioms:

1. for any P,Q and R, (P ||Q) ||R ≡ P || (Q ||R)
2. for any P , P ||0 ≡ 0 ||P ≡ P
3. for any P,Q and R, (P ; Q) ; R ≡ P ; (Q ; R)
4. for any P , if P : n⊗m then In ; P ≡ P ; Im ≡ P
5. for any P,Q,R and S, if P : n⊗m and Q : m⊗ p

then (P ; Q) || (R ; S) ≡ (P ||R) ; (Q ||S)
6. Y ; (I ||Y) ≡ Y ; (Y || I)
7. Y ; X ≡ Y
8. X ; X ≡ I || I
9. X ; (Y ||Y) ≡ (Y ||Y) ; (I ||X || I) ; (X ||X) ; (I ||X || I)

Structural congruence preserves the well-formedness. Formally, if P ≡ Q then
for any m and n, we have P : m⊗ n ⇐⇒ Q : m⊗ n.

Structural congruence is also a convenient proof method for showing func-
tional equivalence as stated in the following theorem.

Theorem 2. We have ≡⊆'.

4 Formalisation of WDDL and BCDL

4.1 Dual-rail Precharge Logic

Before defining formally the WDDL and BCDL transformations, we need some
more definitions.

In the following, let Σ = {0, 1}. The set of dual-rail words is
(
Σ2
)∗. Let

N := 00, T := 10, F := 01 and E := 11. Let NULL :={N}, VALID :={T, F} and

15

FAULT :={E}. A word u ∈ Σ∗ is said to be null if and only if u ∈ NULL∗,
to be valid if and only if u ∈ VALID∗, to be error-free if and only if u ∈
(NULL ∪VALID)

∗. If u ∈ Σ∗, its corresponding value in dual-rail representation
is [u] ∈ VALID∗. It is defined by induction on u by [ε] := ε, [0 · u] :=F • [u] and
[1 · u] :=T • [u]. Clearly, we have |[u]| = 2|u|.

As mentioned before, DPL alternates precharge phase and computation phase.
When a switch of phase occurs, input signals acquire their respective values. Thus
when switching from precharge to computation, each input signal N becomes
either the token T or the token F . To model this, we define on NULL ∪VALID
the order � such that for any x ∈ NULL ∪ VALID we have x � x and for any
x ∈ NULL and y ∈ VALID we have x � y. Note that by construction, the ele-
ments of VALID are maximal. Due to routing differences, input signals are likely
to acquire their respective logic value at different times. To model this evolution
when switching from precharge to computation, we extend the definition of �
to error-free words as follows: u � v if and only if there exists n ∈ N such that
u = t1 · · · tn, v = t′1 · · · t′n with ∀i : ti, t

′
i ∈ NULL∪VALID and for any 1 ≤ i ≤ n,

ti � t′i. For example, we have NN � TN � TF . By construction, since elements
of VALID are maximal, we have that if x ∈ VALID∗ and x � y then y = x.

We define the equivalence relation ∼ that equates dual-rail words of same
length where each corresponding signals has the same nature: null, valid or faulty.
Formally, we let ∼ be defined on Σ2 by x ∼ y if and only if both x and y are
null (i.e. x, y ∈ NULL) or both x and y are valid (i.e. x, y ∈ VALID) or both
x and y are faulty (i.e. x, y ∈ FAULT). In other words, ∼ is the equivalence
relation on Σ2 such that its equivalence classes are NULL, VALID and FAULT.
We extend this definition to dual-rail words as follows: u ∼ v if and only if there
exists n ∈ N such that u = t1 · · · tn, v = t′1 · · · t′n with ∀i : ti, t

′
i ∈ Σ2 and for any

1 ≤ i ≤ n, ti ∼ t′i.
To define semantics of circuits, we define the following Boolean operators:

– ¬ is the unary operator on Σ such that ¬x = 1 if and only if x = 0.
– ∧ is the binary operator on Σ×Σ such that x∧y = 1 if and only if x = y = 1.
– ∨ is the binary operator on Σ×Σ such that x∨y = 0 if and only if x = y = 0.

4.2 Wave Dynamic Differential Logic (WDDL)

WDDL transformation process is not defined for circuits built with arbitrary
logical gates. In the following, we thus assume that the circuits to be secured
with WDDL are built over the set G = {and, not}. The transformation produces
a circuit of CG′ where G′ = {andWDDL}.

We assume the following types: TG(and) = (2, 1), TG(not) = (1, 1) and
TG′(andWDDL) = (4, 2).

We assume that the interpretation functions of these gates are defined by:

– EG(and)(a · b) := a ∧ b for a, b ∈ Σ.
– EG(not)(a) :=¬a for a ∈ Σ.
– EG′(andWDDL)(at · af · bt · bf) :=(at ∧ bt) · (af ∨ bf) for at, af , bt, bf ∈ Σ.

16

We are now ready to define the WDDL securisation process. This process is
illustrated on Figure 2.

Definition 7. We define by induction on C ∈ CG the WDDL-secured circuit
WDDL(C) ∈ CG′ by

WDDL(0) :=0

WDDL(I) := I || I
WDDL(X) :=(I ||X || I) ; (X ||X) ; (I ||X || I)
WDDL(Y) :=(Y ||Y) ; (I ||X || I)

WDDL(and) := andWDDL

WDDL(not) :=X

WDDL(C1 ||C2) := WDDL(C1) ||WDDL(C2)

WDDL(C1 ; C2) := WDDL(C1) ; WDDL(C2)

a
b

s ⇒
at
bt

af
bf

st

sf

a s ⇒ at
sfaf

st

a a ⇒ at at
af af

a

ab

b

⇒
at

at

af

af
bt

bt

bf

bf

a
a

a
⇒

at
at

ataf

af

af

P

Q
⇒

JP K

JQK
P Q ⇒ JP K JQK

Fig. 2. WDDL securisation process

The WDDL securisation process produces a well-formed circuit if and only
if the input circuit is well-formed, as stated below.

Lemma 3. Let C ∈ CG. Then
– if C : n⊗m then WDDL(C) : 2n⊗ 2m.
– if WDDL(C) : n′ ⊗m′ then there exists n and m such that C : n ⊗m and
n′ = 2n and m′ = 2m.

The following lemma states that a WDDL circuit fulfils the DPL invariants:
it propagates the NULL state and the VALID state.

17

Lemma 4. Let C ∈ CG and assume that WDDL(C) x y. Then

– if x ∈ NULL∗ then y ∈ NULL∗.
– if x ∈ VALID∗ then y ∈ VALID∗.

We prove with the following lemma that the WDDL securisation process is
sound. In other words, a WDDL secured circuit computes at least as the original
circuit.

Lemma 5. Let C ∈ CG. If C x y then WDDL(C) [x] [y].

The next lemma states the converse result: the WDDL securisation process
is complete. In other words, a WDDL secured circuit computes no more than
the original circuit on valid inputs.

Lemma 6. Let C ∈ CG. If WDDL(C) x′ y′ and x′ ∈ VALID∗ then there
exists x, y ∈ Σ∗ such that x′ = [x], y′ = [y] and C x y.

4.3 Balanced Cell-based Differential Logic (BCDL)

Contrary to WDDL, BCDL transformation process can be defined for circuits
build on top of arbitrary logical gates. We thus let G be the set of basic gates of
the circuits to be protected. We assume to have a typing function TG : G → N×N
and an evaluation function EG : G → (Σ∗ ⇀ Σ∗). The transformation process
produces a circuit of CG′ where G′ :={gBCDL | g ∈ G}∪{Un | n ∈ N}∪{ANDN}.

We assume the following types for the gates of G′. If g ∈ G and TG(g) = (n,m)
then TG′(gBCDL) = (n+ 1, 2m). The gate gBCDL corresponding to g has an extra
input that indicates whether evaluation is enabled or not and produces a dual-
rail result, thus the 2m outputs. We also assume TG′(ANDN) = (2, 1) and for
n ∈ N, TG′(Un) = (2n, 1).

Regarding the interpretation function, we assume that:

– EG′(ANDN)(a · b) :=(¬a) ∧ b for a, b ∈ Σ.
– for n ∈ N, and x ∈ Σ2n, EG′(Un)(x) := 1 if x ∈ VALIDn and EG′(Un)(x) := 0

otherwise.
– for g ∈ G, if TG(g) = (n,m) then for x ∈ Σn, EG′(gBCDL)(0 · x) := 02m and
EG′(gBCDL)(1 · x) :=[E(g)(x)].

Before defining the BCDL securisation process on whole circuits, we focus
on how a simple gate g ∈ G is secured. The idea of BCDL is that evaluation is
enabled only once every dual-rail input signal becomes valid and when global
precharge signal is low. Figure 3 shows how to achieve this. An unanimity gate Un

(circled on the figure) verifies that every dual-rail signal is valid and transmits the
result to a gate ANDN which ands this signal with the negation of the precharge
signal. The result is then transmitted to the dual-rail gate gBCDL corresponding
to g, which uses this signal to enable evaluation. Formally, for g ∈ G, we define
Cg :=(I || (unintn ; (dupn || In) ; (In || (intn ; Un)) ; rorn+1)) ; (ANDN || In) ; gBCDL.

The BCDL securisation process is defined thereafter. One difficulty that arises
when defining BCDL transformation process is the fact that a circuit only made

18

ga, b, c, . . . s̃ ⇒

at
af

bt
bf
ct
cf

...
...

pre

at, bt, ct, . . .

Tg

Fg

[s̃]

Fig. 3. Securing an arbitrary gate with BCDL

of wires (with no gates) does not need a global precharge signal. For this reason,
the BCDL transformation function returns a triple (b, n, C) where b ∈ {tt,ff}
is a boolean, n ∈ N is an integer and C a BCDL-secured circuit. The boolean
b indicates whether C has a global precharge signal. The integer n corresponds
to the number of inputs of the unsecured circuit (while we do not assume it is
well-formed).

Definition 8. We define by induction on C ∈ CG the BCDL-secured circuit
BCDL(C) ∈ CG′ by

BCDL(0) := (ff, 0,0)
BCDL(I) := (ff, 1, I || I)

BCDL(X) := (ff, 2, (I ||X || I) ; (X ||X) ; (I ||X || I))
BCDL(Y) := (ff, 1, (Y ||Y) ; (I ||X || I))

BCDL(g ∈ G) := (tt, n, Cg) if TG(g) = (n,m)

BCDL(C1 ; C2) := (tt, n1, (I ||C ′1) ; C ′2) if BCDL(C1) = (ff, n1, C′
1)

and BCDL(C2) = (tt, n2, C′
2)

:= (tt, n1, (Y || I2n1) ; (I ||C ′1) ; C ′2) if BCDL(C1) = (tt, n1, C′
1)

and BCDL(C2) = (tt, n2, C′
2)

:= (b, n1, C
′
1 ; C ′2) if BCDL(C1) = (b, n1, C′

1)

and BCDL(C2) = (ff, n2, C′
2)

BCDL(C1 ||C2) := (tt, n1 + n2, (rol2n1+1 || I2n2) ; (C ′1 ||C ′2))
if BCDL(C1) = (ff, n1, C′

1) and BCDL(C2) = (tt, n2, C′
2)

(tt, n1 + n2, (Y || I2n1+2n2) ; (I || rol2n1+1 || I2n2) ; (C ′1 ||C ′2))
if BCDL(C1) = (tt, n1, C′

1) and BCDL(C2) = (tt, n2, C′
2)

:= (b, n1 + n2, C
′
1 ||C ′2)

if BCDL(C1) = (b, n1, C′
1) and BCDL(C2) = (ff, n2, C′

2)

In the sequel, let δff := 0 and δtt := 1. The following lemma states that BCDL
securisation process produces a well-formed circuit if and only if the input circuit
is well-formed.

Lemma 7. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if C : n′ ⊗m then n = n′ and C ′ : 2n+ δb ⊗ 2m.
– if C ′ : n′ ⊗m′ then there exists m such that C : n ⊗m, n′ = 2n + δb and
m′ = 2m.

19

The next lemma states a result similar to that of Lemma 4: a BCDL circuit
propagates the NULL state when the precharge signal is high and propagates
the VALID state when the precharge signal is low.

Lemma 8. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt and BCDL(C) 1 · x y then
• if x ∈ NULL∗ then y ∈ NULL∗.
• if x ∈ VALID∗ then y ∈ VALID∗.

– if b = ff and BCDL(C) x y then
• if x ∈ NULL∗ then y ∈ NULL∗.
• if x ∈ VALID∗ then y ∈ VALID∗.

Observe in the previous lemma that precharge signal is the first input, when
the BCDL secured circuit routes such a signal (i.e. when b = tt).

We can refine this result on circuits Cg where g ∈ G as shown in the next
lemma. Hence, when precharge signal is high, Cg produces null. It also produces
null when input is not valid, whatever the state of the precharge signal is.

Lemma 9. Let g ∈ G. Then

– if Cg 1 · x y then y ∈ NULL∗.
– if Cg p · x y and x 6∈ VALID∗ then y ∈ NULL∗.

The next lemma states that a BCDL secured circuit computes at least as the
original circuit. This is a result analogous to Lemma 5.

Lemma 10. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt and C x y then C ′ 0 · [x] [y].
– if b = ff and C x y then C ′ [x] [y].

The converse result is true, as it was the case for WDDL (see Lemma 6).
However, note that in the case of BCDL, it is only sufficient to assume that
the output is valid (and not the input) as long as the original circuit does not
contain a gate g with no outputs.

Lemma 11. Let C ∈ CG such that it does not contain a gate g with no outputs
and let b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt, C ′ 0 · x′ y′ and y′ ∈ VALID∗ then there exists x, y such that
C x y and x′ = [x] and y′ = [y].

– if b = ff, C ′ x′ y′ and y′ ∈ VALID∗ then there exists x, y such that
C x y and x′ = [x] and y′ = [y].

4.4 Security properties

In this section, we will illustrate how our formalism allows us to tackle some
security properties such as glitches or early-evaluation.

20

Glitches An electronic glitch is an undesired transition that occurs before the
signal settles to its intended value. In DPL, the precharge and the evaluation
phase alternate. Thus, when switching from precharge to evaluation, input sig-
nals progressively change their value from NULL to VALID. And conversely,
when switching from evaluation to precharge, input signals progressively change
their value from VALID to NULL. This change of state is precisely modeled
by the partial order � we introduced previously (see Section 4.1). Indeed, when
switching from precharge to evaluation, input signals modeled by a word of (Σ2)∗

take different values x1, . . . , xn where x1 ∈ NULL∗, xn ∈ VALID∗ and for all
1 ≤ i < n, xi � xi+1. For instance, Figure 4 illustrates the transition of an input
signals composed of two dual-rails (at, af), (bt, bf) from the precharge phase to
the evaluation phase taking values NN � TN � TF .

t

at

af

bt

bf

NN TN TF

Fig. 4. � models transition of signals from null to valid

The next two lemmas state that WDDL as well as BCDL-secured circuits
preserves the partial order �.

Lemma 12. Let C ∈ CG.
If WDDL(C) x y, WDDL(C) x′ y′ and x � x′, then y � y′.

Lemma 13. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt then for any p ∈ Σ, if C ′ p · x p · y, C ′ p · x′ p · y′ and
x � x′, then y � y′.

– if b = ff then if C ′ x y, C ′ x′ y′ and x � x′, then y � y′.

The fact that WDDL and BCDL circuits preserve the partial order � in-
tuitively means that when input signals acquire progressively their values then
output signals also acquire progressively their values. By construction of �, this
means that once a dual-rail output signal has taken its value (in VALID), it
won’t change its value until the next switch of phase. This precisely means that
no glitches are possible.

21

Early-evaluation In order to address the problem of early-evaluation, we com-
pare the behaviour of circuits on equivalent inputs. Indeed, intuitively, a circuit
does not suffer from the early-evaluation problem if it produces the same amount
of work on equivalent inputs.

We have defined previously an equivalence relation ∼ that equate words
which have the same amount of information, i.e. in which corresponding dual-
rail signals have the same nature. For instance, on Figure 5, the pair of dual-rail
signals (at, af),(bt, bf) in scenario #1 and scenario #2 conveys the same amount
of information at time t1 since NN ∼ NN , at time t2 since TN ∼ FN and at
time t3 since TF ∼ FF .

t

at

af

bt

bf
t1

NN

t2

TN

t3

TF

(a) Scenario #1

t

at

af

bt

bf
t1

NN

t2

FN

t3

FF

(b) Scenario #2

Fig. 5. ∼ equates states where the nature of dual-rail signals is the same

The next lemma states that BCDL-secured circuit preserves the equivalence
relation ∼.

Lemma 14. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt then for any p ∈ Σ, if C ′ p · x p · y, C ′ p · x′ p · y′ and
x ∼ x′, then y ∼ y′.

– if b = ff then if C ′ x y, C ′ x′ y′ and x ∼ x′, then y ∼ y′.

On the contrary, a similar result for WDDL circuits does not hold. Indeed,
consider the WDDL circuit andWDDL. We have that andWDDL FN F ,
andWDDL TN N and FN ∼ TN . But F � N . In other words, WDDL does
not preserve ∼ as stated below.

Lemma 15. There exists C ∈ CG and x, x′, y, y′ such that WDDL(C) x y,
WDDL(C) x′ y′, x ∼ x′ and y � y′.

The problem of early-evaluation can also be seen in another manner. A DPL
circuit does not suffer from the early-evaluation problem if it produces valid
outputs only on valid inputs. It is insightful to compare Lemma 6 and Lemma 11

22

with this idea in mind. Indeed, in the case of BCDL, it is true that a BCDL-
secured circuit produces valid outputs only on valid inputs (provided it does
not contain gates with no outputs). On the contrary, this result does not hold
for WDDL-secured circuit. Indeed, consider the circuit andWDDL. Then we have
andWDDL FN F and F ∈ VALID∗. But FN 6∈ VALID∗.

Measuring activity of circuits Hitherto, we have shown how problems such
as glitches and early-evaluation effects can be detected by just looking at the
functionality of a circuit. However, this approach is not sufficient because the
principle of physical attacks is to look at the details of implementation and not
only to abstract the functionality of circuits.

For instance, the circuit of Figure 6 is a WDDL “and” gate, but the result is
conditioned by the fact that the input signals are valid. From the functionality
point of view, this circuit does not suffer from early-evaluation effect w.r.t. the
definition we suggested before: it preserves ∼ and it produces valid outputs only
on valid inputs. But this circuit is problematic because it still suffers from early-
evaluation. Indeed, the “and” and “or” gate computes whatever the nature of
the input signals and then the result is accepted or rejected depending on the
nature of the input signals. Hence, we can detect different speed of response of
the circuit depending on the input data.

at
bt

af
bf

ataf

btbf

st

sf

Fig. 6. A WDDL "and" gate with a synchronisation stage

In order to be able to compare different implementations of the same boolean
function, we propose to measure activity of circuits. We assume to have a func-
tion µG : G → Σ∗ → N which measures the activity of each gate g ∈ G, µG(g, x)
being the activity of g on input x ∈ Σ∗.

The following inductive rules define the predicate µ(C, x, n), which relates
the activity n produced by a circuit C on input word x.

x ∈ Σ∗ E(g)(x) ∈ Σ∗

µ(g, x, µG(g, x))
g ∈ G

µ(0, ε, 0) µ(I, a, 0)
a ∈ Σ

µ(Y, a, 0)
a ∈ Σ

µ(X, ab, 0)
a, b ∈ Σ

µ(P1, x1, n1) µ(P2, x2, n2)

µ(P1 ||P2, x1 • x2, n1 + n2)

µ(P1, x, n) P1 x y µ(P2, y,m)

µ(P1 ; P2, x, n+m)

23

The next lemma gives basic properties of the activity predicate.

Lemma 16. 1. If µ(P, x, n) and µ(P, x, n′) then n = n′.
2. If µ(P, x, n) then there exists y such that P x y.
3. If P x y then there exists n such that µ(P, x, n).

We now study the activity of BCDL-secured circuit. We assume that the
activity of the basic gates is such that:

– for any n ∈ N, for any x, y ∈ Σ∗, if x ∼ y then µG
′
(Un, x) = µG

′
(Un, y).

– for any g ∈ G, for any x, y ∈ Σ∗, and s ∈ Σ, if |x| = |y| then we have
µG

′
(gBCDL, s · x) = µG

′
(gBCDL, s · y).

Then a BCDL-secured circuit has a constant activity on equivalent inputs,
as stated in the next lemma.

Lemma 17. Let C ∈ CG and b, n, C ′ such that BCDL(C) = (b, n, C ′). Then

– if b = tt, then for any p ∈ Σ, for any x, x′ ∈ Σ∗ and for any k, k′ ∈ N, if
µ(C ′, p · x, k), µ(C ′, p · x′, k′) and x ∼ x′ then k = k′.

– if b = ff, then for any x, x′ ∈ Σ∗ and for any k, k′ ∈ N, if µ(C ′, x, k),
µ(C ′, x′, k′) and x ∼ x′ then k = k′.

Note that a similar result is not true for the circuit of Figure 6 if we take
for µG(g, x) the hamming weight of E(g)(x). For (at, af), (bt, bf) = FN , we
would have an activity of 2 (one “xor” gate and one “or” gate react) whereas
for (at, af), (bt, bf) = TN we would have an activity of 1 (only one “xor” gate
reacts).

5 Conclusions and Perspectives

This article has shown that the transformation from an unprotected to a side
channel attack resistant netlist can be captured formally. The scheme described
in the article allows to work on any kind of combinational circuit, unprotected or
protected. To the authors’ best knowledge, it is the first time a circuit-level coun-
termeasure is processed formally. Furthermore, our scheme can be augmented
with the verification of some properties. In particular, we formally describe the
presence of glitches and of early propagations, properties that were previously
only discussed informally or on examples in the embedded secure literature.
These properties are tested on two dual-rail logic styles, namely WDDL and
BCDL. It is shown that none have glitches, but that WDDL is flawed with early
propagation.

As a perspective, we intend to apply these results on other dual-rail styles. For
instance, SDDL [7] could be shown to be victim of both glitches and early prop-
agation. Also, some other subtle bugs could be discovered if the inner structure
of the logic gates was included in the modeling. Typically, DRSL [3] features
a data-dependent glitch happening only internally inside a gate [6]. This flaw
cannot be found in the current state of the scheme. In a nutshell, we believe the
scope of formal methods can be broadened to detect early some future security
troubles related to implementation-level attacks.

24

References

1. G. Fraidy Bouesse, Gilles Sicard, and Marc Renaudin. Path Swapping Method
to Improve DPA Resistance of Quasi Delay Insensitive Asynchronous Circuits. In
Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of Lecture Notes
in Computer Science, pages 384–398. Springer, 2006.

2. Thomas Braibant. Coquet: A coq library for verifying hardware. In Jean-Pierre
Jouannaud and Zhong Shao, editors, CPP, volume 7086 of Lecture Notes in Com-
puter Science, pages 330–345. Springer, 2011.

3. Zhimin Chen and Yujie Zhou. Dual-Rail Random Switching Logic: A Counter-
measure to Reduce Side Channel Leakage. In CHES, volume 4249 of LNCS, pages
242–254. Springer, October 10-13 2006. Yokohama, Japan, http://dx.doi.org/
10.1007/11894063_20.

4. The Coq Development Team. The Coq Proof Assistant Reference Manual Ver-
sion 7.2. INRIA-Rocquencourt, December 2001. http://coq.inria.fr/doc-eng.html.

5. Solange Coupet-Grimal and Line Jakubiec. Certifying circuits in type theory.
Formal Asp. Comput., 16(4):352–373, 2004.

6. Jean-Luc Danger, Sylvain Guilley, Shivam Bhasin, and Maxime Nassar. Overview
of Dual Rail with Precharge Logic Styles to Thwart Implementation-Level Attacks
on Hardware Cryptoprocessors, — New Attacks and Improved Counter-Measures
—. In SCS, IEEE, pages 1–8, November 6–8 2009. Jerba, Tunisia. DOI: 10.1109/IC-
SCS.2009.5412599.

7. Wei He, Eduardo de la Torre, and Teresa Riesgo. An Interleaved EPE-Immune
PA-DPL Structure for Resisting Concentrated EM Side Channel Attacks on FPGA
Implementation. In Werner Schindler and Sorin A. Huss, editors, COSADE, volume
7275 of Lecture Notes in Computer Science, pages 39–53. Springer, 2012.

8. Maxime Nassar, Shivam Bhasin, Jean-Luc Danger, Guillaume Duc, and Sylvain
Guilley. BCDL: A high performance balanced DPL with global precharge and
without early-evaluation. In DATE’10, pages 849–854. IEEE Computer Society,
March 8-12 2010. Dresden, Germany.

9. Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Imple-
mentation of Non-linear Functions in the Presence of Glitches. In ICISC, volume
5461 of Lecture Notes in Computer Science, pages 218–234. Springer, 2008. Seoul,
Korea.

10. C. Paulin-Mohring. Circuits as streams in Coq : Verification of a sequential mul-
tiplier. In S. Berardi and M. Coppo, editors, Types for Proofs and Programs,
TYPES’95, volume 1158 of Lecture Notes in Computer Science, 1996.

11. Thomas Popp and Stefan Mangard. Masked Dual-Rail Pre-charge Logic: DPA-
Resistance Without Routing Constraints. In CHES, volume 3659 of LNCS , pages
172–186, 2005. http://dx.doi.org/10.1007/11545262_13.

12. Rafael Soares, Ney Calazans, Victor Lomné, Philippe Maurine, Lionel Torres, and
Michel Robert. Evaluating the robustness of secure triple track logic through
prototyping. In SBCCI’08: Proceedings of the 21st symposium on Integrated circuits
and system design, pages 193–198, Gramado, Brazil, 2008. ACM.

13. K. Tiri and I. Verbauwhede. A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In Proceedings of DATE’2004, pages
246–251, Paris, France., February 2004.

25

A Wiring

In this section, we define several circuits that manipulate wires and are conve-
nient when defining more complex transformations.

A.1 Rotations

The right rotation −→u of a word u ∈ Σ∗ is ε if u = ε and a ·v if there exists a ∈ Σ
and v ∈ Σ∗ such that u = v • a. Similarly, the left rotation ←−u of a word u ∈ Σ∗
is ε if u = ε and v • a if there exists a ∈ Σ and v ∈ Σ∗ such that u = a · v.

Clearly, we have for any word u ∈ Σ∗ that
←−−→u =

−→←−u = u, i.e. left and right
rotation on words are inverse operations. Moreover, rotations preserve length,
i.e. for any u ∈ Σ∗, |←−u | = |−→u | = |u|.

We define by induction on n ∈ N the circuit rorn by (1) ror0 :=0, (2) ror1 := I,
and (3) rorn+2 :=(In ||X) ; (rorn+1 || I) for n ∈ N.

The next lemma states that the circuit rorn implements right rotation of
words of length n.

Lemma 18. Let n ∈ N. Then

– rorn : n⊗ n, and
– for all x, y ∈ Σ∗, rorn x y if and only if |x| = n and y = −→x .

Similarly, we define by induction on n ∈ N the circuit roln by (1) rol0 :=0,
(2) rol1 := I, and (3) roln+2 :=(roln+1 || I) ; (In ||X) for n ∈ N.

The next lemma states that the circuit roln implements left rotation of words
of length n.

Lemma 19. Let n ∈ N. Then

– roln ; rorn ≡ rorn ; roln ≡ In,
– roln : n⊗ n, and
– for all x, y ∈ Σ∗, roln x y if and only if |x| = n and y =←−x .

A.2 Interleaving

The interleaving u 9 v of two words u, v ∈ Σ∗ of the same length is defined by
induction on u and v by (1) ε 9 ε := ε, and (2) (a · u) 9 (b · v) := ab(u 9 v).

We define by induction on n ∈ N the circuit intn by (1) int0 :=0 and (2)
intn+1 :=(I || rorn+1 || In) ; (I || I || intn).

The next lemma states that the circuit intn interleaves two ribbons of n wires.

Lemma 20. Let n ∈ N. Then

– intn : 2n⊗ 2n, and

26

– for all x, y ∈ Σ∗, intn x y if and only if there exists u, v ∈ Σ∗ such that
x = u • v and |u| = |v| = n and y = u 9 v.

We define by induction on n ∈ N the circuit unintn by (1) unint0 :=0 and
(2) unintn+1 :=(I || I ||unintn) ; (I || roln+1 || In).

The next lemma states that the circuit unintn deinterleaves a ribbon of 2n
wires.

Lemma 21. Let n ∈ N. Then

– intn ; unintn ≡ unintn ; intn ≡ I2n,
– unintn : 2n⊗ 2n, and
– for all x, y ∈ Σ∗, unintn x y if and only if there exists u, v ∈ Σ∗ such

that y = u • v and |u| = |v| = n and x = u 9 v.

A.3 Duplication

We define by induction on n ∈ NN the circuit dupn by (1) dup0 :=0, and (2)
dupn+1 :=(Y ||dupn) ; (I || roln+1 || In).

The next lemma states that the circuit dupn duplicates a ribbon of n wires.

Lemma 22. Let n ∈ N. Then

– dupn : n⊗ 2n, and
– for all x, y ∈ Σ∗, dupn x y if and only if |x| = n and y = x • x.

27

Formal verification of an implementation of
CRT-RSA Vigilant’s algorithm

Maria Christofi2,3, Boutheina Chetali1, Louis Goubin3, David Vigilant2

1Trusted Labs SAS - 5, rue du bailliage - 78000 Versailles - France
2Gemalto - 6, rue de la Verrerie - 92447 Meudon sur Seine - France

3Versailles Saint-Quentin-en-Yvelines University
{maria.christofi, david.vigilant}@gemalto.com,

boutheina.chetali@trusted-labs.com, louis.goubin@uvsq.fr

Abstract. Cryptosystems are highly sensitive to physical attacks, which
leads security developers to design more and more complex countermea-
sures. Nonetheless, no proof of flaw absence has been given for any imple-
mentation of these countermeasures. This paper aims to formally verify
an implementation of one published countermeasure against fault injec-
tion attacks. More precisely, the formal verification concerns Vigilant’s
CRT-RSA countermeasure which is designed to sufficiently protect CRT-
RSA implementations against fault attacks. The goal is to formally verify
whether any possible fault injection threatening the pseudo-code is de-
tected according to a predefined attack model.

Keywords: fault attacks, frama-C, countermeasure, cryp-
tographic implementation, formal verification, RSA

1 Introduction

Cryptographic implementations may be subject to physical attacks that disturb
the execution of the embedded code. These attacks aim to disclose sensitive in-
formation or to force malicious behavior of the attacked code. To protect the
implementations against this kind of attacks, countermeasures are designed, im-
plemented and tested using several attack scenarios. To increase the level of
confidence in the correctness of the countermeasure implementation, specific
procedures of code review and cross-review are used. This “manual” verifica-
tion procedure is itself error prone, and in some case its degree of exhaustivity
depends on the time-to-market of the product.

The aim of this work is to provide the crypto-developer with a verification
procedure which will improve the current process of correctness of the counter-
measure with more automation and confidence. An implementation verification
procedure can be seen as a procedure which takes as input an implementation
(or a pseudo-code) with the corresponding countermeasure and outputs a “yes”
or “no” answer. A “yes” answer means that the set of countermeasures present
in the code is efficient enough to detect every possible attack scenario, according
to a predefined attack model for the considered implementation, while a “no”

28

answer means that the developer has to improve this set in order to include the
missing scenarios.

To the authors’ knowledge, the formal verification of implementations of
countermeasures has not really been the subject of research until now. Several
works have been done on the formal verification of cryptosystems, but generally
focused on the correctness of the cryptographic protocol with respect to its
specification (like [2]) and more recently to its implementation.

Indeed such verification increases confidence in the cryptographic implemen-
tation and excludes flaws due to the weaknesses of the countermeasures.

The goal of this work is to demonstrate the robustness of the countermeasure
with respect to a given attack model. For that, a classical approach consists in
proving that an abstract model of the implementation with its countermeasure
verifies a set of properties. Then using one of the existing approaches (empirical
method, code generation, computational method) to convince the developer that
the verified abstract model is a correct abstraction of the original code. The
approach we take is to follow the developer view, using the source code of the
cryptosystem with its countermeasures. For that, we will use a static analysis
based tool which takes the pseudo-code as an input to the formal verification.
Moreover, we will focus on a well-known cryptosystem, RSA, and more precisely
the algorithm associated to Vigilant’s countermeasure provided in [23].

Attacks based on information gained from the physical implementation of a
cryptosystem, other than brute force or theoretical weaknesses in the algorithms,
are called side channel attacks. Attacks are typically distinguished in passive
(such as timing information, power consumption and electromagnetic leaks) and
active (such as fault injection) attacks.

This paper considers only fault injection attacks and more precisely single
fault injection attacks, i.e. attack scenarios where only one fault is injected.

Structure of the paper

In Sect. 2, fault attacks and some of the CRT-RSA countermeasures are re-
minded. Then the general idea of Vigilant’s countermeasure is briefly presented
in Sect. 3. Section 4 describes our methodology to formally verify an implemen-
tation of a countermeasure and then Sect. 5 presents the formal verification of
the pseudo-code of Vigilant’s countermeas ure as well as its results.

2 Fault attacks and countermeasures on CRT-RSA

This Section is a short introduction to fault injection attacks, and especially
attacks targeting the CRT-RSA algorithm.

2.1 Fault injection attacks

Fault attacks consist in tampering with a device in order to have it perform some
erroneous operations, hoping that the result of that erroneous behavior will leak
information about the involved secret parameters.

29

The fault attacks in a specific code can be seen either as modifications of a
specific variable or as modifications of code instructions (including modifications
on the execution flow and logical level modifications). The former one concerns
attacks that aim to trouble on the value of a register, while the later one concerns
attacks on the instructions of the code. In [4], Bar-El and al. present various
methods to induce faults and exploit such errors, and give several examples of
both attacks and countermeasures.

Modifying a variable with a fault injection can be seen as adding new in-
structions that assign an arbitrary value to this variable. In the same vein, mod-
ifications of code instructions are simulated by a goto instruction. Formalizing
modifications of instructions requires the formalization of the program execu-
tion, and this will be part of a future extension of this work. However, a first
attempt to modelize thin kind of modifications, and especially the jump attacks,
one can find in [6].

The methodology proposed in Sect. 4 aims to guarantee the validity of a coun-
termeasure pseudo-code where the effect of the attack is the value modification
of a variable.

Therefore, the level of the details provided in the pseudo-code is relevant with
respect to the formalism. For example, the result of a formal verification can be
different for a pseudo-code where the smallest manipulated variables are large
integers, compared to a pseudo-code where the smallest variables are arrays of
bits (or words) in a lower-level implementation. Indeed, the second pseudo-code
would contain more steps including all multi-precision integers operations. And
these extra steps would represent more locations for fault injections. Therefore
the formal verification should be applied to a pseudo-code as fine as possible, in
order to give the best confidence.

A fault can then be characterized by different aspects, like the number of
affected bits, but also error location, time of occurrence and persistence. The
different fault models are summarized in Table 1.

Precise Bit Single Bit Byte Random Arbitrary
Fault Model Fault Model Fault Model Fault Model Fault Model

control on complete loose loose loose loose/no
location (chosen bit) (chosen variable)

control on precise no no no no
timing

number of 1 1 8 random random
affected bits

fault type bit set or reset bit flip random random unknown

persistence permanent permanent permanent permanent permanent
and transient and transient and transient and transient and transient

Table 1. Fault models

30

2.2 Countermeasures on CRT-RSA

Focusing now to the CRT-RSA algorithm, as a signing procedure and some
already known countermeasures used to protect it.

Let N = p · q be a product of two large prime numbers. To sign a message
m, one first computes Sp = md mod p and Sq = md mod q and then uses the
Chinese Remainder Theorem (CRT) to build the signature S = md mod N
(this is done by computing S = (Sp · q · (q−1 mod p) + Sq · p · (p−1 mod q))
mod N).

CRT-RSA is especially susceptible to software or hardware errors. Boneh,
DeMillo and Lipton were the first to present a fault attack on RSA in both
standard and CRT mode [7]. In the case of the CRT-RSA algorithm, if a fault is
induced during the computation of Sp (respectively Sq), then an erroneous value
S′p (resp. S′q) is used during the CRT-recombination leading to an erroneous
signature S′. As S ≡ Sp mod p and S ≡ Sq mod q, we now have S′ ≡ S mod q
(resp. S′ ≡ S mod p), but S′ 6≡ S mod p (resp. S′ 6≡ S mod q). Therefore, if
p - (S − S′) then the secret parameter q can be easily obtained by computing
gcd(S − S′, N). The other secret parameters of the private key p, dp(= e−1

mod (p − 1)), dq(= e−1 mod (q − 1)), iq(= q−1 mod p) can then easily be
computed.

An improvement of this attack comes later on by Lenstra in [19]. He claims
that if a fault is induced during the computation of Sp then S′e ≡ m mod q but
S′e 6≡ m mod p. Therefore the secret parameter q can be obtained by computing
gcd(S′e − m,N). The advantage of this attack comparing to the previous one
is that now only one execution of the cryptographic algorithm is required to
recover the private key.

However, for the above attacks, the attacker needs to know the whole mes-
sage. Some efforts have already been done for attacks without the need of know-
ing it. As for example, the one of Coron and al. in [12].

An obvious countermeasure against these attacks is to verify the signature
by using the public key (e,N). Usually e is small (for example 216 + 1), but this
method may be very costly when e is large as it implies a second exponentiation.
Moreover, the public exponent is not always available.

Since the publication of this attack, a large variety of countermeasures have
been published in the field. The first method was proposed by Shamir in [22].
Shamir suggests to choose a small integer r, then compute Spr = md mod pr
and Sqr = md mod qr and ensure the integrity of these two exponentiations
by testing whether Spr ≡ Sqr mod r before combining Spr and Sqr with the
CRT formula. However, Aumüller and al. in [3] show that this method does
not protect the CRT recombination and propose an implementation that also
protects the CRT recombination. As opposed to Shamir’s method, only dp and
dq (and not d) are required. This solution gives good performance, as comparing
to the classical CRT-RSA implementation, only two extra exponentiations and
a few modular reductions are required. The main disadvantage of this method:
it requires an extra prime parameter. There are already many improvements of
Shamir’s method, such as the one proposed by Vigilant in [23]. After some flaws

31

discovered, [11] presents an improvement of this algorithm giving two possible
attacks and the corresponding countermeasures. The first attack concerns a fault
that changes the last “mod N” operation, while the second one concerns the way
that p − 1 (resp. q − 1) is computed/stocked. The first attack does not apply
to the case of our model (due to the impossibility of implementing a “mod 0”
operation, see later on for more details about the model used). The second attack
demands a different implementation than the one presented in [23]. As said in
Sect. 1, the results of our method are specific to the implementation verified
and can be different for different implementations of the same algorithm. As we
want to verify the original implementation of [23], this paper verifies Vigilant’s
algorithm as described in [23] against fault attacks.

Another protection has been proposed by Giraud in [15] in which the fault
detection comes from the exponentiation algorithm. Actually, by using the Mont-
gomery powering ladder to compute md mod N , both values md mod n and
md−1 mod N are available at the end of the computation. These values can
then be used to verify the integrity of the exponentiation. In [8], Boscher and
al. also proposed a countermeasure where the detection comes from another ex-
ponentiation algorithm. Finally, Rivain proposed a detection method based on
addition chains in [21].

Examples of pseudo-codes for implementing the countermeasures were only
provided by Aumüller and al. in [3] and by Vigilant in [23]. This paper studies
the pseudo-code provided by Vigilant.

3 Vigilant’s CRT-RSA countermeasure

Vigilant’s countermeasure is a method to protect a modular exponentiation
against fault attacks. This method can be efficiently used for protecting CRT-
RSA on embedded devices, since it does not require the public exponent, neither
precomputation, nor extra parameters.

Protecting an exponentiation S = md mod N against fault attacks consists
in computing md mod N in ZN ·r2 where r is a small random integer co-prime
with N . The message m is transformed into m′ such that:

m′ ≡
{

m mod N
1 + r mod r2

This implies that

S′ = m′
d

mod Nr2 ≡
{

md mod N
1 + d · r mod r2

So, a consistency check of the result S′ can be performed modulo r2 from d and
r. If the verification S′ mod r2 = 1 + d · r mod r2 is successful, then the final
result S = S′ mod N is returned.

This secure exponentiation can be applied to RSA with CRT. The principle
is to perform two exponentiations modulo p · r2 and q · r2 (so we obtain Sp and

32

Sq respectively) and then perform a final consistency check after recombination,
guaranteeing that no error occurred during the computation of Sp or Sq and
during the recombination.

Algorithm 1 presents the pseudo-code of Vigilant’s implementation as pro-
vided in [23].

Algorithm 1 Vigilant’s CRT-RSA implementation code

1: Input: message m, e, key (p, q, dp, dq, iq)
2: 32-bit random integer r
3: 64-bit random integers R1, R2, R3, R4

4: Output: signature S = md mod N

5: p′ = p · r2
6: mp = m mod p′

7: ipr = p−1 mod r2

8: βp = p · ipr
9: αp = (1− βp) mod p′

10: m̂p = (αp ·mp + βp · (1 + r)) mod p′

11: if (m̂p 6= m mod p) then return error
12: d′p = dp +R1 · (p− 1)

13: Spr = m̂
d′p
p mod p′

14: if (d′p 6= dp mod (p− 1)) then return error
15: if (βp · Spr 6= βp · (1 + d′p · r) mod p′) then return error
16: S′p = Spr − βp · (1 + d′p · r)−R3

17: q′ = q · r2
18: mq = m mod q′

19: iqr = q−1 mod r2

20: βq = q · iqr
21: αq = (1− βq) mod q′

22: m̂q = (αq ·mq + βq · (1 + r)) mod q′

23: if (m̂q 6= m mod q) then return error
24: if (mp mod r2 6= mq mod r2) then return error
25: d′q = dq +R2 · (q − 1)

26: Sqr = m̂
d′q
q mod q′

27: if (d′q 6= dq mod (q − 1)) then return error
28: if (βq · Sqr 6= βq · (1 + d′q · r) mod q′) then return error
29: S′q = Sqr − βq · (1 + d′q · r)−R4

30: S = S′q + q · (iq · (S′p − S′q) mod p′)
31: N = p · q
32: if (N · [S −R4 − q · iq · (R3 −R4)] 6= 0 mod Nr2) then return error
33: if (q · iq 6= 1 mod p) then return error
34: return S mod N

This implementation has many advantages:

33

– no need of special hypotheses for r. However, in [23] we can find some rec-
ommendations about r, such that iq 6= 0 mod r, r should be odd, at least a
32-bit random integer and as large as possible

– no precomputation is needed
– only p, q, dp, dq, iq, and m are needed for the calculation

4 Formal verification of implementations of
countermeasures

The aim of this work is to formally verify the resistance of the pseudo-code
described in Algorithm 1 against fault attacks. The goal is to build a formal en-
vironment that will allow the cryptographic engineer to introduce his secure code
and check the validity of his countermeasure. The main steps of the verification
procedure to follow are:

1. define the implementation that we want to verify with the corresponding set
of countermeasures

2. choose a fault model
3. simulate every possible injected fault with respect to this fault model
4. inject this fault model to the original source code implementation
5. model the property corresponding to the verification
6. use a tool to generate some proof obligations corresponding to the property

to prove
7. prove these obligations (either automatically or using a proof assistant)

For the verification part of our work, we use a static analysis based tool,
named frama-C [14], that will allow to perform an analysis of the source code
without executing it. The source code will then correspond to the implementation
of the cryptosystem with its countermeasures along with a simulation of the
chosen fault model.

4.1 Frama-C

Frama-C [14] is an open source extensible platform dedicated to source code
analysis of C software. The frama-C platform gathers several static analysis
techniques into a single collaborative extensible framework. The collaborative
approach of frama-C allows static analyzers to build upon the results already
computed by other analyzers in the framework.

In addition, frama-C verifies some “safety properties” like the division by
zero or loop’s termination and correctness.

One of the advantages of frama-C, against other tools of static analysis or
even bug-finding tools, is that it allows its user to manipulate functional specifi-
cations, and to prove that the source code satisfies these specifications written in
a dedicated language ACSL [1] (ANSI/ISO C Specification Language, a behav-
ioral specification language for C programs). ACSL is a language of annotations,
threatened as standard comments by the C compiler, that allows the user to

34

express the above specifications in such a way that they do not affect a normal
execution of the implementation but they are verified by frama-C.

Frama-C is a plugin system. In order to perform a verification, we use Jessie
[17], the deductive verification plugin of C programs annotated with ACSL. It
uses internally the languages and tools of the Why platform [24] 1. The Jessie
plugin uses Hoare-style [16] weakest precondition computations to formally prove
ACSL properties. The generated verification conditions can be submitted to
external automatic provers such as Simplify, Alt-Ergo, Z3, CVC3.

For more complex situations, interactive theorem provers, like Coq, PVS,
Isabelle/HOL, can be used to establish the validity of the verification conditions.

The aim of the work presented in this paper is the verification of a C code
including a cryptographic implementation and a simulation of all possible fault
attacks. For this, Jessie needs as input this transformed code and outputs the
proof obligations to verify using an automatic or an interactive prover. The user
is then free to exploit these results.

4.2 Fault model

As this is a first attempt to formally verify a cryptographic implementation, we
have chosen a quite simple fault model which is still realistic, but different from
the one described in [23]. The two models are clearly not equivalent. However,
the verification procedure is still the same for other models and it will be part
of our future work.

In the original fault model, the attacker can:
– inject only one fault per execution
– modify a value in memory obtaining a totally random result uncorrelated to

the original value (known as permanent fault)
– modify a value when it is handled in local registers, without modifying the

global value in memory. The handled value obtained is fully random from
the attacker point of view and uncorrelated to the original value (known as
transient fault)

but the attacker cannot:
– modify the code execution. Processor instructions cannot be replaced or

removed while executing code
– inject a permanent fault in the input elements, the message m or the key

(p, q, dp, dq, iq)
– change the boolean result of a conditional check. An expression “if a = b”

has a result true or false that cannot be modified.
Our fault model is based on the above with three differences. We consider that
the attacker :
– can modify the value in memory but by only setting the value to 0 (in the

case of the pseudo-code, this corresponds to set the whole variable to 0)

1 WHY is a general-purpose verification condition generator, which is used as a back-
end by other verification tools but which can also be used directly to verify programs.
WHY produces verification conditions from annotated programs given as input.

35

– can inject a permanent fault in the input elements, the message m as well
as the key (p, q, dp, dq, iq)

– cannot inject a fault in m at the very beginning (i.e. before line 1 of the
Algorithm 1) of the implementation.

4.3 Fault injection simulation

Once the fault model is chosen, it must be injected in the initial code of the
implementation. This simulation consists in setting the value of the “attacked”
variable to 0, for every possible fault. Obviously such a modeling creates a lot
of cases to verify. The number of the cases increases according to the number of
the code instructions and the variables used in it. Thus, for codes that describe
real cryptographic implementations, this modeling may become very huge and
so, quite inefficient.

For that we introduce an optimization by defining some equivalence classes
between attacks that have the same effects. To do so, we use the notions of read
and write for any variable used in the code. The general idea is to characterize
every line of the original code by a read, write, read/write, ∅ type according
to the actions occurred to the variables appeared in it. The read (resp. write)
type means that the considered code line reads (resp. writes) the variable. The
read/write type means that the code line performs a read and a write operation
(as for example, for the variable var in the instruction var = var + 1). The ∅
means that no operation is performed concerning this variable. Let Type(var,i)
define the characterization of the variable var on line i.

We then determine the next use of a variable var with the help of the following
definition.

Definition 1. Let consider that we start our analysis from the line i, NextType
(var, i) is the next found typed line using var and is defined as follows:

NextType (var, last) = ∅

NextType(var, i) =

{
Type(var, i) , if Type(var, i) 6= 0
NextType(var, i + 1) , otherwise

where last is the last line of the source code.

The different types are illustrated in a simple example in Table 2.

Attacks on code with sequential control flow. To simplify, let’s first
focus to a code without any loops nor conditionals. For such a code, the equiv-
alence classes correspond to the minimal code to verify in order to ensure a
security property. In fact, the class of the original source code includes all the
attacked codes for which the attack is useless. Formally, we have:

Lemma 1. If NextType(var, i) ∈ {write, ∅}, then an attack on var injected
at line i is useless and equivalent to the original source code.

36

1: int example(int a, int b){
2: int x = 0; // Type (x,2) = write On line 2, the use of x is of type

“write”.
3: a = a + 1; // Type (a,3) = read/write On line 3, the use of a is of type

“read” and “write”.
// NextType (x,3) = write On line 3, the next use of x is of

type “write” (on line 4).
// NextType (a,3) = read On line 3, the next use of a is of

type “read” (on line 4).
4: x = a + b; // NextType (x,4) = ∅ On line 4, there is no next use of x.
5: }

Table 2. Code example

Obviously, if the next use of var is “write”, the operation performed will have
no effect to the value of var stored in memory. Contrary to the cases that the
next use of var is “read” or “read/write” where the following lemma is applied:

Lemma 2. If NextType(var, i) ∈ {read, read/write} and j the line that rep-
resents the next use of the variable var, then an attack on var injected at the
interval [i, j] has exactly the same effect on var than an attack injected at line
j, but has no effect between lines i and j − 1.

The aim of these two lemmas is to separate the useful attacks from the useless
ones, i.e. the attacks that have an effect on the code from the ones that have no
effect. It reduces the number of the attacks so that only useful attacks are kept.
These two lemmas are summarized to the following theorem (we recall that for
the moment we have a code with no loop and no conditionals):

Theorem 1. If there are n read and read/write operations on the code for one
variable, the minimal number of faults with different effect for this variable is
n + 1 (i.e. one attack for every read and read/write operation plus the original
code-without faults injection).

Attacks on code with conditionals and loops. Let us now consider the
case of a source code with conditionals and loops. The type of any line can be
defined in the same way as for any other line of a non conditional code, thus
Lemma 1 remains valid.

We first deal with the conditional instructions (an if-then-else structure).
This part of code can be decomposed in three parts: the condition, the then-
block and the else-block (which can be empty). It is possible to inject attacks at
either the condition or the then/else-block.

As in the case of code with sequential control flow, we inject an attack before
any read operation of every variable.

However, as we want to minimize the number of injected attacks, if no read
operation happens during the if-condition and a read operation happens in both
the then and the else block, instead of injecting an attack at both correspond-
ing lines, we can inject an attack before the if-condition when no operation is

37

performed between the if-condition and both these reads. An example is given
in Fig. 1. This can be done only in the case of fault models where the fault is
always of the same nature. An example of this kind of fault model is the one
studied in this paper, which consists on setting a value to 0. An example of fault
model that we cannot apply this optimization is the fault model which sets a
value to a random value. This is because every fault injection can correspond to
another random value.

1: int example if(int x, int y){
2: if (y > 0) // condition
3: {y = x; } // then-block
4: else y = −x; // else-block
5: return y;
6: }

Fig. 1. Code example with conditionals (considering attacks on variable x). For the
fault model consisting on setting a value on 0, instead of injecting two attacks in both
lines 3 and 4, we can inject one and only attack in line 2.

In the same vein, for the loop instructions, we inject an attack before any
read operation of every variable.

4.4 Adding the fault model to the implementation

Before starting the verification, the simulated fault model will be added to the
original code. For that, an additional variable is used, named f , which represents
the faults. All possible attacks are finally introduced in such a way that this part
of code will be executed once the corresponding simulated attack occurs.

As an example, one can see Figure 2. In this example, a fault consists on
setting the value of a variable to 0. The lines 1, 6, 11 and 12 of the transformed
code are equivalent to the initial code, while both the lines 3 and 8 represent
attacks to the variable x, and lines 4 and 9 attacks to the variable y. Lines 2 to
5 describe all possible attacks for the instruction at the line 6, while lines 7 to
10 describe all possible attacks for the return statement at line 11.

Similarly, all possible attacks (w.r.t. the fault model) can be simulated and
induced into the original code. Currently, the process of generating automatically
the simulation into the original code is a work in progress.

4.5 Modeling the main property

The goal of the verification is to prove, for a given implementation, the validity
of a set of countermeasures with respect to a set of attacks (for a given attack
model). In other words, given an implementation and a set of countermeasures,

38

1: int example(int x, int y, int f){

2: x = y;

3: return x;
4: }

(a) initial code

1: int example(int x, int y, int f){
2: switch(f){
3: case 1 : x = 0; break;
4: case 2 : y = 0; break;
5: }
6: x = y;
7: switch (f) {
8: case 3: x = 0; break;
9: case 4: y = 0; break;
10: }
11: return x;
12: }

(b) transformed code

Fig. 2. An example of a fault injection in the code

we want to prove whether any attack by fault injection (w.r.t. the attack model)
is detected (an error flag is raised).

For the fault model studied in this paper, this means that the output of any
execution of the given code is either the expected result or the error flag. As we
cannot know in advance the expected result, we have to express it in terms of a
function using the entry variables. The property to prove is then summarized to
the Theorem 2.

Theorem 2. Let f ∈ {0} ∪ F , where F is the set of faults for the current im-
plementation and f = 0 the original execution of the implementation (without
injected faults). Let also res be the output of the implementation, x1, ..., xn be
the n variables of the input of the implementation and g a function. Then :

[(f = 0)⇒ (res = g(x1, ..., xn))] AND [(∀f ∈ F)⇒ (res = ERROR)]

When the output is the error flag, it means that the countermeasures are
robust in the sense that they detect any fault injection (according to the model).

5 Formal verification of the pseudo-code of Vigilant’s
countermeasure

The following section describes the use of the presented approach to the pseudo-
code of Vigilant’s countermeasure. The verification is based on the procedure
described in Sect. 4.

As described in Sect. 4.2, the fault model we use is the following:
An attacker can:
– inject only one fault per execution
– modify the value in memory by setting the value to 0
– inject both transient and permanent faults to any variable

39

but (s)he cannot:
– modify the code execution
– inject a fault in m at the very beginning (that is before line 1 of the Algo-

rithm 1) of the implementation.
– inject a fault in S at the very end (i.e. after line 31 of the Algorithm 1) of

the implementation
– change the boolean result of a conditional check. An expression “if a = b “

has a result true or false that cannot be modified.
For the pseudo-code of Vigilant’s CRT-RSA algorithm presented in [23], un-
der the above assumptions and using the procedure described in this paper, 95
possible faults are obtained. These faults are presented in the Appendix A.

Some additional hypotheses have to be made:
– m mod p 6≡ 0 and m mod q 6≡ 0
– r is odd and iq 6≡ 0 mod r as it is recommended in [23]
– gcd(p, r2) = 1 and gcd(q, r2) = 1, for the efficiency of the computation of ipr

and iqr respectively
Once every possible fault is injected using the method described in Sect. 4

and with respect to the above fault model, we call the frama-c platform with
the jessie plugin to run the verification procedure of the property of Theorem 2.

The results of this verification indicate some cases of faults (the underlined
cases in Algorithm 2 of Appendix A) that are not detected by the given coun-
termeasures.
“Sensitive” cases are separated in three main categories:
– The first category contains cases with success probability one (that means

that such a fault will never be detected). These cases (cases 19, 36, 60 and
77 in Algorithm 2) correspond to faults on the random values R1, R2, R3

and R4 and concern the randomization of some variables. In these cases,
the output is the real signature and no information about the secret values
is obtained. Hence, these cases are of a real interest as we can expect the
same behavior whenever a random value appears. However, whenever we
obtain the valid signature, the attacks presented in Sect. 2.2 are no more
applicable. (Depending on the fault model this can give some information to
the attacker about the attacked variable)

– The second (and the bigger) one contains cases with a weak success proba-
bility. (Noting |x| the size of x)

- For the cases 6, 8, 13, 27, 29, 33, 34, 41, 44, 46, 51, 68, 70, 74, 75, 79,
82, 87, 88 and 91, the probability that an injected fault is undetectable
is 2−2|r|+1.

- For the cases 22, 28 and 32, this probability is 2−(|p
′|−1)ln2.

- For the cases 63, 69 and 73, this probability is 2−(|q
′|−1)ln2.

We notice here that frama-C tool cannot manipulate probabilities. The prob-
abilities mentioned here are manually calculated (see Appendix B for more
details).

– The last category contains cases with a high success probability (in this case
1) and where the output is a faulty signature. These are the most dangerous
cases as we can extract information about the secret values. These cases

40

are: 18 and 59 and correspond to permanent faults on dp and dq during the
computation of d′p and d′q respectively. In case 18 (respectively 59), we obtain
a faulty signature modulo p (resp. modulo q) and the right one modulo q
(resp. modulo p). So it will be easy for the attacker to compute q (resp. p)
and then the other secret parameters. Indeed as already said, our fault model
allows permanent faults on dp and dq, contrary to the original fault model.
This fault model difference is of prime importance for our results here.

6 Related work

To our knowledge, the use of frama-C for the verification of countermeasures is
novel, but other uses of frama-C already exist. In [13], one can find the results of
a formal verification of source code of a model of automaton in SAM language
and its C language implementation, obtained using frama-C and Caveat. In [9],
one can find a formal proof of correctness of the key commands of the SCHUR
software, which is an interactive program for calculating with characters of Lie
groups and symmetric functions. Another example of a use of frama-C is [5]
which is about verification of some interval security properties for smart card C
codes using value analysis.

Other verification techniques, such as model checking, are also quite common
to verify temporal properties in programs. In [18], such a verification concern-
ing safety properties can be found, while in [10], one can find the results of a
verification of a real system using MOPS - a tool for software model checking
security-critical applications-. Although model checking is fully automated, it
is limited to simple implementations due to the exhaustive exploration of the
model.

Another remarkable effort on verifying programs with the presence of faults
is made in [20] (thank to the anonymous reviewer for this citation), where the
authors have developed a new logic for reasoning about faults.

7 Conclusion and perspectives

Vigilant’s countermeasure is a countermeasure protecting modular exponenti-
ations against fault attacks that was applied to CRT-RSA. In this paper, we
have presented the results of the formal verification of the resistance of the
pseudo-code provided in [23] against fault attacks, with respect to the fault
model described above.

The obtained results are very promising. The approach has been developed
with a simple fault model. The goal now is first to evaluate the pertinence of this
fault model with the crypto-developers. Then, we plan to extend this method
to other fault models and to double fault attacks. This work will continue along
with experimentations on other cryptographic countermeasures. More practical
steps are also planned, such as improving the automation in order to provide
crypto-developers with a full validation environment.

41

Acknowledgments: The authors would like to thank Pascal Paillier for his useful
contribution to this work.

References

1. ACSL. http://frama-c.com/acsl.html.
2. Mihhail Aizatulin, François Dupressoir, Andrew D. Gordon, and Jan Jürjens. Ver-

ifying Cryptographic Code in C: Some Experience and the Csec Challenge. In
Formal Aspects of Security and Trust - 8th International Workshop, FAST 2011,
Leuven, Belgium, September 12-14, 2011. Revised Selected Papers, volume 7140 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2012.

3. Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-Pierre
Seifert. Fault Attacks on RSA with CRT: Concrete Results and Practical Coun-
termeasures. In CHES, volume 2523 of Lecture Notes in Computer Science, pages
260–275. Springer, 2003.

4. Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whe-
lan. The sorcerer’s apprentice guide to fault attacks. IACR Cryptology ePrint
Archive, 2004:100, 2004.

5. P. Berthomé, K. Heydemann, X. Kauffmann-Tourkestansky, and J.-F. Lalande.
Attack model for verification of interval security properties for smart card C codes.
In Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, PLAS ’10, pages 2:1–2:12, New York, NY, USA, 2010.
ACM.

6. Pascal Berthomé, Karine Heydemann, Xavier Kauffmann-Tourkestansky, and
Jean-François Lalande. Simulating physical attacks in smart card C codes: the
jump attack case. In e-Smart, 2011.

7. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptology, 14(2):101–119,
2001.

8. Arnaud Boscher, Robert Naciri, and Emmanuel Prouff. CRT RSA Algorithm
Protected Against Fault Attacks. In WISTP, volume 4462 of Lecture Notes in
Computer Science, pages 229–243. Springer, 2007.

9. Franck Butelle, Florent Hivert, Micaela Mayero, and Frédéric Toumazet. Formal
Proof of SCHUR Conjugate Function. In AISC/MKM/Calculemus, volume 6167
of Lecture Notes in Computer Science, pages 158–171. Springer, 2010.

10. Hao Chen, Drew Dean, and David Wagner. Model Checking One Million Lines of
C Code. In NDSS. The Internet Society, 2004.

11. Jean-Sébastien Coron, Christophe Giraud, Nicolas Morin, Gilles Piret, and David
Vigilant. Fault Attacks and Countermeasures on Vigilant’s RSA-CRT Algorithm.
In FDTC, pages 89–96. IEEE Computer Society, 2010.

12. Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Fault attacks against
emv signatures. In CT-RSA, volume 5985 of Lecture Notes in Computer Science,
pages 208–220. Springer, 2010.

13. Stéphane Duprat, Pierre Gaufillet, Victoria Moya Lamiel, and Frdric Passarello.
Formal verification of SAM state machine implementation. In Embedded Real Time
Software and Systems (ERTS’10), 2010.

14. frama-c. http://frama-c.com/.
15. Christophe Giraud. An RSA Implementation Resistant to Fault Attacks and to

Simple Power Analysis. IEEE Trans. Computers, 55(9):1116–1120, 2006.

42

16. C. A. R. Hoare. An axiomatic basis for computer programming (reprint). Commun.
ACM, 26(1):53–56, 1983.

17. Jessie. http://krakatoa.lri.fr/#jessie.
18. Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Formal

Methods in System Design, 19(3):291–314, 2001.
19. Arjen Lenstra. Memo on RSA signature generation in the presence of faults.

manuscript, 1996.
20. Matthew L. Meola and David Walker. Faulty logic: Reasoning about fault tolerant

programs. In Programming Languages and Systems, 19th European Symposium
on Programming, ESOP 2010, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-
28, 2010. Proceedings, volume 6012 of Lecture Notes in Computer Science, pages
468–487. Springer, 2010.

21. Matthieu Rivain. Securing RSA against Fault Analysis by Double Addition Chain
Exponentiation. IACR Cryptology ePrint Archive, 2009:165, 2009.

22. Adi Shamir. Improved method and apparatus for protecting public key schemes
from timing and fault attacks. Patent number: WO9852319, 1998.

23. David Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart Fault
Attacks. In CHES, volume 5154 of Lecture Notes in Computer Science, pages
130–145. Springer, 2008.

24. Why. http://why.lri.fr/.

43

A Vigilant’s CRT-RSA implementation code with fault
simulation

Algorithm 2 Vigilant’s CRT-RSA implementation code with fault sim-
ulation
1: Input: message m, e, key (p, q, dp, dq, iq)
2: 32-bit random integer r
3: 64-bit random integers R1, R2, R3, R4

4: an integer f
5: Output: signature S = md mod N

6: switch (f) {
7: case 1 : p = 0
8: case 2 : r = 0
9: }

10: p′ = p · r2
11: switch (f) {
12: case 3 : p′ = 0
13: }
14: mp = m mod p′

15: switch (f) {
16: case 4 : p = 0
17: case 5 : r = 0
18: }
19: ipr = p−1 mod r2

20: switch (f) {
21: case 6 : ipr = 0
22: case 7 : p = 0
23: }
24: βp = p · ipr
25: switch (f) {
26: case 8 : βp = 0
27: case 9 : p′ = 0
28: }
29: αp = (1− βp) mod p′

30: switch (f) {
31: case 10 : αp = 0
32: case 11 : mp = 0
33: case 12 : p′ = 0

44

34: case 13 : βp = 0
35: case 14 : r = 0
36: }
37: m̂p = (αp ·mp + βp · (1 + r)) mod p′

38: switch (f) {
39: case 15 : m̂p = 0
40: case 16 : m = 0
41: case 17 : p = 0
42: }
43: if (m̂p 6= m mod p) then return error
44: switch (f) {
45: case 18 : dp = 0
46: case 19 : R1 = 0
47: case 20 : p = 0
48: }
49: d′p = dp +R1 · (p− 1)
50: switch (f) {
51: case 21 : d′p = 0
52: case 22 : m̂p = 0
53: case 23 : p′ = 0
54: }
55: Spr = m̂

d′p
p mod p′

56: switch (f) {
57: case 24 : d′p = 0
58: case 25 : dp = 0
59: case 26 : p = 0
60: }
61: if (d′p 6= dp mod (p− 1)) then return error
62: case 27 : βp = 0
63: case 28 : Spr = 0
64: case 29 : d′p = 0
65: case 30 : r = 0
66: case 31 : p′ = 0
67: if (βp · Spr 6= βp · (1 + d′p · r) mod p′) then return error
68: switch (f) {
69: case 32 : Spr = 0
70: case 33 : βp = 0
71: case 34 : d′p = 0
72: case 35 : r = 0
73: case 36 : R3 = 0
74: case 37 : p′ = 0
75: }
76: S′p = (Spr − βp · (1 + d′p · r)−R3) mod p′

77: switch (f) {
78: case 38 : q = 0
79: case 39 : r = 0
80: }
81: q′ = q · r2
82: switch (f) {
83: case 40 : q′ = 0
84: case 41 : m = 0
85: }
86: mq = m mod q′ 45

87: switch (f) {
88: case 42 : q = 0
89: case 43 : r = 0
90: }
91: iqr = q−1 mod r2

92: switch (f) {
93: case 44 : iqr = 0
94: case 45 : q = 0
95: }s
96: βq = q · iqr
97: switch (f) {
98: case 46 : βq = 0
99: case 47 : q′ = 0
100: }
101: αq = (1− βq) mod q′

102: switch (f) {
103: case 48 : αq = 0
104: case 49 : mq = 0
105: case 50 : q′ = 0
106: case 51 : βq = 0
107: case 52 : r = 0
108: }
109: m̂q = (αq ·mq + βq · (1 + r)) mod q′

110: switch (f) {
111: case 53 : m̂q = 0
112: case 54 : m = 0
113: case 55 : q = 0
114: }
115: if (m̂q 6= m mod q) then return error
116: case 56 : mp = 0
117: case 57 : mq = 0
118: case 58 : r = 0
119: }
120: if (mp mod r2 6= mq mod r2) then return error
121: switch (f) {
122: case 59 : dq = 0
123: case 60 : R2 = 0
124: case 61 : q = 0
125: }
126: d′q = dq +R2 · (q − 1)
127: switch (f) {
128: case 62 : d′q = 0
129: case 63 : m̂q = 0
130: case 64 : q′ = 0
131: }
132: Sqr = m̂

d′q
q mod q′

133: switch (f) {
134: case 65 : d′q = 0
135: case 66 : dq = 0
136: case 67 : q = 0
137: }

46

138: if (d′q 6= dq mod (q − 1)) then return error
139: case 68 : βq = 0
140: case 69 : Sqr = 0
141: case 70 : d′q = 0
142: case 71 : r = 0
143: case 72 : q′ = 0
144: if (βq · Sqr 6= βq · (1 + d′q · r) mod q′) then return error
145: switch (f) {
146: case 73 : Sqr = 0
147: case 74 : βq = 0
148: case 75 : d′q = 0
149: case 76 : r = 0
150: case 77 : R4 = 0
151: case 78 : q′ = 0
152: }
153: S′q = (Sqr − βq · (1 + d′q · r)−R4) mod q
154: switch (f) {
155: case 79 : S′q = 0
156: case 80 : q = 0
157: case 81 : iq = 0
158: case 82 : S′p = 0
159: case 83 : p′ = 0
160: }
161: S = S′q + q · (iq · (S′p − S′q) mod p′)
162: switch (f) {
163: case 84 : p = 0
164: case 85 : q = 0
165: }
166: N = p · q
167: switch (f) {
168: case 86 : N = 0
169: case 87 : S = 0
170: case 88 : R4 = 0
171: case 89 : q = 0
172: case 90 : iq = 0
173: case 91 : R3 = 0
174: case 92 : r = 0
175: }
176: if (N · [S −R4 − q · iq · (R3 −R4)] 6= 0 mod N · r2) then return error
177: case 93 : q = 0
178: case 94 : iq = 0
179: case 95 : p = 0
180: if (q · iq 6= 1 mod p) then return error
181: return S mod N

47

B Details concerning the success probabilities of fault
attacks

In this Appendix, we would like to give more details about the computation of
the probabilities presented in Sect. 5. Noting |x| the size of x.

Assume that the attacker modifies value A (A = B mod C) and that C is
a uniform, t-bit integer. We suppose that C is odd (r is odd according to the
recommendations in Sect. 5, as well as p and q) and we force 2t−1 < C < 2t.
Note S = {C : 2t−1 < C < 2t and C = 1 mod 2}.

We note U the event that the fault is undetected and F the event of taking
an element c in S s.t. c = C. So, Pr[U |F] is the probability that an event is
undetected assuming F . Since the final result will depend only on the initial
values which are uniformly distributed (the only exception may be the message
m. To avoid this case, we can assume that the message used is the message
obtained after a padding - like OAEP-. So the resulted m will also be uniformly
distributed), we know that:

Pr[U |F] =
1

C
and Pr[F] =

1

|S|

and then

Pr[U] =
∑

C∈S
(Pr[U |F] · Pr[F]) =

1

|S| ·
∑

C∈S

1

C

Let S = {C : 2t−1 < C < 2t and C = 0 mod 2}, then

∑

C∈S∪S

1

C
= [lnC]2

t

2t−1 = ln(2t)− ln(2t−1) = ln2

We consider approximately that |S| = |S|. Then:

Pr[U] =
1

|S| ·
∑

C∈S

1

C
≈ 1

|S| ·
1

2
·
∑

C∈S∪S

1

C
=

1

|S| ·
ln2

2
=

1

2t−2
· ln2

2
= 2−(t−1)ln2

This is the obtained probability for the faults: 22, 28 and 32 with t = |p′|,
63, 69 and 73 with t = |q′|.

Supposing now, that the attacker modifies a value A (A = B mod C2).
Following the same reasoning, we conclude that :

Pr[U] ≈ 2−2t+1

This is the obtained probability for the faults: 6, 8, 13, 27, 29, 33, 34, 41, 44,
46, 51, 68, 70, 74, 75, 79, 82, 87, 88 and 91 with t = |r|.

48

Toward a Taxonomy of Communications Security
Models

Mark Brown
RedPhone Security

mark@redphonesecurity.com

Abstract. Formal specifications, models and their accompanying

proofs have long been promoted as setting the highest standard for

program verification. But computer security remains threatened by

covert channels, subliminal channels, side channels, fault injections,

bypass, protocol attacks and subversion despite rigorous application

of formal methods. We advance the thesis that there exist several

hierarchically ordered and adjacent sciences, notations, and security

requirements analyses which must each be addressed to achieve

comprehensive security. We support this thesis from a survey of

relevant models of communications security. We argue that a tax-

onomy of security concerns consisting of levels called “Epochs”

provides a comprehensive framework for identifying, locating and

analyzing security requirements and assumptions, and gives sense

to the effective use of formal methods.

Keywords: formal models, formal specifications, security requirements

1 Introduction: Classical Computer Security Models
Mathematical, formal models of Gödel-Kleene recursive functions and Church-Turing

computability led to the birth of computer science. Formal models can express algo-

rithms in a mathematical notation and prove the algorithms exhibit first order correct-

ness properties such as safety or liveness. [1] For example, one might express an algo-

rithm within an interactive theorem proof assistant, and prove that the specified algo-

rithm has some property of interest. However, properties of algorithms provide a con-

structive definition of correct outputs but not a secure realization. Proofs about algo-

rithms typically assume type correctness on inputs, that is at least the inputs have been

chosen from the specified set (x X) and also assume “no other changes” within the

system. Such assumptions may fail when some fundamental layer of the system is

subverted, when malicious inputs are presented, when guarding conditions are by-

passed, when forged facsimiles are accepted as authentic information, or in general,

when some assumption required for correctness fails. In this Introduction we recount

the history of suggestions and surprises concerning which requirements should be the

subject of formal security models, and what proofs and assumptions address security

concerns.

49

The classical computer and network security model arose in the early 1970’s with

RAND’s Ware Report [2], the United States Air Force’s Anderson Report [3] [4], and

the Bell-LaPadula model [5]. These documents identified problems – including oper-

ating system subversion – in which some assumption was forced to fail by an attacker.

Proposed solutions of this era included the Reference Monitor concept [6] and a no-

tional precondition of nonbypassibility. [3] Researchers advanced formal models of

computer security (as in [7] and [8]), which laid the foundation for secure classical

operating system kernels.

The problem of design and formal verification for classical models of secure operat-

ing systems was addressed by many researchers, including Saltzer and Schroeder [9],

Denning [10], Popek and Kline [11], Landwehr [12], Kemmerer [13] and others.

These classical computer security efforts shared the same goal: to secure isolated

systems and only after that to allow for the modular addition of communications secu-

rity in the form of cryptographic hardware units – i.e. a network. This classical com-

puter and network security model led to the formation of the US National Computer

Security Center in 1981 and its development of the Trusted Computer Security Evalu-

ation Criteria (TCSEC), followed by the first attempted evaluations of security ker-

nels such as KSOS, SCOMP, LOCK [14] [15], and GEMSOS [16]. TCSEC was suc-

ceeded by Common Criteria but even so, few high assurance products have been suc-

cessfully evaluated. In fact, researchers from that era have even questioned the mean-

ingfulness of the quest for multi-level secure operating systems. [17]

As these models were being developed, covert channels – which are information leak-

ages that break intended security requirements – were being discovered and studied.

They were first identified in 1973 by Butler Lampson. He defined them as channels

“not intended for information transfer at all” and required enforcement such that the

operating system kernel supervisor “must ensure that a confined program’s input to

covert channels conforms to the caller’s specifications.” [18, p. 4] Lampson stipulated

that “It is necessary to enumerate them all [leakage channels] and then to block each

one,” but also allowed that “there is not likely to be any rigorous way of identifying

every channel in any system of even moderate complexity.” [18, p. 4] A formal model

used to measure covert channels was introduced by Goguen and Meseguer in 1982.

[19] In following years, other covert channel analyses have been published, using

various models and definitions (a partial survey is [20]). Toward a solution to the

problem of covert channels, Lampson proposed two confinement conditions for a

program: 1) it must be memoryless, that is, “it must not be able to preserve infor-

mation within itself from one call to another,” and 2) “total isolation”, that is, “A

confined program shall make no calls on any other program.” [18, p. 3]

In 1981, John Rushby formalized Lampson’s radical confinement concept: rather than

starting with an operating system and attempting to secure it against covert channels,

one should begin with a minimalistic formal model that could express leak-free opera-

tion and allow that model to reorganize whatever secure system might be built from it.

[21] Rushby’s more detailed paper explicitly puts forward information flow analysis

over access control security, asserting that only the former can “establish the absence

50

of storage and legitimate channels.” [22] The resulting system might not have all the

features of an operating system, suggested Rushby, but at least it would be secure.

1.1 Problems with the Meaning of Models

Lampson’s informal analysis contained the germ of an even more challenging prob-

lem, one that could threaten the meaningfulness of measuring covert channels. Lamp-

son raised the question about what was “intended” by the system designers and what

the system specifications meant with respect to covert channels.

Addressing Lampson’s concern, Landwehr et al. articulated the problem of covert

channels along the lines of meaningful specifications and intent. In contrast to a gen-

eral-purpose operating system, they emphasize formally modeled security require-

ments, “assertions,” that shall be enforced uniformly on the whole system. Specifical-

ly, they proposed to capture requirements for secure email-like communications for a

system called Military Message Systems (MMS). [23] MMS functionality was similar

to pre-Internet ARPANET email, with the addition of multiple levels of security.

By emphasizing the meaningfulness of requirements over mechanism or model, the

authors presented an even more radical response to the classical security problem: one

must start with the functional and security requirements of the application, they ar-

gued, and not with a generalized Reference Monitor mechanism (as in [3], [7], [8]) or

even a generalized leak-free information flow model (as in [21], [22] [24], [19]).

We agree that the MMS approach was indeed more meaningful than the classical

model of a secure computer. We suggest that they were successful not just because

they developed specific “application” requirements, but because their requirements

addressed the subject of secure communications – i.e. MMS – and explicitly ad-

dressed how messages were to be viewed, accessed, altered and sent by users within

an identified context. Specifically, that document’s ten requirement assertions ad-

dressed “shall nevers” using application-specific, explicitly defined terms and security

language such as “is always,” “no … can be,” “can only,” “can … only if”, etc. By

doing so the MMS approach explicitly addressed Lampson’s informal concern with

what was intended and what the specifications mean, a concern concurrently being

taken up by evaluators [25]. Our approach is similar. We maintain that formal specifi-

cations treating the subject matter of secure communications best address the chal-

lenge of constructing meaningful models. We argue below that requirements concern-

ing valuable communications in general cannot result in secure exchanges of infor-

mation until the cryptography, protocol, parties, terms, laws and cultural forces have

been formally addressed by specific requirements, at the very least by assumption.

1.2 Communicating Meaning

Both the information flow analyses by Rushby and the MMS analysis of application-

specific communications that satisfy security requirements had the effect of recon-

necting the field of communication security (COMSEC) with computer security

51

(COMPUSEC). These had previously been separated by the pioneers of TCSEC. This

was one of several rediscoveries of Shannon’s communication theory.

By 1981, Claude Shannon’s work to provide a mathematical theory of cryptography

had been rediscovered in unclassified COMSEC researches; Shannon’s model is cited

by “New Directions in Cryptography” [26] and by RSA asymmetric cryptosystems

[27]. We read Shannon’s model of “enemy” and “knowledge” as providing the “shall

never” requirements to these papers, and Shannon’s mathematization of cryptography

were also revisited, revised, and used again to prove cryptographic security. [28] The

discovery of public key cryptography led to interest in cryptographic communications

protocols and their formal models. This led to the first formal models of parties to

communications and, just as significantly, models of the attackers of communications

systems. [29] Dolev and Yao’s model of a stateful attacker, with powers and cunning

far exceeding Shannon’s “enemy”, led to the emergence of protocol analysis, later

nicknamed “Programming Satan’s Computer” because of its diabolical subtlety. [30]

The rediscovery of Shannon was also of interest to others outside the world of com-

munications security. In 1987, a paper titled “Covert Channel Capacity” [31] linked

Shannon’s information theory to the covert channel model proposed in [22] and [19].

Rushby and Millen referenced research conducted by SRI and Ford Aerospace dating

back to 1976 that used Shannon-style information flow theory [22] [32] [33] [34]. By

1990, McLean had observed that “…[t]here is a general belief in the security commu-

nity that the correct explication of security should be formulated in terms of Shannon-

style information flow.” [35] McLean’s observation about the COMPUSEC security

community’s interest in Shannon proved to have predictive power. In the 1990’s pub-

lications share a theme of Shannon-style information theoretic analyses and probabil-

istic security analyses, modeling security in terms of information flows.

In 1996 Kocher introduced the “side channel.” [36] Side channel attacks may be

compared to wiretap and TEMPEST attacks, since the attacker located at the perime-

ter of the system. [37] As cryptosystems have become increasingly popular and wide-

ly deployed, the relevance of formal models, confidentiality properties, and especially

side channel attacks (both active and passive) have become more relevant to a wider

audience. In recent literature, defenses against side channel fault injections commonly

rely upon noise, error, entropy and coding theory introduced by Shannon in his com-

munication theory. [38] Side channel attacks now explicitly utilize Shannon’s infor-

mation theoretic measures and revisit Shannon concepts such as entropy (for “guess-

ing entropy” analyses) and knowledge (for gathering data that can be used for a tem-

plate attack). [39] [40] [41] Additionally, several proposals to defend against passive

side channel attacks use masking, scrambling, clock randomization and other ran-

domization techniques used to obscure the emissions measurable by a side channel

attacker. [42] [43] [44] [45]

Currently several security specialties borrow from Shannon’s mathematizations. We

propose that the shared “beliefs” of these “security communities” was that Shannon’s

mathematizations of communication were meaningful because they provided explana-

tory power and predictive certainty, which are typical measures of scientific progress.

52

1.3. Problems With the Level of Models

While Landwehr et al. gained meaningfulness by clearly specifying high level securi-

ty requirements concerning allowable information exchanges of US classified infor-

mation, they provided no explicit requirements concerning the secure construction of

the system mechanism. The authors consider this a benefit: “Because the model

avoids specifying implementation strategies, software developers are free to choose

the most effective implementation.” With the benefit of hindsight, especially in view

of side channel attacks, we disagree that this approach is entirely advantageous. We

suggest Landwehr et al. swung their corrective pendulum too far. Could an MMS-

implementer satisfy the ten assertions in [23] equally well using GEMSOS or Berke-

ley UNIX? By allowing implementers freedom, in view of their statement, did [23]

lose its grasp on the “shall-nevers”? Can sufficient conditions for a secure implemen-

tation of MMS be efficiently derived from [21]’s ten assertions and four assumptions?

With respect to covert channels, Rushby admitted that neither classical access control

nor information flow formal verification techniques, as practiced, could be expected

to eliminate Lampson’s “confinement problem” with covert channels:

Although the properties established by access control verification

and by information flow analysis are undoubtedly important ones, it

is not clear that they amount to a complete guarantee of security.

Both these verification techniques are applied to system descrip-

tions from which certain “low level” aspects of system behavior

have been abstracted away. This is despite the fact that penetration

exercises indicate that it is precisely in their handling of these low

level details that many computer systems are most vulnerable to at-

tack – and, consequently, that these are the areas where verification

of appropriate behavior is to be most desired. [22]

Unfortunately, even formal specifications of operating systems had little to say about

low-level covert channels or their meaning. This in turn led to the puzzles that Millen

later documented concerning how to determine if a covert channel was a “real threat”

– i.e. practically meaningful. [25]

Practical challenges await those who practice formal methods at a low level, i.e., for

software object code or hardware netlist representations. One may begin to write an

algorithm and prove a property, for example following Floyd, Hoare, Gries, etc., but

the effort quickly becomes laborious for a set of algorithms comprising a system. This

situation is exacerbated because verifying equivalence between formal specification

and low-level realization is often nontrivial. Developing such an argument requires

expertise in both the mathematical axioms and the idiosyncrasies of the target com-

puter and toolset. The latter is subject to change every few years, leading to costly

obsolescence.

But where, given the goal of a concise statement of requirements, could low-level

aspects of system behavior be expressed? We suggest that this problem, which we

take to be the core issue of Lampson’s covert channel problem, lies in identifying

53

assumptions. Whereas Lampson originally thought of covert channels as “not intend-

ed for communication,” Marv Schaefer, former chief scientist of the National Com-

puter Security Center, once characterized covert channels as “system behaviors that

surprise the system’s developers.” [46] The problem, as we see it, is lack of clarity

and organization concerning what and on what occasion to specify the shalls and shall

nevers more granularly, at a lower level, and when to assume that a meaning will hold

as intended at a more fundamental level. This problem played out clearly in co-author

McLean’s subsequent criticisms of the meanings of aspects of the Bell-LaPadula

model. [47] [48] McLean independently experimented on the popular Bell-LaPadula

Basic Security Theorem (BST) and came to surprising conclusions:

[BST] can be proven for security models that are obviously not se-

cure. We conclude that the value of the BST is much overrated

since there is a great deal more to security than it captures. Further,

what is captured by the BST is so trivial that it is hard to imagine a

realistic security model for which it doesn’t hold. [47]

At the same time, we observe that the security requirements in [23] specified by

Landwehr et al. could be understood to contain approximately the same level of am-

biguity concerning system realization at a low level. Whereas the Bell-LaPadula

model defines operations read, write, etc., which in their realization may be reversed

in a way that violates a good definition of security, so also in [23] some assumptions

might be abused. We take this to indicate that security requirements and models

should be applied to low levels so as to eliminate covert channels and clarify intent.

If, for example, one-way information flows called “intransitive noninterference” are

critical to security, then clear requirements language (as in [49] [50]) and strong or

redundant mechanism(s) should be specified at the most appropriate level of granular-

ity so that predictive certainty may be achieved. Whether the initial assumption is

“view,” “read,” or “*,” we must complete our specification with shall-nevers to se-

cure it at a low level.

1.4. Toward a Taxonomic Scope for Models

A 1993 paper identifies the specificity gap between general-purpose products and

specific-use implementations in a fixed environment as a problem, especially as it

pertains to certification. [51] In this paper, Payne et al. indicate that a TCSEC-styled

requirements analysis resulting in a “Formal Security Policy Model” yields a focus

which “is clearly too narrow.” They propose a “comprehensive INFOSEC certifica-

tion methodology” as a requirements analysis extended much more broadly, resulting

in “INFOSEC policy,” which is one that performs their novel methods of trade-off

analysis over a system’s development and implementation concerning requirements

including location, use and cost-effectiveness, mission, threats, budget, etc. [51].

Also in 1993, Landwehr published a historical survey of computer security flaws and

used it to illustrate his contributions to the topic of assertion-assumption security re-

quirements analysis [52]. We agree with Landwehr’s motivations (especially with his

54

observations in section 5, “Problems We Face”) and many aspects of his proposed

research agenda, including his description of future research:

[We need] abstract, formal work on security modeling techniques

that support composition and decomposition, methods and tools for

reasoning about and finding flaws in cryptographic protocols, and

concrete approaches for standardizing security function and assur-

ance requirements…

Imaginative approaches are needed to organize systems so that re-

quirements for high assurance software are kept to a minimum. We

need practical methodologies for exploiting formal methods on

those portions of systems that unavoidably require high assurance,

and we need methods to estimate or measure the security actually

provided. [52]

Not surprisingly, Landwehr was co-author of a taxonomy of computer security flaws

not long after the above-quoted paper was published. [53] This in turn was followed

by attempts to reconcile a security taxonomy with a formally modeled taxonomy of

concerns of dependability, [54] [55] and the more general model of the all-powerful

network attacker. [56] [57] The work of Laprie [58] indicates that the scope of secu-

rity concerns has been mathematized by a scientific community and can be ordered

taxonomically.

The problem with prevailing security requirements lists, with or without taxonomy, is

they lack explanatory and predictive power. Whereas system-specific security re-

quirements analyses are directed at clearly identifying the “shall nevers” [59] [60]

[61] [62], a majority of publications identify lists of “shalls” that may or may not

apply to any one system, and may or may not adequately mitigate security threats.

Numerous examples have been published, codified and maintained, including

DCID6/3, Common Criteria, NIST SP800-53 and SP800-37, ISO IEC 17799 and the

IEC 27000 family. While generalized lists of good practices are becoming more com-

prehensive, lists of vulnerabilities and successful attacks are too. As either list ex-

pands, so does the certification cost and liability for legitimate system owners. Incre-

mental cost increases are not the root problem; the lists are characteristically descrip-

tive and reactive, not predictive or preventative.

What is needed is an organization of what must be specified or assumed to express the

comprehensive security requirements of a communications system. It should address

all “those portions of systems that unavoidably require high assurance.” [52] A set of

non-overlapping mathematizations should organize the requirements’ subject matter,

each of which should be consonant with the present and future findings of a progress-

ing scientific field. Formal models of comprehensive requirements would lead to

communication security that is verifiable, validatable and meaningful; this would

offer predictive certainty about system behavior even against determined attacks.

55

2 A Taxonomy of Epochs
We propose a taxonomy of securable subject matter, divided into levels of granularity

we mark by “Epochs.” Our taxonomy provides a comprehensive framework for iden-

tifying and analyzing meaningful security requirements and, in the complementary

analysis, attacks. Following Rushby’s observations about covert channels [22], we

include low level concerns (algorithms, semiconductors and the physics of emissions

at the system perimeter) at low-numbered levels. Following [51], we expand the

scope to high levels including users and malicious users, exchanged communications,

costs, and organizational security policies concerning future threats, mission and

budget. In particular, this attack model shows how all attacks can be conceived of as

communication attacks, but across a range of “Epochs.” As all attack models directly

or indirectly specify a security model, our attack model also identifies an abstract

means for achieving comprehensive security. Lastly, our attack model sheds light on

the proper use of formal models in information assurance – that is, it provides a

framework for the construction of meaningful models of security.

Each Epoch circumscribes the limits of information available to some particular algo-

rithm’s run within a concretely realized system. In the table below we define nine

Epochs by a scientific field, by runtime threats arising from information the Epoch

accepts, and by information it provides to Epochs below (providing an “oracle” and/or

state memory) and to Epochs above (providing a list of assumed-correct “assertions”).

Table 1. Security Epoch Taxonomy

Epoch, Science and

Range

I/O and Realization Threats

(from Epoch below)

Oracle/State (govern below)

Assertions (assumed above)

0. Perimeter

Physics, from in-

contact to nearby

Environment: particles and in-

teractions; package, board, wires,

case; network, connectors, I/O

devices; site walls, location, geog-

raphy.

Data assertions: valid; live; ex-

pected location; environmental

conditions within specification

1. Timed Logic (TC)

Semiconductors, from

manufacturing pro-

cesses to program-

ming and microcode

I/O Data: invalid, replayed, simu-

lated; not live, not functioning;

relocated; harsh conditions; de-

struction

Program: optimization, mistrans-

lation; subverted synthesizer;

program replacement, forgery,

addition, trigger

State: Data samples, registered

variables, memory cache

Architecture/address assertions:

wiring, arithmetic and logic opera-

tions, complex instructions, I/O

analog to digital, codings, encod-

ings, link protocol, errors, memo-

ries

2. Algorithm (P)

Programming, State

machines that run for-

all inputs, from state-

ful circuits to operat-

ing system software

I/O Data: leaked, rerouted,

forged, errors, buffer corruption;

observed human interactions

Program addresses: bypassed or

subverted operations, instructions,

memories, I/O

State: state variables, transition

conditions, shared memories

Correctness assertions: proven

properties, big O notation, paral-

lelization, first order type correct-

ness, testing and verification cov-

erage, performance metrics

56

Epoch, Science and

Range

I/O and Realization Threats

(from Epoch below)

Oracle/State (govern below)

Assertions (assumed above)

3. Separation (NP)

Program Analysis,

State memories and

outputs, from hard-to-

guess to hard-to-

corrupt

I/O: direction fault, data rerouted,

key leaked, type confusion

Program: cryptanalysis, predicate

failure or confusion; no-operation,

weak method, single point of

failure, bypass, subversion, trig-

ger

Oracle: state invariant, trace hy-

perproperty

Boundary assertions: one-way

function, statistical independence,

encryption, randomness

4. Protocol (DY)

Protocol Design,

Input/output memo-

ries, sourced from

unknown network-

connected locations

I/O: Dolev-Yao stateful attacker,

replay, rollback, MITM, state

corruption

Program: protocol failure or

confusion

Random Oracle: pseudorandom

keys, nonces, hashes

Session assertions: data authenti-

cation, data integrity, cryptograph-

ic strength, subject authentication,

key generation process

5. Subject (TT)

Varies by Employ-

ment, Decision ora-

cles, from sensors to

data entry to pur-

chase, command and

control, and remote

administration

Input: protocol bypass, subver-

sion, trigger, storage fault

Output: covert channel stream,

malware, deception/ deni-

al/degradation attempt, false

alarm, attempt to exceed authori-

ty, audit evasion

Subject identity oracle: name, id,

employment, criminal background

check, credit report, membership,

duties, education, skill, certifica-

tion, legal powers

Subject intent assertions: in-

formed consent, skilled operation,

intelligent decision, messages

6. Resource

Requirements Analy-

sis, for mission-

relevant information

from assets, plans and

processes to legal

terms

Deception concerning: assets,

principals, partners, contracts,

monetary instruments, possession,

treaties, borders, weapons, classi-

fied data, legally protected data

categories

Program: disorganization, degra-

dation, deletion or fraudulent

insertion of resources

Knowledge oracle: set operations

and set relational queries for all

stored knowledge (e.g. a database)

Meaning assertions: interpretable

under law and policy, using: legal

agreements, defined terms and

categories, accurate records and

measures, applicable conditions,

standards and laws

7. Cost / Efficiency

Varies by Principal,

ownership concerns

and negotiations.

Deception concerning: economic

constraints such as: law and poli-

cy prohibitions, supply and de-

mand, tax, tariff, policy, competi-

tion, risk assessment, strategy,

financial expectations

Program: same as for Epoch 6

Accessibility oracle: legal accept-

ability, policy allowance, authori-

zation, purchase approval

Cost assertions: accounting and

audit reports (GAAS-GAAP),

insurance/ actuarial rates, market

rates

8. Culture

Values, norms and

human influences

Estimates for cultural outputs and

value changes

Value assertions: Asset value, cost

of ownership, and associated liabil-

ities, risk and cost of loss. Risk

analysis.

2.1 Justification for Taxonomy Features

Limits on the information available within an Epoch are derived from Alan Turing’s

notion of computability (the “Turing Machine”) and his supposition that an algorithm

could be supplied with an “oracle.” Turing defines an oracle as the assumption that

there exists some set of answers that can correctly answer a hard question, even a

question which is noncomputable within a given logical system. Within our taxonomy

57

we say each security Epoch realizes a “Turing Degree” because it realizes one or

more algorithms, and for any given run it takes inputs, gives outputs, and has access

to the oracle at that Turing Degree. A system run accepts input from its physical envi-

ronment located at the system’s Perimeter Epoch, executes a first algorithm at the first

Epoch which may in turn cause inter-Epoch interactions, and finally returns output to

the physical environment.

Following Lampson’s suggestion, we require that each Epoch must be confined dur-

ing its algorithm run, meeting the two conditions of memorylessness and total isola-

tion for function calls. [18] This affects the duration of a run of any Epoch’s algo-

rithm: an algorithm that can retain no state between runs will be bounded by its

Epoch’s complexity measure. Unfortunately, the field of complexity theory still re-

tains a number of important unanswered questions, so our choice of specific complex-

ity measures upon which we attempt to base claims for shall-nevers is not fully de-

termined. At this time, we take that view that assertions of noncomputability may be

justified by engineering solutions that combine the computationally infeasible with

the physically infeasible, cost prohibitive, illegal, etc. So we selected the following

complexity measures as Epoch-run-constraints in our taxonomy: Boolean circuits

(approximately TC), polynomial time (P), nondeterministic/guessing polynomial time

(NP), stateful attacker-secure (e.g. secure for all protocol sessions granted the Dolev-

Yao stateful attacker), an intelligent oracle (passes the Turing Test), and the set of all

oracles that store validated relational knowledge tuples. We note that a recursive func-

tion (or state machine) deals with a state tuple twice: accepting it as input and return-

ing it as output. We require that for any Epoch’s nontrivial recursive function, its state

memory be retained across multiple function calls by the next higher Epoch, and that

the higher Epoch must contain any security-relevant state transition guard condition

evaluator.

We augment each Epoch’s first order Peano Arithmetic axiom set with some axioms

from a specific scientific field. These additional axioms may be identified with refer-

ence to some pioneering researchers, some theory and accepted mathematization,

published expressions in some notation, and giving rise to some conjectures, theo-

rems, etc. An Epoch’s algorithm must be mathematized under the axioms of some

notation (a language), fundamental constants (a kernel), equality (a relation), closure

and functions (a universe). As Turing [63] and others have showed, these can be sub-

jected to ordinal numbering schemes. To run the algorithm, each Epoch receives its

respective portion of Turing’s Program Tape, which may be treated as an assumption

or oracle. Our Epochs’ algorithms are expressed using first order arithmetic, and our

hierarchy arises out of this limitation.

The taxonomy, but not any one Epoch, can express higher order predicates. McLean

asserted that first order predicates, or properties, simply cannot express notions of

security [64], observing that Alpern-Schneider properties are “trace sets” and known

“possibilistic” security properties are “sets of trace sets”. Improving upon McLean’s

periphrasis, Clarkson and Schneider call these “hyperproperties.” [65] [66] Others

confirm that “a hyperproperty is a second-order predicate over system execution trac-

es,” [67] which like the halting problem simply cannot be expressed within a first

58

order system (e.g. Peano Arithmetic). Regarding higher-order expressions in our pro-

posed hierarchy, we recall that Turing first proved the Entscheidungsproblem was not

computable by a Turing Machine [68], and that next he intended to overcome Gödel’s

incompleteness (noncomputability) by introducing an Oracle Machine, which defined

relative computability. Turing set up the problem this way:

The well-known theorem of Gödel (1931) shows that every system of logic

is in a certain sense incomplete, but at the same time it indicates means

whereby from a system L of logic a more complete system L’ may be ob-

tained. By repeating the process we get a sequence L, L1 = L’, L2 = L1’ …

each more complete than the preceding. [63, p. 161]

Turing went on to postulate his oracles as that which must be added to any axiomatic

system L in order to form L’, now called a Turing jump for the halting problem. [69]

Our taxonomy provides a sequence of nine logical systems of increasing Turing de-

gree, each of which is an oracle machine or “hypercomputer” [70].

We locate security assertions at the next-higher Epoch for that which cannot be com-

puted or output by some relatively-lower Epoch. At the higher Epoch, one may inter-

actively specify a state space such that all defined state values are validatable and can

be constructively mapped to and from intended inputs. Next one may specify the state

transition decision function such that all allowed state transitions refine a security

hyperproperty meaningful for the state space at the higher Epoch. We consider any

such state space S with its state transition relation S x S “secure by design”, and the

relation is a security oracle. Recall that, practically speaking, system state S is a col-

lection of memories that persists between inputs having accepted some prior input.

We observe that a higher-Epoch state stores, albeit in a compressed format deter-

mined by lower-Epoch input processing, prior inputs to the run at this Epoch observed

up to the present. The lower Epoch’s effects on a state tuple can express a first order

property on its inputs. The higher Epoch decides if the state transition is allowed.

Thus any two adjacent Epochs can define a security property as a selection among

“sets of trace sets.” When an Epoch’s state transitions and/or security oracle is located

in a higher Epoch we say that Epoch is “governed” with respect to that state relation

or oracle. The rightmost column of Table 1 provides examples.

Regarding the development lifecycle, each Epoch may be analyzed, specified, de-

signed, implemented and tested as a module. Such a module may be developed over

time, and may assume inputs and oracles. Treating an Epoch algorithm as a module

can in turn facilitate the use of simulated oracles to test the algorithms. During the

development timeframe, one may interactively define the intent and validation proce-

dures for the specification, even to the point of adjusting the state space and state

transition relation specification to better fit the model to the meanings the system

shall, and shall never, realize. We advocate tuning an algorithm’s governance thus.

After governing an Epoch and implementing it, one must examine its assumptions and

inputs for threats. For examples, see the center column in Table 1. Unlike algorithm

verification, the threat analysis of assumptions presents the challenge not only of

59

enumerating predicative assumptions or intuitions, but also of engineering the system

to reduce the size of this set. We advocate fitting, shrinking and constraining the state

space so that it only includes those tuples at the intersection of what can be output

from the lower Epoch, what can be validated, and what the intended security property

means. While justifiable validation methods may depend upon a small number of

assumptions, efforts to find improved validation methods that use fewer assumptions

lead to more direct and certain results. While we know of no codified basis set of

information security assumptions, in our Introduction we have presented one effective

basis of assumptions from our survey of historical proposals such as Turing’s, Ander-

son’s, Lampson’s, and now presented as our taxonomy of Epochs. Based on that

analysis, we suggest the following methods to engineer a system realization for which

such assumptions may be valid.

Implementers must introduce some method of separation [21] or confinement [18]

that can practically prevent information leakage between Epochs. Otherwise, the hier-

archy will collapse and assertions about the limits of what is computable will not

hold. This is an essential point, especially for COMSEC key secrecy concerns, and it

becomes increasingly difficult to achieve as the scope of the system is enlarged to

include larger spheres of compatibility and connectivity. We use the statements “No

Other Changes” and “Type Correctness of Realization” in our threat analysis of every

input and assumption required by security-critical Epoch algorithms. “No other

changes” is straightforward but challenging: while the system stores or moves some

secret value, how can I know that there is not some background process that discloses

the secret? Such concerns are especially relevant to side channels. Regarding “type

correctness,” our concern is primarily that when we invoke an algorithm at a lower

Epoch, that invocation should return valid results. Our threat analysis considers possi-

bilities such as: has it been subverted, bypassed, disabled, or renamed? We consider

the possibility of triggered type correctness failures, where only magic values known

only to the attacker can trigger bad behaviors.

The latter concerns led us to want to mathematically derive the shall-nevers of our

system from the shalls. We attribute this intuition to John von Neumann, who assert-

ed: “If one has really technically penetrated a subject, things that previously seemed

in complete contrast, might be purely mathematical transformations of each other.”

[71] In our taxonomy, we propose eight such subjects, discounting a ninth that cannot

be adequately mathematized. We assume these Epochs will progress toward a fully-

developed theory, mathematization, and notation to the point where a set of “shalls”

can be mathematically transformed into a “shall-never” security requirement.

2.2 Assumptions of the Taxonomy

With respect to framing philosophical assumptions, especially the justifications of

mathematizations with phenomena, our approach is indebted to Edmond Husserl’s

Crisis of the European Sciences [72]. Husserl used the term “epoche” (from the Greek

word εποχή, meaning “suspension of judgment; cessation”) to denote the sense of

being a prisoner of one’s own experience. We use the term “Epoch” in a similar way,

though as a noun, such that upon entering an Epoch, one becomes a prisoner to that

60

Epoch. One can hardly see beyond the Epoch, except to make assertions or assump-

tions. As a prisoner, one’s power is reduced to only make assertions at that Epoch

using the notation and system of that Epoch. Nevertheless, one must look outside the

Epoch for its meaning (above) and its realization and inputs (below). The table below

lists our assumptions concerning Epochs in our taxonomy.

Table 2. Taxonomy Assumptions

1. Within an Epoch

1.1. Each Epoch is located within exactly one system perimeter; this defines

communication between systems.

1.2. Each Epoch is separated from other Epochs; this defines internal com-

munications such that information cannot flow except through oracles.

1.3. The science at each Epoch must provide some notation to encode an al-

gorithm and variables, e.g. by an ordinal numbering or properties, which

must admit to a measure of certainty.

2. Between Epochs

2.1. Beyond the expressive power of any one Epoch’s notation and mathe-

matization lies a different Epoch.

2.2. Realization assumptions to any one Epoch arise from security require-

ments governing the selection of Objects contained within a lower

Epoch.

2.3. Semantic assumptions made at any one Epoch arise from security re-

quirements governing the selection of Objects contained within a higher

Epoch.

3. Beyond Epoch Specifications

3.1. Epoch 8 at culture does not admit to security requirements, for one can-

not select which Objects of culture will take root, become obsolete, or

meaningfully change the universe within a lower Epoch.

3.2. Uncertainty from Epoch 8 at culture limits the certainty of all lower

Epochs. Acts of culture may only be estimated, e.g. by Moore’s Law,

Robert’s Law [94] Amdahl’s Law, etc.
1

3.3. Epoch 0 at the system perimeter may be partially secured by cultural

acts, e.g. architecture, military science, user training, motivations, etc.,

but the science of Physics does not admit to constraint by security re-

quirements.

4. Fundamental Philosophy of Science

4.1. Scientific advance, or progress, will yield explanatory power over histor-

ical observations and theories.

4.2. Progress will yield predictive power approaching the limit of certainty

within the Epoch.

4.3. Every scientific field of study may be advanced or repressed by culture,

and we assume that such cultural influences cannot be secured.

61

2.3 The Scope of a Secure System

We have shown above that, in this taxonomy, no Epoch can express its own security

property, compute its own security condition, or assure its realization assumptions.

Next, we explain why we resist declaring any algorithm realization below Epoch 7

“secure.” To illustrate why, we consider some hypothetical systems whose security

analysis stops short at some maximum Epoch less than 7, while granting their perfect

realization, that is, every assumption of a higher Epoch has been satisfied in system

assertions at lower Epochs. In each case, we consider how the attacker may “wrap”

the short-maximum Epoch’s implementation and defeat the meaning of security for

the lower Epochs.

For example, can one meaningfully declare an Epoch 3 implementation of the Ad-

vanced Encryption Standard (AES) algorithm secure? For AES the question of key

secrecy and key entropy (an oracle provided by Epoch 4) remains unexpressed and

unsolved. We believe an Epoch 3 AES algorithm cannot be secure, since that algo-

rithm may be run millions of times under side channel attack or characterization. Ad-

ditionally, it cannot be secure since that implementation may be used to send garbage

data under infinite timing schemes, thereby emitting messages in some on/off coding

instead of using the algorithm as intended, to emit ciphertext that may be decrypted

by some intended party. Implementing an AES round function in a semiconductor as

a complex operation available for use at Epoch 1 only exacerbates the problems.

Moving up the taxonomy, but only to Epoch 4, is not sufficient. Suppose at Epoch 4

we implement a cryptographic key exchange protocol such as Needham-Schroeder-

Lowe or the Transport Layer Security standard. Lacking Epoch 5, this begs the ques-

tion: who is the attacker or who is the subject? Considering that the primary goal of

Epoch 4 is to eliminate opportunities for the Dolev-Yao attacker (DY) to interfere

with the valuable communication, but still omitting Epoch 5, we allow DY to simply

connect anonymously, which allows a man-in-the-middle attack to render all of

Epoch 4 irrelevant.

Stopping at Epoch 5 has a similar, taxonomy-predicted effect: at Epoch 5 and below

the runs of the system are initiated by a subject’s decision. These runs may be short

and subject to timing attacks, even if human subjects are assumed to be benevolent.

We assert that the meaning-assumption of benevolence implies a deep and thorough

understanding, on the part of the subject, of the nature and workings of the enterprise

and also the ability to identify suspicious activities that are not a part of the proper

functioning of any part of the enterprise. Even if such an assumption held for all hu-

man subjects, the taxonomy helps us understand and model this benevolence require-

ment as an up-Epoch assumption, subsuming Epoch 6, the enterprise information and

processes, Epoch 7, the efficient and lawful operation of the enterprise, and Epoch 8,

the good functioning of the enterprise within its cultural milieu. Without resorting to

assuming the security of all higher Epochs, we assert that a malicious, misguided or

malware subject at Epoch 5 can encode the totality of all Epoch 6 knowledge using

garbage messages that only serve to provide on/off signals to an accomplice; there

may be an infinite variety of timing schemes to do so. Because these garbage on/off

signals may be observed and decoded by any wiretap accomplice at any location on

62

the network, this attack degrades all of the value contained in Epoch 6 at the trivial

cost to the attacker of placing a wiretap containing a simple decoder.

In this taxonomy each governed Epoch requires some oracle at a higher Epoch to

answer a meaning-question such as, “can I do this and remain secure?” The Epoch

above 6, Epoch 7 Cost, governs by securing some information as costly to leak for

unauthorized use, or costly for unauthorized users to contaminate. Obviously it would

be meaningless to “secure” some information that was readily available in the public

domain. But even this conclusion has been suggested by the taxonomy, where the

oracle at Epoch 8 Culture informs system designers what is cheap or valuable.

If the answer to any meaning-question is ignored, or a governing oracle is subverted,

security failures can be expected occur. So we should be motivated to engineer the

oracles using proofs of correctness and reduced-assumption refinements in these

higher Epochs. At the same time, the oracle engineer must make realization assump-

tions regarding the correct implementation and properties of algorithms in a lower

Epoch. But the threat here is that these realizations may be subverted. Considering

threats both above and below, a finite taxonomy helps make the problems tractable.

3 An Example of a Meaningfully-Secure Formal Model
Rather than securing an algorithm, or any one Epoch, our taxonomy is useful to se-

cure valuable communications. Examples include: conducting business over the In-

ternet, communicating arms reduction treaty test results [73], military command and

control messages, control of remote-piloted systems, control of infrastructure systems,

or remote surgery. As an example of how to use the taxonomy, we illustrate how to

create a more meaningful formal model within each Epoch for the classic MMS. [74]

In the table below, we summarize the terms used in the MMS formal model based on

the section “Correspondence to the Informal Model” of [23] as follows:

Table 3. Requirements Analysis for Security Epochs

Epoch Informal

Definition [23]
Formal

Notation [23]
Formal Security

Specification [23]

7 Inefficiencies, user efficiency and problems

discussed in sections 1-3.

-- --

6 Object,Container,Entity (ID, Classification)

Operation (inputEntityID, outputEntityID)

Message (fields, relUserID, DRAFT/REL)

ES

OP

VS, TY

State Set Existence

Assumptions

5 User,UserID (Role, Clearance)

Access (User, Operation)

US, UI, RL, L

AS(ES)

User Assumptions

{1,2,3,4}

4 None -- --

3 None -- --

2 Assertion {2, 4, 7}

Assertion {1}

Assertion {6}

Assertion {8,9,10}

Assertion {3,5}

Def {1, 2}

Def {5}

Def {8}

Def {9,10,11}

Def {6,7}

secure state

access secure

translation secure

set,dg,rel-secure

copy,CCR-secure

1 None -- --

0 None -- --

63

Landwehr et al. present their security requirements in roughly the order of Table 3,

and we follow their order in our illustration below. They provide commentary on this

model in a retrospective, and confirm our suspicious that the preferable notation for

Epoch 6 are Codd’s normalized database relations [74], which provide a formal model

intended to provide semantic organization to properties [75].

3.1 Eliminating the Existence Problem for Modeled Sets

Epoch 6: Following [23], we begin at Epoch 6, Resource, noting that Epoch 7, Cost,

was discussed informally in the opening sections of the MMS paper. In our taxonomy

at Epoch 6, algorithms convert data into culturally meaningful information terms,

granted some integrity property or validation test. As late as 1989, there has been little

agreement about how to measure data integrity as can be seen from records of NIST

workshop SP500-168. More recent work proposed defining integrity with respect to

“leakage” and “contamination.” [76]. Once the system algorithmically validates and

meaningfully converts data into terms as required at Epoch 6, then independently

functioning legal systems may apply their laws, terms and conditions to the infor-

mation. So, the security notation at this Epoch is law governing the Exchange.

Analyzing the MMS specification taxonomically, we find its modeled Epoch 6 terms

were only assumed to exist and not specified constructively enough to be realized.

One may contrast the MMS specification’s assumptions with how the Peano Axioms

construct the set of natural numbers. The MMS specification merely assumes a set of

Users or a powerset of classified sequences of bits as system inputs, which fails to

provide a verifiable or validatable definition. While formal models often assume set

existence, demonstrating one-to-one correspondence between a modeled set’s ele-

ments and some attacker’s choice of input data can pose an intractable challenge. We

believe that existence assumptions, when not worked out as constructive, Epoch-

specific security requirements, give rise to opportunities for the attacker to introduce

type errors and other confusions such that the system misinterprets the attacker’s

choice of data as the wrong type of information. We propose relocating these exist-

ence assumptions into the definition, science and notation of Epochs, specifically by

relying upon the kernel of that science wherever possible to supply sets and elements.

This relieves the system specification of the burden of creating and maintaining these

constants.

By conducting taxonomic requirements analysis at Epoch 6, we receive from the sci-

ence of law a large and living kernel of defined terms. For MMS, the relevant law

governing the contemplated exchange of classified information is US law, e.g. espio-

nage laws and the most recently issued executive order. Terms given in law, i.e. Sec-

tion 6.1. Definitions [77], must not be redefined because law supersedes. In our anal-

ysis, the MMS model’s distinction between modeled Message, Object, Container and

Entity [74] is not required as the legal term “information” applies the same to all

three. On the other hand, the MMS term “Classification” should be specified more

granularly, by the following attributes from Section 6.1. of [77]:

 Category (a-g),

64

 Duration (a-c),

 Identification and Markings (a-g), (various)

 Prohibitions and Limitations (a-e) (an attestation)

 Derivative Classification rules may be required, and therefore follow pro-

cess (a-d) and add attributes including listing of source materials, etc. [77]

Additionally, a conservative read of the legal definitions indicates MMS should allow

the user to identify the security mechanisms, e.g. encryptions and keys, used to the

source information and draft messages.

Epoch 7: Taxonomic analysis at Epoch 7, Cost, for the MMS might begin by asking

which oracle must govern Epoch 6 resources. Since Epoch 6 analysis revealed defined

terms in the notation of law governing the exchange of these defined terms, Epoch 7

must realize an oracle for the prohibition of the disclosure of classified information.

We take the Bell-LaPadula confidentiality property to be an adequate model of this

law.

In the taxonomy at Epoch 7, data can be correctly associated with monetary charges

and liabilities accruing because of the timeliness, production, use, misuse, sale, and

loss of information. The information might directly represent monetary units or legal

actions or government papers, or might indirectly represent counts, measures, invoice,

audit and/or accounting information. Analysis at Epoch 7 reveals efficiency, waste, or

opportunity, and may be used for computer-aided decision systems. Its mathematiza-

tion depends heavily upon the terms afforded it by Epoch 6, and is sensitive primarily

to relevant inputs from higher Epochs. Applying taxonomic analysis at this level to

the MMS might result in reducing correct message classification assumptions on hu-

man subjects.

Epoch 5: At Epoch 5, Subject, we find MMS assumptions regarding human Users not

specifications. Taxonomic analysis indicates that the system must include algorithms

to control what decisions and actions Subjects may request of the system. There exists

an Epoch 5 science of authentication pertaining to public key infrastructure (PKI),

multiple factors of authentication, location, etc., more generally referred to as Identity

Management. This science not only addresses the initial identification, enrollment and

administration infrastructure, but also challenges such as key lifecycle and proof of

cryptographic integration with respect to some Epoch 4 protocol. Requirements anal-

ysis at Epoch 5 may identify an existing centralized database repository acting as a

single source of truth for all authenticatable Parties, which is a best practice (axiom)

of Identity Management. If a centralized repository already exists, or if requirements

analysis now indicates one should be stood up, that repository system would eliminate

Epoch 5 set existence assumptions, i.e. US, UI, RL, L and possibly even the modeled

Access function AE(ES). If so, then security specifications at this Epoch must include

an argument for the secure integration of that repository. For MMS, Epoch 5 require-

ments must specify an authentication oracle for a cryptographic protocol but delegate

information confidentiality and integrity assumptions to Epoch 4, Protocol. At Epoch

5 in the MMS, different Subjects have access to differing classified Resources at

Epoch 6. To better govern this multi-level secure feature, the security engineer could

65

suggest use cases and workflows that also reduce the cost in terms of time and con-

venience to the User, adding these to Epoch 7 specifications.

3.2 Completing a Security Specification

Without a taxonomy that describes adjacent Epochs it is difficult to measure omis-

sions from a security specification. For example, Table 2 above shows that the MMS

security specification lacks detail concerning Epochs 0, 1, 3, and 4 and does not ex-

plicitly mention any assumptions concerning these Epochs. We believe a security

specification remains ambiguous at best when it is silent concerning any one Epoch.

Indeed, granted a formal specification, one is tempted to rely on a formal theorem

prover or other formal methods tool to point out any unsupportable assumptions.

However, in our experience formal methods tools cannot admit to the possibility of an

attacker – or even a simple bug – within any omitted Epoch.

Epoch 4: In taxonomic analysis of the MMS at Epoch 4, Protocol, we receive from

the science a model of the all-powerful Dolev-Yao attacker [56] [57]; and that it oper-

ates as a wrapper function. Shannon’s model applies: “this cryptogram is transmitted

to the receiving point by a channel and may be intercepted by the ‘enemy’” [78].

Since Shannon, the science has advanced. The Dolev-Yao attacker is stronger and

more effective at breaking protocols because it can remember prior good messages

and can inject these and other malicious messages. For a survey on notation at this

Epoch, see “Ordering from Satan’s Menu…” [79] Fulfilling our expectation for the

science at Epoch 4, researchers using formal models of protocols have demonstrated

that the Dolev-Yao network attacker can be mathematically derived from any MSR

2.0 protocol specification. [80]

Epoch 3: MMS does not specify any requirements at Epoch 3, Separation. Under

taxonomic analysis at Epoch 3, the science provides Shannon’s model of perfect cryp-

tography. Cryptographic separation aims to force attackers located outside the perime-

ter of the system into a state of zero mutual information (i.e. perfect statistical inde-

pendence from the sender and the receiver). The science proposes algorithms, and

cryptanalysis identifies weaknesses compared to algorithms with ideal cryptographic

functions. Cryptographic algorithms at Epoch 3 typically give outputs believed to be

reducible to “hard” problems – including those under the broader conjecture that

P≠NP. Other Epoch 3 measures can be effective to achieve intra-system separation,

e.g. using a hook-up theorem proven by [81] [82] [83], or composition suggested in

[64], etc., granted these authors’ axioms, assumptions and the strength of the theorem

proved. A system debugger, capable of reading and writing with respect to the sys-

tem’s unencrypted state, provides a good approximation of this Epoch’s attacker.

Due to space constraints, our MMS example concludes here. For a general descrip-

tion of Epoch analysis at Epochs 2, 1 an d 0, please see Appendix A.

As seen by our taxonomy, MMS omits specification at Epochs 4 and 3, so one may

expect that no formal model of Epoch 2 can secure the system against attacks at 3 or

4. Moreover, because Epochs 5, 6 and 7 are not taxonomically connected down to

66

Epoch 2, we assert that an attacker at either Epoch 3 or 4 has unmitigated ability to

manipulate the system. Similarly, because the specification in our illustration does not

address Epochs 0 and 1, all manner of hardware- or wire-level attacks can succeed

against the system, including manipulating the classification level Message attribute.

Of course this analysis benefits from hindsight; in 1984 the fields of side channel

analysis and cryptographic protocol analysis were much less developed than at pre-

sent. Nevertheless, one may now reasonably expect attackers to act as a wrapper func-

tion around every Epoch, and worse, inside every Epoch if they are not by force of

system assertion shut out from penetrating the Epoch and disrupting the specified

Object selections.

4 Conclusion
Our history chronicles, to some extent, the tremendous amount of high-quality work

in computer and communications security over the past 40 years. It has also shown

that, despite the undoubted importance of formal models to certain areas of computer

and communications security, there is no consensus about what subject matter must

be specified to achieve comprehensive security. Our contribution involves ordering

specifications’ subject matter, and articulating the meaningful limits of the formal

models of communications security.

A challenge in building a secure system is to identify, locate and justify assumptions

and theorems in a system that secures some valuable communications, even against an

attacker who tries to force security failures. The value of applying this taxonomy is

that by emphasizing information flows across Turing degrees it reveals to the security

engineer the assumptions, threats and oracle-governed-hyperproperties in the system

design. Security engineers that leverage this taxonomy can eliminate vulnerable as-

sumptions and better utilize noncomputability and nonbypassibility to assure targeted

shall-nevers.

Our taxonomy of Epochs is an attempt to clearly demarcate the different layers of

computer and communication security and, as such, the boundaries and interdepend-

encies by which the various formal models may be used to specify security. Each

Epoch in our taxonomy aids the security requirements analysis effort by identifying a

science which progresses, a formal notation with its kernel and expressive scope, and

a range of security assertions. We note in closing that if our concept of taxonomy and

our observations about it is correct, we will have articulated a framework upon which

a multi-level secure communications system can be built and attain to certainties

measured by a taxonomy of living sciences.

This material is based upon work supported by the US Navy-SPAWAR under Contract No. N00039-11-C-

0006. Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the US Navy-SPAWAR.

67

Works Cited

[1] L. Lamport, "Proving the Correctness of Multiprocess Programs," IEEE Trans.

on Software Eng., Vols. SE-3, no. 2, pp. 125-143, 1977.

[2] The Rand Corporation, "Security Controls For Computer Systems," Washington,

DC, 1970.

[3] J. P. Anderson, "Computer Security Technology Planning Study," Bedford,

Massachusetts, 1972.

[4] G. Pottinger, "Proof Requirements in the Orange Book: Origins, Implementation,

and Implications," Washington, DC, 1994.

[5] D. E. Bell, "Looking Back at the Bell-La Padula Model," in Proceedings of the

21st Annual Computer Security Applications Conference, Tuscon, Arizona,

2005.

[6] C. E. Irvine, "The Reference Monitor Concept as a Unifying Principle in

Computer Security Education," in Proceedings of the IFIP TC11 WG 11.8 First

World Conference on Information Security Education, 1999.

[7] D. E. Bell and L. J. La Padula, "Secure Computer Systems: Mathematical

Foundations," Springfield, Virginia, 1973, reconstructed 1996.

[8] D. E. Bell and L. J. La Padula, "Secure Computer System: Unified Exposition

and Multics Interpretation," Technical Report, vol. 44, no. 5, p. 134, March

1976.

[9] J. Saltzer and M. Schroeder, "The Protection of Information in Computer

Systems," in Communications of the ACM, 1974.

[10] D. E. Denning, "A Lattice Model of Secure Information Flow," in

Communications of the ACM, 1976.

[11] G. Popek and C. Kline, "Issues in Kernel Design," in Proceedings of the

National Computer Conference, 1978.

[12] C. E. Landwehr, "Formal Models for Computer Security," Computing Surveys,

vol. 13, no. 3, pp. 247-276, September 1981.

[13] R. Kemmerer, "Testing Formal Specifications to Detect Design Errors," in IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING.

[14] O. Saydjari, "LOCK: An Historical Perspective," in 18th Annual Computer

Security Applications Conference, 2002.

[15] R. E. Smith, "Cost Profile of a Highly Assured, Secure Operating System," ACM

Trans. Inf. Syst. Secur., vol. 4, no. 1, pp. 72-101, 2001.

[16] National Computer Security Center, "Final Evaluation Report for the Gemini

Trusted Network Processor," 1995.

[17] R. Smith, Multilevel Security, http://www.cryptosmith.com/book/export/html/42,

2006.

[18] B. W. Lampson, "A Note on the Confinement Problem," in Communications of

the ACM, 1973.

68

[19] J. Goguen and J. Meseguer, "Security Policies and Security Models," in

Proceedings 1982 IEEE Symposium on Security & Privacy, Oakland, CA, April

1982.

[20] S. Zander, P. Branch and G. Armitage, "A survey of Covert Channels and

Countermeasures in Computer Network Protocols," IEEE Communications

Surveys, vol. 9, no. 3, pp. 44-57, 2007.

[21] J. Rushby, "Design and Verification of Secure Systems," in 8th ACM Symposium

on Operating System Principles, Pacific Grove, California, 1981.

[22] J. Rushby, "Proof of Separability: A Verification Technique for a Class of

Security Kernels," in International Symposium on Programming, Turin, Italy,

1982.

[23] C. E. Landwehr, C. L. Heitmeyer and J. McLean, "A Security Model for Military

Message Systems," in ACM Trans. on Computer Systems Vol. 9, 1984.

[24] J. Rushby and B. Randell, "A Distributed Secure System," IEEE Computer, pp.

55-67, 1983.

[25] J. Millen, "20 Years of Covert Channel Modeling and Analysis," in

Proceeedings of the 1999 IEEE Symposium on Security and Privacy, 1999.

[26] W. Diffie and M. E. Hellman, "New Directions in Cryptography," IEEE

Transactions on Information Theory, Vols. IT-22, no. 6, November 1976.

[27] R. Rivest, A. Shamir and L. Adelman, "A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems," in Communications of the ACM ,

1978.

[28] Goldwasser and Micali, "Probabilistic Encryption," J. Comput. Syst. Sci. 28(2),

pp. 270-299 , 1984.

[29] D. Dolev and A. C. Yao, "On the Security of Public Key Protocols," in IEEE

Transactions on Information Theory, 1983.

[30] R. Anderson and R. Needham, "Programming Satan's Computer," Computer

Science Today, pp. 426-440, 1995.

[31] J. K. Millen, "Covert Channel Capacity," in 1987 IEEE Symposium on Security

and Privacy, 1987.

[32] J. K. Millen, "Security Kernel Validation in Practice," vol. 19, no. 5, pp. 243-

250, 1976.

[33] Ford Areospace and Communicatrions Corporation, "KSOS Verification Plan,"

Palo Alto, California, 1978.

[34] R. Feiertag, "A techniquie for Proving Specifications are Multilevel Secure,"

Menlo Park, California, 1980.

[35] J. McLean, "Security Models and Information Flow," in Proceedings of the IEEE

Symposium on Security and Privacy, 1990.

[36] P. C. Kocher, "Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems," in Proceedings of the 16th Annual International

Cryptology Conference on Advances in Cryptology , 1996.

[37] "NSA Tempest Certification Program," [Online]. Available:

69

http://www.nsa.gov/applications/ia/tempest/index.cfm. [Accessed 25 May 2012].

[38] M. Medwed, "Protecting Security-Aware Devices Against Implementation

Attacks," Graz, Austria, 2010.

[39] F. Mace, F.-X. Standaert and J. Quisquater, "Information Theoretic Evaluation of

Logic Styles to Counteract Side-Channel Attacks," in CHES 2007 Lecture Notes

in Computer Science, Vienna, Austria, 2007.

[40] F.-X. Standaert, E. Peeters, C. Archambeau and J. Quisquater, "Towards

Security Limits in Side-Channel Attacks," in CHES 2006 Lecture Notes in

Computer Science, Yokohama, Japan, 2006.

[41] F.-X. Standaert, T. Malkin and M. Yung, "A Unified Framework for the

Analysis of Side-Channel Key Recovery Attacks," in Proceedings of Eurocrypt

2009, Cologne, Germany, 2009.

[42] J. Golic and C. Tymen, "Multiplicative Masking and Power Analysis of AES," in

CHES 2002 Lecture Notes in Computer Science, 2002.

[43] J. Coron and I. Kizhvatov, "Analysis and Improvement of the Random Delay

Countermeasure of CHES 2009," in Proceedings of CHES 2010, Lecture Notes

in Computer Science, 2010.

[44] J. Schmidt, T. Plos, M. Kirschbaum, M. Hutter, M. Medwed and C. Herbst,

"Side-Channel Leakage Across Borders," in CARDIS, Lecture Notes in

Computer Science, 2010.

[45] T. Guneysu and A. Moradi, "Generic Side-Channel Countermeasures for

Reconfigurable Devices," in CHES 2011, Nara, Japan, 2011.

[46] J. McHugh, "Covert Channel Analysis," in Handbook for the Computer Security

Certification of Trusted Systems, Naval Research Laboratory, 1995.

[47] J. McLean, "A Comment on the "Basic Security Theorem" of Bell and

LaPadula," Information Processing Letters, vol. 20, pp. 67-70, 1985.

[48] J. McLean, "Reasoning about Security Models," in Proceedings of the

Symposium on Security and Privacy , 1987.

[49] J. Rushby, "Noninterference, Transitivity, and Channel-Control Security

Policies," SRI International, Menlo Park, California, 1992.

[50] A. W. Roscoe and M. H. Goldsmith, "What is Intransitive Noninterference?," In

Proceedings of the 12th IEEE workshop on Computer Security Foundations

(CSFW '99)., pp. 228-, 1999.

[51] C. N. Payne, J. N. Froscher and C. E. Landwehr, "Toward a Comprehensive

Infosec Certification Methodology," in Proceedings of the 16th National

Computer Security Conference, Baltimore, Maryland, 1993.

[52] C. E. Landwehr, "How Far Can You Trust A Computer?," in Proceedings 12th

International conference on Computer Safety, Reliability, and Security, 1993.

[53] C. E. Landwehr, A. R. Bull, J. P. McDermott and W. S. Choi, "A Taxonomy of

Computer Program Security Flaws, with Examples," 1993.

[54] C. Meadows and J. McLean, "Security and Dependability: Then and Now," in

Proceedings of Computer Security, Dependability, and Assurance, Washington,

70

DC, 1999, pp. 166-170.

[55] C. Meadows, "Applying the Dependability Paradigm to Computer Security," In

Proceedings of the 1995 New Security Paradigms Workshop, 1996.

[56] C. Meadows, I. Cervesato and P. Syverson, "Dolev-Yao is no better than

Machiavelli," in First Workshop on Issues in the Theory of Security, 2000.

[57] I. Cervesato, "The Dolev-Yao Intruder is the Most Powerful Attacker," in

Proceedings of the Sixteenth Annual Symposium on Logic in Computer Science,

2001.

[58] J.-C. Laprie, Dependability: Basic Concepts and Terminology, Springer-Verlag,

1992.

[59] B. Schneier, Secrets and Lies: Digital Security in a Networked World, New

York, NY: John Wiley & Sons, 2000.

[60] C. Heitmeyer, M. Archer, E. Leonard and J. McLean, "Formal Specification and

Verification of Data Separation in a Separation Kernel for an Embedded

System," in Proceedings of the 13th ACM conference on Computer and

communications security, 2006.

[61] M. Bishop, Computer Security: Art and Science, Boston, MA: Addison-Wesley

Professional, 2002.

[62] N. R. Mead, "Security Requirements Engineering," 2010.

[63] A. Turing, "Systems of Logic Based on Ordinals," Proceedings London

Mathematical Society, Vols. 2-45, no. 1, p. 161–228, 1939.

[64] J. McLean, "A General Theory of Composition for Trace Sets Closed Under

Selective Interleaving Functions," in Proceedings of the 1994 IEEE Symposium

on Research in Security and Privacy, 1994.

[65] M. R. Clarkson and F. B. Schneider, "Hyperproperties," J. Comput. Secur., vol.

18, no. 6, pp. 1157-1210, 2010.

[66] M. R. Clarkson, Quantification and Formalization of Security, New York, 2010.

[67] D. Clarke and D. Milushev, "Towards incrementalization of holistic

hyperproperties," in Proceedings of the First international conference on

Principles of Security and Trust (POST'12), Berlin, Heidelberg, Springer-Verlag,

2012, pp. 329-348.

[68] A. Turing, "On Computable Numbers, with an Application to the

Entscheidungsproblem," Proceedings of the London Mathematical Society, vol.

42, pp. 230-65., 1936.

[69] R. Shore and T. Slaman, "Defining the Turing jump," Mathematical Research

Letters, vol. 6, no. 5-6, pp. 711-722, 1999.

[70] Proudfoot and Copeland, "Alan Turing's forgotten ideas in computer science,"

Scientific American, April 1999.

[71] A. Bródy, Proportions, Prices, and Planning, 1970.

[72] E. Husserl, Crisis of the European Sciences, Evanston, Illinois: Northwestern

University Press, 1970.

[73] G. J. Simmons, "The Prisoners' Problem and the Subliminal Channel," in

71

Proceedings of Crypto 1983, 1983.

[74] C. Landwehr, C. Heitmeyer and J. McLean, "A Security Model for Military

Message Systems: Retrospective," in ACSAC, 2001.

[75] E. Codd, "A Relational Model of Data for Large Shared Data Banks,"

Information Retrieval, vol. 13, no. 6, pp. 377-387, June 1970.

[76] M. R. Clarkson and F. B. Schneider, "Quantification of Integrity," Proc. IEEE

Computer Security Foundations Symposium, pp. 28-43, 2010.

[77] B. Obama, "Executive Order 13526- Classified National Security Information,"

December 29, 2009.

[78] C. Shannon, Communication Theory of Secrecy Systems, 1946.

[79] C. Meadows, "Ordering from Satan's Menu," Science of Computer

Programming, vol. 50, pp. 3-22, 2004.

[80] I. Cerevesato, "The Wolf Within," in Second Workshop on Issues in the Theory

of Security, 2002.

[81] D. Weber and B. Lubarsky, "The SDOS project – Verifying Hook-up Security,"

in Proceedings of the 1987 Aerospece Computer Security Conference, Orlando,

Florida, 1987.

[82] D. Weber, "Quantitative Hook-Up Security for Covert Channel Analysis," in

Computer Security FoundationsWorkshop, 1988.

[83] D. McCullough, "A Hookup Theorem for Multilevel Security," in IEEE

Transactions on Software Engineering, 1990.

[84] C. Shannon, "A Symbolic Analysis of Relay and Switching Circuits," 1937.

[85] Information Assurance Directorate, "U.S. Government Protection Profile for

Separation Kernels in Environments Requiring High Robustness," 2007.

[86] S. Escobar, C. Meadows and J. Meseguer, "Maude-NPA, Version 1.0," 2007.

[87] NIST, "Cryptographic Hash Algorithm Competition," 2012.

[88] J. W. I. Gray and P. F. Syverson, "A Logical Approach to Multilevel Security of

Probabilistic Systems," Distributed Computing, vol. 11, pp. 73-90, 1998.

[89] J. Gray, "Toward a Mathematical Foundation for Information Flow Security,"

Journal of Computer Security, vol. 1, no. 3-4, pp. 255-294, 1992.

[90] I. S. Moskowitz, R. E. Newman and P. S. Syverson, "Quasi-anonymous

channels," IASTED CNIS, pp. 126-131, 2003.

[91] A. Machanavajjhala, D. Kifer, J. Gehrke and M. Venkitasubramaniam, "Privacy

beyond k-anonymity," ACM Trans. Knowl. Discov. Data, 2007.

[92] K. Chatzikokolakis, C. Palamidessi and P. Panangaden, "Anonymity Protocols as

Noisy Channels," Information and Computation , vol. 206, pp. 378-401, 2008.

[93] D. Chaum, "The Dining Cryptographers Problem: Unconditional Sender and

Recipient Untraceability," J. Cryptology, pp. 65-75 , 1988.

[94] A. Odlyzko, "Comments on the Larry Roberts and Caspian Networks study of

Internet traffic growth," in The Cook Report on the Internet, 2001, pp. 12-15.

[95] S. G. Stubblebine and P. F. Syverson, "Group Principals and the Formalization

72

of Anonymity," World Congress on Formal Methods, pp. 814-833, 1999.

[96] I. Moskowitz, R. E. Newman, D. P. Crepeau and A. R. Miller, "Covert Channels

and Anonymizing Networks," WPES, pp. 79-88, 2003.

Appendix A: Analysis at Lower Epochs
At Epoch 2, one might specify an algorithm and prove that it enforces specified safety

properties on outputs, granted assumptions concerning Epoch 3 separation and Epoch

1 realization. The algorithm might be imbued with knowledge of some axioms, defi-

nitions, constants and theorems pertaining to the subject matter of the specific algo-

rithm as described in our Introduction. [19] While introductory formal methods are

typically taught at Epoch 2, moving from a correct algorithm model to a verified re-

finement is a challenging and increasing problem. For example, present-day software

compilers and hardware synthesis tools regularly perform not only language transla-

tion but also significant analysis and optimization including inferring memories and

stacks for function parameters; inferring registers, caches and delays for variables;

eliminating and reordering instructions; inferring ordinal numberings; selecting primi-

tive operators; flattening recursions; translating, resizing and encoding numbers; etc.

In these situations, one must develop extensive arguments for what is taken as axiom

in math: function notation, integers, operators, variables, (prenex) normal form, ordi-

nal numbers, and computation time. Add to this the complex and proprietary hypervi-

sor and operating system memory management schemes, the complexity of I/O device

interrupts and direct memory access (DMA), and heterogeneous hardware memory

management and debug features that affect memory validation techniques.

At Epoch 1, a semiconductor manufacturer converts a notation such as a Boolean

algebra or hardware description language to circuits [84], a task of approximately

class TC computational complexity. An attacker at Epoch 1 may modify the Epoch’s

notation at design time, abuse the mapping from notation to Epoch 1 (semiconductor)

realization, or alter the circuit after it has been manufactured. Regarding inputs and

outputs, Shannon’s model of the communication of bits assumes a noisy medium at-

tacking at Epoch 0, mathematizes at Epoch 1, and proves the existence of a set of

perfect codings at Epoch 2. At Epoch 1 the receiver is imprisoned in a state of uncer-

tainty (entropy) concerning the sender’s input message, and the same is true for the

inputs and outputs of Epoch 1 circuit-based operators, especially when experiencing

fault injection attacks. Similarly, some circuit designs exhibit power draw, electro-

magnetic emanations, etc., which may be considered extra outputs and may be ana-

lyzable by an attacker to reveal system secret data values.

At Epoch 0, the Standard Model of Physics expresses particles and interactions, any

of which can be used to communicate. Security requirements at this Epoch may be

expressed as assumptions on the environment. Assertions of system input or output

devices, for example a radio frequency antenna or analog sensor, may also be appro-

priate. Threats against inputs and outputs are broad-ranging, but are generally more

73

effective when the attack is launched from the physical perimeter of the system, or if

the system perimeter is penetrated or disassembled. An Epoch 0 sensor input device

such as a Global Positioning System (GPS) antenna might provide inputs useful to the

system until it is attacked, at which time it may provide inputs useful to the attacker.

An output device such as an LED located near a user-facing label of “alarm” might

provide security information a system user until it is attacked, at which time it may be

disabled.

74

Understanding the Reasons for the Side-Channel
Leakage is Indispensable for Secure Design

Extended Abstract

Werner Schindler

Bundesamt für Sicherheit in der Informationstechnik (BSI)
Godesberger Allee 185–189

53175 Bonn, Germany
Werner.Schindler@bsi.bund.de

Abstract. In the last one and a half decades side-channel analysis, and
in particular power analysis, has become a very important topic in both
academia and industry.

Hardening security implementations against power attacks has become
a matter of course. The strength of an implementation is usually rated
on basis of its resistance against particular types of power attacks (e.g.,
DPA, CPA, template attacks).

The stochastic approach combines engineering’s expertise with advanced
stochastic methods. Compared to template attacks this reduces the pro-
filing workload drastically. Apart from (possibly) providing a successful
attack the stochastic approach quantifies the side-channel leakage with
regard to a vector space basis, and it allows to verify leakage model
assumptions. This provides useful information, which supports target-
oriented (re-)design.

Keywords: Power analysis, stochastic approach, secure design, constructive
side-channel analysis, multivariate statistics.

1 Introduction

In 1996 Paul Kocher introduced timing attacks [16] and in 1999 power analysis
[17]. Both publications have had enourmous impact on the crypto community. In
particular, one can hardly find hardware-related conferences without a session
on power analysis. Unlike many other scientific areas power analysis is impor-
tant for academia and industry as well. Smart cards and many other security
implementations have to be made secure against power attacks.

In the pioneer paper [17] SPA and DPA were introduced. In the first years
power analysis was a domain of electrical engineers. As a natural consequence,
the applied mathematical methods usually were elementary. Later, cooperations
between engineers and mathematicians led to more sophisticated mathematical

75

methods [25] etc. In particular, CPA, template attacks and MIA were discovered.
In 2005 the stochastic approach was introduced [23].

A common approach to rate the strength of a security implementation is to
apply several power attacks (e.g., different DPA or CPA attacks), which often
gives a ’one bit decision’ (successful attack / no successful attack).

The stochastic approach combines engineering’s expertise with advanced
stochastic methods. Compared to template attacks this reduces the profiling
workload drastically. Even more interesting, the profiling phase of the stochastic
approach quantifies the side-channel leakage with regard to a vector space basis.
Moreover, it allows to verify leakage model assumptions. Altogether, this yields
information on the source of side-channel leakage, which in turn can be used for
target-oriented design decisions.

Section 2 and Section 3 give a brief survey on different classes of power attacks
and of the stochastic approach. Section 4 considers the design information, which
can be gained from the stochastic approach. Final remarks conclude this paper.

2 Different Types of Power Attacks: A Brief Survey

Since [17] lots of papers on power analysis have been published. Most of them
consider DPA (Differential Power Analysis) or CPA (Correlation Power Analy-
sis) techniques [2, 13, 20, 22], and a large number of countermeasures have been
proposed ([3, 5, 26] etc.). Both DPA and CPA exploit the correlation between a
selection function and the electrical current. They are easy to apply but exploit
only a fraction of the available information. In particular, it is not clear how to
combine power measurements from different time instants effectively.

Template attacks ([4, 1, 21] etc.) overcome this problem as they combine the
power information from several time instants t1 < · · · < tm. The measured
power consumption at t := (t1, . . . , tm) is interpreted as a realization of an m-
dimensional random vectors It(x, k) whose unknown distribution depends on the
targeted subkey k, and on some part of the plaintext, ciphertext or a function
thereof, denoted by x. If the attacked device applies masking techniques, the
random vector It(x, z, k) also depends on a masking value z (random number).

In the profiling phase the adversary uses an identical training device to es-
timate the unknown densities (obtaining the so-called templates) fx,k(·), resp.
fx,z,k(·) if masking techniques are applied. In the attack phase the adversary (at-
tacker, designer or evaluator) performs measurements at the target device. With
the usual assumption that the unknown densities are (at least approximately)
multidimensional normally distributed profiling simplifies to the estimation of
mean values and covariance matrices. In the attack phase the measurement val-
ues are substituted into the estimated densities (maximum likelihood principle).

In a ’full’ template attack on a block cipher the adversary estimates the
densities for all pairs (x, k) or for all triplets (x, z, k) (masking case) where x
represents a part of the plaintext or ciphertext. For given time instants t1, . . . , tm
a full template attack should have maximum attack efficiency among all attacks

76

that focus on the power consumption at t = (t1, . . . , tm), at least if the sam-
ple size for the profiling series is sufficiently large. A clear disadvantage of this
approach is the gigantic workload in the profiling phase, especially if masking
techniques are applied. In particular for strong implementations (with similar
densities) this should be infeasible.

A feasible alternative to full template attacks is to estimate the densities only
for selected pairs (x, k) or triplets (x, z, k), respectively. For a security evaluation
the problem consists in selecting a representative subset. Alternatively, a leakage
model assumption may be introduced, e.g. that the electrical current depends
only on ham(x, z) := x⊕k, reducing the number of templates tremendously but
usually losing the optimality property of full template attacks.

Other approaches apply formal methods or ideas from information theory
[28, 9].

3 The Stochastic Approach: A Short Summary

In this section we briefly summarize the central steps of the stochastic approach
where we distinguish between three variants. The target-algorithm of the stoch-
astic approach is a block cipher. For details the interested reeader is referred to
[23, 8, 24, 27, 12]. In Section 4 we show how the stochastic approach can be used
to support (re-)design. We mention that [6] investigates a non-profiling-based
variant of the stochastic approach.

Notation. We denote subkeys by k ∈ {0, 1}s while x ∈ {0, 1}p stands for (the
relevant part of) the plaintext or ciphertext, respectively (typically, 8 or 16 bits).
Random variables are denoted by capital letters, realizations thereof, i.e. values
taken on by these random variables, by the corresponding small letters. Vectors
are written in bold, e.g., t stands for (t1, . . . , tm), and Rt denotes the random
vector (Rt1 , . . . , Rtm). Accordingly, It(x, k), it(x, k), h∗t;k(x, k) etc. while ∼ in-
dicates estimates. We write diagn(d1, . . . , dn) for a diagonal n×n square matrix
with diagonal elements d1, . . . , dn, and Nn(µ, F) denotes an n-dimensional nor-
mal distribution with mean vector µ and covariance matrix F .

3.1 The ’Classical’ Stochastic Approach (No Masking)

We follow the brief description from [12], Subsect. 4.1. The stochastic approach
is based on the mathematical model

It(x, k) = ht(x, k) +Rt (1)

where t denotes a time instant. The power consumption it(x, k) is interpreted as
a realization of a random variable It(x, k) whose (unknown) distribution depends
on the pair (x, k). The leakage function ht(x, k) quantifies its deterministic part,
which depends on x and k, while Rt denotes the noise. W.l.o.g. we may assume
E(Rt) = 0. Both the leakage function ht(·, ·) and the distribution of the noise
are unknown and thus have to be estimated.

77

Profiling Let t ∈ {t1, . . . , tm} and k ∈ {0, 1}s be fixed for the moment. We view
the restricted function ht;k: {0, 1}p × {k} → IR, ht;k(x, k) := ht(x, k) as an ele-
ment of the 2p-dimensional real vector space Fk := {h′: {0, 1}p×{k} → IR}. Basis
functions g0,j;k(·, k) = 1 (constant function), . . . , gu−1,t;k(·, k) shall be selected
under consideration of the concrete implementation, since they shall capture the
relevant source of side-channel leakage (cf. e.g. [15, 10] and Sect. 4). Note that
we do not aim at the exact function ht;k(·, k) itself but at its best approximator
h∗t;k(·, k) in Fu,t;k, the subspace which is spanned by g0,j;k(·, k), . . . , gu−1,t;k(·, k).
From the power measurements it(x1, k), . . . , it(xN1 , k) ∈ IR the least square es-

timate h̃∗t;k(·, k) of ht;k(·, k) is determined. Let

A :=

g0,t;k(x1, k) . . . gu−1,t;k(x1, k)
...

. . .
...

g0,t;k(xN1 , k) . . . gu−1,t;k(xN1 , k)

 . (2)

If ATA is regular (usual case) the normal equation ATAb = AT it has the unique
solution

b̃ ∗ = (ATA)−1AT it, with b̃
∗

:= (β̃ ∗0 , ..., β̃
∗
u−1), and (3)

h̃∗t;k(·, k) =
u−1∑

j=0

β̃∗j,t;kgj,t;k(·, k) (least square estimate of h∗t;k(·, k)) . (4)

The coefficients β∗0,t;k, . . . , β
∗
u−1,t;k are called β-characteristic, and the values

β̃∗0,t;k, . . . , β̃
∗
u−1,t;k are their estimates. Note that the leakage functions ht1,k, . . . , htm,k

are estimated separately.
In the second profiling step the covariance matrix C of the noise vector Rt

has to estimated, finally yielding a density for the random vector It(x, k). From
an information theoretical point of view it seems to be advisable to consider
as many time instants t1 < · · · < tm as possible. Unfortunately, then the co-
variance matrix C is often ’almost’ singular so that matrix inversion becomes
an ill-posed numerical problem. Consequently, moderate estimation errors in C̃
might amplify to large estimation errors of C̃−1, which is needed to calculate the
density of It(x, t). Let λ̃1 ≥ · · · ≥ λ̃m ≥ 0 denote the eigenvalues of the positive

semidefinite matrix C̃, and let vj denote the normalized eigenvector to λ̃j . As-
sume further that the first s eigenvalues are considerably larger than the others,
i.e. λ̃s+1 � λ̃s. Then we concentrate on the subspace of IRm, which is spanned
by the eigenvectors v1, . . . , vs. More precisely, if Ps denotes the (m × s)-matrix
with columns v1, . . . , vs then

PTs C̃Ps = D̃s with D̃s = diags(λ̃1, . . . , λ̃s) (PCA). (5)

where Ds is diagonal with diagonal entries λ̃1, . . . , λ̃s. Typically, s ≤ 3, and often
s = 1. Note that if the random vector Y is Nm(0, C)-distributed then PTs Y is
Ns(0, PTs CPs)-distributed [14]. Formula (5) adjusts principle component analysis
(PCA) to the stochastic approach; cf. [1] (template attacks). We point out that
it is numerically more convenient to calculate the transformation matrix Ps by
means of a singular value decomposition than ’directly’ from (5).

78

Attack Phase In the attack phase the adversary performs N3 measurements
at the target device and obtains power vectors it(x1, k

†), . . . , it(xN3
, k†) with

the unknown subkey k† while x1, . . . , xN3 are known. The adversary decides for
that subkey candidate k∗ ∈ {0, 1}s that

maximizes

N3∏

l=1

f
D̃s

(
PTs

(
it(xl, k

†)− h̃∗t;k(xl, k
∗)
))

resp., minimizes

N3∑

j=1

(
PTs
(
it(xj , k

†)− ht(xj , k
∗)
))t

D̃−1s
(
P ts
(
it(xj , k

†)− ht(xj , k
∗)
))
. (6)

Here f
D̃s

denotes the density of the centered s-dimensional normal distribution

with covariance matrix D̃s

3.2 The ’Classical’ Stochastic Approach (With Masking)

If the implementation is protected by masking techniques the mathematical
model (1) generalizes to

It(x, k) = ht(x, z, k) +Rt (7)

where z denotes a masking value. Analogously to the non-masking case one
considers the restricted functions ht;k: {0, 1}p×{0, 1}s×{k} → IR, ht;k(x, z, k) :=
ht(x, z, k) and basis functions gj,t;k(x, z, k). It is one of the pleasant properties
of the stochastic approach that masking neither makes profiling more difficult
nor requires larger profiling workload, which is very different to (at least) full
template attacks. As for template attacks in the attack phase the maximum
likelihood principle is applied to a convex combination of normal distributions
[24]. This convex combination of densities expresses the effect of the applied
masking techniques. Since we only consider non-masked implementations in the
remainder we do not deepen these aspects here.

3.3 The Stochastic Approach: The OTM-Variant

In Sect. 3.1 we have tacitly assumed (as usual in literature) that the environ-
mental conditions remain unchanged during the experiments, implying identical
leakage functions and identical distribution of the noise during the whole pro-
filing phase and during the attack phase. However, this may not always be the
case. A prominent example are the power traces of the DPA contest v2 [7]. The
organizers of the contest needed almost 4 days to record the so-called template
base, which we used to estimate the leakage function and the distribution of the
noise. Figure 1 shows that the average power consumption is diurnally periodic,
presumably due to the variation of the temperature in the lab during these days
(cf. [12], Sect. 3 for details).

This suggests the following extension of the mathematical model (1)

It(x`, k) = ht(x`, k) + τt;` +Rt . (8)

79

0 2000 4000 6000 8000 10000
−5500

−5450

−5400

−5350

−5300

−5250

−5200

−5150
data−independent point

Fixed average (window size=100)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 2000 4000 6000 8000 10000
−5150

−5100

−5050

−5000

−4950

−4900

−4850

−4800
data−independent point

Fixed average (window size=100)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 2000 4000 6000 8000 10000
4000

4100

4200

4300

4400

4500
data−dependent point

Fixed average (window size=100)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

0 2000 4000 6000 8000 10000
5200

5300

5400

5500

5600
data−dependent point

Fixed average (window size=100)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

Fig. 1. Electrical current: Average value of 100 subsequent non-overlapping power
traces [12]

The letter ’`’ denotes the label of the power trace, pointing to the time when
the trace was recorded, while ’t’ (as before) stands for the time instant within
the particular power trace. We call τt;` the ’drifting offset’ fotr power trace `. In
particular, It(x`, k) ∼ N(ht,k(x`, k) + τt;`, σ

2).
By subtracting a suitable multiple of g0,t;k one can enforce that all basis

vectors g1,t;k, . . . , gu−1,t;k have expectation 0. Then β0,t;k = E(It(X, k)), and
variations of the average current consumption influence the coefficient β0,t;k. The
coefficient β0,t;k is data-independent and its absolute value is usually significantly
larger than the others (about factor ≈ 70 for the DPA contest v2 power traces,
cf. [12]).

The drifting offsets τt;l are unknown but since the environmental conditions
vary slowly τt;`+1 − τt;` ≈ 0, and thus

It(x`+1, k)− It(x`, k) ≈ ht(x`+1, k)− ht(x`, k) +Rt −R′t (9)

∼ N(ht,k(x`+1, k)− ht,k(x`, k), 2σ2) .

In (9) the drifting offset does not appear. Based on this observation in [12] a new
variant of the stochastic approach was developed, omitting the constant basis
vector g0,t;k, and the basis vectors g1,t;k, . . . , gu−1,t;k span the subspace F◦u,t;k.
This variant is suitable for scenarios where a drifting offset occurs. The general
concept is analogous to Subsect. 3.1.

– Profiling phase 1: Estimation of the reduced leakage function h∗◦t,k(x, k) :=∑u−1
j=1 gj,t;k(x, k) = h∗t,k(x, k)− β0,t;k

– Profiling phase 2: Estimation of the covariance matrix, applying PCA.
– Attack phase: Maximum-Likelihood principle

80

Since the drifting offsets are unknown one exploits (9). Consequently, the random
variables It(x1, k), . . . , It(xN1

, k) and the measurement vectors it(x1, k), . . . ,
it(xN1 , k) are not treated independently but overlapping pairs It(x2, k)−It(x1, k),
It(x3, k)−It(x2, k), . . . , It(xN1 , k)−It(xN1−1, k) and it(x2, k)−it(x1, k), it(x3, k)−
it(x2, k), . . . , it(xN1

, k) − it(xN1−1, k) have to be considered. This implies ad-
ditional mathematical difficulties, in particular in the attack phase, see [12],
Subsect. 4.2, for details.

4 The Stochastic Approach Supports (Re-)Design

An outstanding feature of the stochastic approach is that it quantifies the leakage
with regard to some vector space basis g0,t;k, . . . , gu−1,t;k. In this section we
explain how this property can be used to support target-oriented (re-)design.
For design purposes only the first part of the profiling phase (estimation of the
leakage function) is relevant.

4.1 How to Select Appropriate Basis Vectors (Example)

Figure 2 shows the final round of an AES implementation on an FPGA where
all bytes are processed in parallel. From a logical point of view the registers
R1, . . . ,R16 represent the intermediate results after Round 9 (upper row; de-

noted by R̂j in the following) and the results after Round 10 (cipher text bytes;

lower row). Physically, R̂j and Rj address the same byte register. To R̂j a byte is

XORed, which comes from register value R̂i (S-box, AddRoundKey) for a suit-
able index i. The CMOS technology suggests a distance model, which means that

Add
RoundKey

ShiftRows

SubBytesS S S S S S S S S S S S S S S S

R1 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

Add
Roundkey

Add
Roundkey

Add
Roundkey

Add
Roundkey

Round 10

R1 R3 R4 R5 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16R2

R2

R6

Round 9

Fig. 2. FPGA implementation of AES: last round [15]

the power consumption to update the register value Rj depends on k(j)⊕S(R̂i),

81

resp. on Rj⊕ R̂j. This motivates the choice of the following 9-dimensional basis:

g0,t;k(y)
((x(z), x(y)), k(y)) = 1 (10)

gj,t;k(y)
((x(z), x(y)), k(y)) = (x(z) ⊕ S−1(x(y) ⊕ k(y)))j − 0.5 for j = 1, . . . , 8

for suitable pairs (y, z) (cf.[15], Appendix, for instance). The index j denotes

the jth bit of the byte. This subspace aims at the subkey k(y). Note that the
term −0.5 = −0.5g0,t;k((x(z), x(y)), k(y)) is not mandatory as these basis vectors
span the same vector subspace as without this term, and even the coefficients
βj,t;k are identical for j > 0. The reason to introduce the term −0.5 is that
for y /∈ {1, 5, 9, 13} it is E(gj,t;k(y)

((x(z), x(y)), k(y))) = 0 for j = 1, . . . , 8 and
uniformly distributed cipher text bytes (x(y), x(z)); Example: (y, z) = (2, 6), see
[15]. In particular, β0,t;k = E(It(x, k)). Note that for y ∈ {1, 5, 9, 13} we have
y = z, and E(gj,t;k(y)

((x(z), x(y)), k(y))) ≈ 0. (To obtain ’= 0’ for these y’s one
simply has to adjust the term −0.5.) Subsection 4.3 treats high-dimensional
subspaces.

4.2 Information Gained from the β-Coefficients

Subsection 4.2 continues Subsection 4.1. Since the S-box defines a bijection it
may be natural to expect |β1,t;k(y)| ≈ · · · ≈ |β8,t;k(y)|. In fact, why should
some bit lines behave significantly different than others? Figure 3 shows the
β-coefficients |β1,ti,k(1) |, . . . , |β8,ti,k(1) | for 20 time instants t1 < · · · < t20 for the
key byte value 209 = (11010001)2 (other key values behave similarly).

These β-coefficients stem from an AES implementation on a XILINX FPGA.
The S-box permutation was realised by a lookup-table, and the design was fi-
nally synthesised for the Virtex-II pro family using the automatic place & route
algorithm. The β-coefficients indicate that the automatic place & route process
treats the particular bits very differently. In fact, a closer look at the design (Fig-
ure 4) shows that bit 5 switches several first stage multiplexers etc. Of course,
this is an important design information, which allows to identify the origin of
this imbalancedness. We refer the interested reader to [15], Sect. 4, for details.

4.3 High-Dimensional Subspaces

In Subsection 4.1 and Subsection 4.2 we focused on the last round of an AES
implementation on an FPGA. The subspace F9,t;k revealed a significant weak-
ness of this particular implementation. A pure Hamming distance model can
not provide this information, and its attack efficiency is definitely lower. A nat-
ural question is whether larger subspaces than F9,t;k further increase the attack
efficiency and provide more information on the target implementation. On the
negative side larger subspaces require larger sample sizes in the profiling phase.

The answer is that larger subspaces may indeed be much more efficient than
Fu,t;k. To illustrate this fact we briefly sketch the results from [12], which treats
the power traces from the DPA contest v2 [7]. The template base of the DPA

82

1 2 3 4 5 6 7 8 0

10

20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 10 3

Fig. 3. β-characteristic for subkey
k(1) = 209 at time instants t1, . . . , t21 [15]

CLB

Bit 1

Bit 2

Bit 3

Bit 4

LUT

F7

F5

LUT

LUT

F6

F5

LUT

LUT

F6

F5

LUT

LUT

F8

F5

LUT

Bit 6

Bit 5

Bit 7

Fig. 4. Section of an TBL-AES design on a
Virtex-II pro FPGA [15]

contest v2 consists of 1 million power traces (usable for profiling). Moreover, the
organizers provided a public base consisting of 32 sets of 20000 power traces,
each set belonging to one key. The public base allowed the contestants to check
the strength of their attack, which they had developed on basis of the power
traces in the template base. Finally, the organizers rated the submitted attacks
by a secret private base. Since the DPA contest v2 provides power traces from
an AES implementation on an FPGA it is reasonable to start with the basis (10)
from Subsction 4.1

gj,t;k(y)
((x(z), x(y)), k(y)) := (x(z) ⊕ S−1(x(y) ⊕ k(y)))j︸ ︷︷ ︸

:=ĝj,t;k

−2−1 for j = 1, . . . , 8.

(11)
We set B0 := {g0,t;k(y)

= 1} and B1 := {g1,t;k(y)
, . . . , g8,t;k(y)

}, which captures
the independent leakage contributions of the particular bit lines. Further, for
2 ≤ i ≤ 8 we define the sets of basis vectors

Bi := {ĝj1,t;k(y)
· · · ĝji,t;k(y)

− 2−i | 1 ≤ j1 < . . . < ji ≤ 8} . (12)

(Example: ĝ4,t;k(y)
· ĝ7,t;k(y)

− 2−2 ∈ B2.) The term −2−i ensures that all basis
vectors in Bi have expectation 0 (for y /∈ {1, 5, 9, 13}). Since the contest traces
showed a drifting offset (cf. Subsect. 3.3) we applied the OTM variant. More pre-
cisely, we considered the subspaces F◦u,t;k for u ∈ {9, 37, 93, 163, 219, 247, 255, 256},
which are spanned by the vector space bases B1,B1 ∪ B2, . . . ,B1 ∪ · · · ∪ B8, re-
spectively.

The attack efficiency increased significantly until F◦218,t;k whose basis con-
tains all 5-fold products. For F◦9,t;k we needed 13020 power traces (public base)
that the attack program ranked the correct key (all 16 key bytes) first with
probability > 80%. For u = 37, 93, 163, 219 the number of traces decreased to

83

7533, 6734, 6144, 4564. In combination with vertical trace alignment for F◦256,t;k
the number of traces dropped down to 3836 power traces (public basse) and
to 3589 for the private base. For details we refer the interested reader to [12],
Sects. 6-7.

In each of the three main evaluation categories (PSR stable, GSR stable, max
PGE stable) the stochastic approach (OTM method) needed only half as many
power traces as the contest winners in the respective category. (We submitted
after the end of the contest.) This shows that the stochastic approach exploits
the information that is contained in the power traces significantly more efficient
than the other attacks. It should be noted that even the β-coefficients for some
5-fold products were non-negligible. The corresponding basis vectors capture the
leakage, which stems from the interaction of 5 bit lines. This can’t be the effect
of crosstalk phenomena but might be the effect of propagation glitches [12].

In the meanwhile a Japanese research group has submitted a new attack,
which is in the categories PSR stable and GSR stable (but not in max PGE
stable) even better than the stochastic approach. This attack combines inform-
ation from Round 10 (gained by a CPA) with information from Round 9 (clock-
wise collision analysis [19]), which is new. Combining the stochastic approach in
Round 10 with clockwise collision analysis in Round 9 should further improve
their result.

4.4 Symmetries

In Subsection 4.1 we assumed that the leakage function ht(·, ·) (AES implemen-
tation, last round) depends on its argument ((x(z), x(y)), k(y)) only through the
term φ((x(z), x(y)), k(y)) := x(z)⊕S−1(x(y)⊕ k(y)). If this symmetry assumption

is indeed valid there exists a function ht: {0, 1}8 → IR such that ht = ht ◦ φ.

In the general case we analogously search for functions φ: {0, 1}p×{0, 1}s →
Ω such that ht(x, k) = ht◦φ(x, k) for suitable ht:Ω → IR. The mapping φ clearly
depends on the concrete implementation, and not for each implementation such
a function φ need to exist.

Clearly ht;k = ht ◦ φ(·, k) ∈ Fk,φ := {h′ ◦ φ(·, k) | h′:Ω → IR}, which is a
vector subspace of Fk. Consequently, for k ∈ {0, 1}s it is reasonable to select a
basis g0,t;k, . . . , gu−1,t;k of the form gj,t;k = gj;t ◦ φ(·, k) with gj;t:Ω → IR, i.e.
gj,t;k ∈ Fk,φ. This clearly ensures Fu,t;k ⊆ Fk,φ ⊆ Fk, and replacing φ(·, k) by
φ(·, k′) provides a basis for k′ ∈ {0, 1}s.

If φ: {0, 1}p × {0, 1}s → Ω fulfils the following conditions

(i) |φ−1(ω) ∩ ({0, 1}p × {k}) | is identical for all (ω, k) ∈ Ω × {0, 1}s (13)

(ii) The random variable X is uniformly distributed. (14)

then for each subkey k ∈ {0, 1}s

Prob(φ(X, k) = ω) =
1

|φ({0, 1}p × {0, 1}s)| for all ω ∈ φ({0, 1}p × {0, 1}s), (15)

84

i.e. the random variable φ(X, k) is uniformly distributed on φ({0, 1}p×{0, 1}s) =
φ({0, 1}p × {k}). In particular, φ(X, k′) is identically distributed for all subkeys
k′ ∈ {0, 1}s. If the symmetry assumption, expressed by φ, is indeed valid (15)

implies that the coefficients βj,t;k′ in h∗t;k′ =
∑u−1
j=0 βj,t;k′gj,t ◦ φ(·, k′) do not

depend on k′. This means

βj,t;k′ ≡ βj,t for all k′ ∈ {0, 1}s , (16)

i.e. the coefficients βj,t,· are identical for all subkeys k′ ∈ {0, 1}s. (If condition
(15) is only ’nearly’ fulfilled one may expect that (16) is at least approximately
valid.)

Hence it suffices to estimate the leakage function ht(·, k) for a single subkey
k since ht(x, k

′) = ht(x
∗, k) whenever φ(x, k′) = φ(x∗, k). Moreover, applying

φ one can ’convert’ a power trace for subkey k′ into a power trace for any
given subkey k∗. We made use of this property in the DPA contest v2 (cf.
Subsect. 4.3), which allowed to use all power traces from the template base
for a single estimation process. We point out that the concept of symmetry can
be generalized to masking techniques in a straight-forward way, e.g. φ: {0, 1}p×
M × {0, 1}s → Ω is the pendant to φ: {0, 1}p × {0, 1}s → Ω etc.

Remark 1. (i) The mapping φ describes a leakage model, namely that the leakage
ht(x, k) only depends on the term φ(x, k).
(ii) For specific mappings φ the pre-images φ−1(ω) can be represented as orbits
of an action of a group G on the set {0, 1}p × {0, 1}s. Examples are φ: {0, 1}8 ×
{0, 1}8 → {0, 1}8, φ(x, k) := x⊕k (cf. [23], Subsect. 3.1), with group G = {0, 1}8
acting on {0, 1}8×{0, 1}8 via (y, (x, k)) 7→ (x⊕y, k⊕y), likewise the mapping φA
in Subsection 4.5 below, and Example 2.10 (ii) in [24] (masking case). Although
such a representation does not for each mapping φ we use the intuitive term
’symmetry’, which has already been adopted in literature in this context.

4.5 How to Verify a Leakage Model Assumption

Symmetries have nice properties. It suffices to estimate the leakage function ht;k
for a single subkey, which reduces the profiling workload in Phase 1 by factor
2−s, and any power trace (regardless of the corresponding subkey) can be used
for profiling. Vector subspaces Fu,t;k need only be searched within Fk,φ. This
inclusion is automatically ensured for basis vectors of type gj,t;k := gj,t ◦ φ.
Usually dim(Fk,φ) is much smaller than dim(Fk). For the AES example treated
in Subsections 4.1 and 4.3 it is dim(Fk,φ) = 28 whereas dim(Fk,φ) = 216. In
Subsection 4.3 we used amongst others the whole vector space Fk,φ (at cost of
a large profiling sample size). This is definitely infeasible for Fk.

Of course, it is very likely that a non-justified symmetry assumption leads
to wrong conclusions. First of all, for given subkey k the vector space basis
might be inappropriate (neglecting relevant sources of the power leakage), and
certainly the ’transfer’ of β-coefficients to other subkeys by means of (16) is
presumably not justified. In particular, the power leakage itself and thus the

85

threat by (strong) power attacks might be underestimated, which may cause
wrong design decisions.

Consequently, we need criteria which allow to verify or to falsify a given sym-
metry assumption. An important property is (16), which holds if the symmetry
assumption and (15) are valid. A straight-forward approach is to profile for sev-
eral subkeys and then to compare the estimated β-coefficients. Considerably
different β-coefficients (for identical indices j) falsify the symmetry assumption
while fairly identical β-coefficients supports the symmetry assumption.

This decision process may be quantified. We assume that g0,t;k = 1, g1,t;k :=
g1,t ◦ φ(·, k), . . . , gu−1,t;k := gu−1,t ◦ φ(·, k) ∈ F◦u,t;k is an orthonormal basis

of Fu,t;k with regard to the scalar product (f1, f2) 7→ 2−p
∑
x∈{0,1}p f1(x, k) ·

f2(x, k), which corresponds to uniformly distributedX. Then g0,t;k′ = 1, g1,t;k′ :=
g1,t ◦ φ(·, k′), . . . , gu−1,t;k′ := gu−1,t ◦ φ(·, k′) is an orthonormal basis of Fu,t,k′
for each admissible subkey k′. We define

symu(k′, k′′) :=
2
√∑u−1

j=1 (βj,t,k′ − βj,t,k′′)2
√∑u−1

j=1 β
2
j,t,k′ +

√∑u−1
j=1 β

2
j,t,k′′

(17)

which compares the β-coefficients for mutally different subkeys k′ and k′′. Obvi-
ously, symu(k′, k′′) = 0 if the β-coefficients are identical for k′ and k′′, and if the
symmetry assumption and (15) are valid then symu(k′, k′′) = 0 for all admis-
sible pairs of subkeys. The term (17) quantifies a ’symmetry distance’ between
different subkeys. The term symu(k′, k′′) remains invariant if all β′- and β′′-
coefficients are multiplied by a positive scalar or if the basis g0,t;k = 1, g1,t;k :=
g1,t ◦ φ(·, k), . . . , gu−1,t;k := gu−1,t ◦ φ(·, k) is replaced by any other orthonor-
mal basis g′0,t;k = 1, g′1,t;k := g′1,t ◦ φ(·, k), . . . , g′u−1,t;k := g′u−1,t ◦ φ(·, k) (for all
k ∈ {0, 1}s). Since the correct β-coefficients are unknown one substitutes their

estimates β̃j,t,k′ and β̃j,t,k′′ (gained from independent profiling processes for k′

and k′′, neglecting (16) for the moment) into (17). Of course, for increasing
profiling sample size this term converges to (17).

Now we illustrate the preceding by an example. With regard to the AES
implementation in Subsection 4.1 we assumed that the leakage function ht(·, ·)
depends on its argument (x(z), x(y)), k(y)) only through φB((x(z), x(y)), k(y)) :=
x(z)⊕S−1(x(y)⊕ k(y)). We considered the 9-dimensional vector subspace F9,t;k,
which is spanned by the basis vectors

g0,t;k(y)
((x(z), x(y)), k(y)) = 1 (18)

gj,t;k(y)
((x(z), x(y)), k(y)) = 2

(
x(z) ⊕ S−1(x(y) ⊕ k(y))j − 0.5

)
for j = 1, . . . , 8 .

Compared to (10) for each index j > 0 we multiplied the basis vector by ’2’.
Of course, this does not change the spanned vector subspace. At least for y /∈
{1, 5, 9, 13} the basis (18) is orthonormal, and φB fulfils (13).

Alternatively, we consider a second symmetry assumption φA(x(y), k(y)) :=
S−1(x(y) ⊕ k(y)), which yields the following 9-dimensional orthonormal basis

g0,t;k(y)
(x(y), k(y)) = 1 (19)

86

gj,t;k(y)
(x(y), k(y)) = 2(S−1(x(y) ⊕ k(y))j − 0.5) for j = 1, . . . , 8 .

At first we compared the estimated β-coefficients for both symmetry assumptions
with regard to (16). Indeed, for symmetry assumption φB only small differences
occured while for φA the differences were significant ([10], Fig. 2 and Fig. 3; φA
and φB refer to Model A, resp. to Model B in [12]). This is a clear indicator,
which speaks for symmetry assumption φB but against φA. (Of course, with
regard to the implementation this is not really surprising.)

Moreover, we applied (17) to both the symmetry assumptions φA and φB ,
and in each case we compared the estimated β-coefficients for different subkeys.
Figure 5 and Figure 6 illustrate the results for the last three AES rounds for
key byte k(2). The middle part of Figure 6 shows that the symmetry assumption
φB fits pretty well during the last round. Interestingly, Figure 6 shows that time
instants with low symmetry values have (at least one) large β-coefficient, which
is an indicator that this time instant provides ’much’ leakage information. For
details we refer the interested reader to [10], Sect. IV.

0 230 460 690 920 1150 1380 1610 1840 2070 2300
0

0.025

0.05

0.075

0 230 460 690 920 1150 1380 1610 1840 2070 2300
0

0.5

1

1.5

2

0 230 460 690 920 1150 1380 1610 1840 2070 2300
40

20

0

20

40

Time instance

Time instance

Time instance

β-
va

lu
es

Sy
m

m
et

rie
 m

et
ric

Po
w

er
 tr

ac
e

a)

b)

c)

Fig. 5. [10] φA: a) max1≤j≤8{|βj,t;k|},
b) ’symmetry distance’ (17), c) power
consumption

0 230 460 690 920 1150 1380 1610 1840 2070 2300
0

0.1

0.2

0.3

0 230 460 690 920 1150 1380 1610 1840 2070 2300
0

0.5

1

1.5

2

0 230 460 690 920 1150 1380 1610 1840 2070 2300
40

20

0

20

40

Time instance

Time instance

Time instance

β-
va

lu
es

Sy
m

m
et

rie
 m

et
ric

Po
w

er
 tr

ac
e

a)

b)

c)

Fig. 6. [10] φB : a) max1≤j≤8{|βj,t;k|},
b) ’symmetry distance’ (17), c) power
consumption

4.6 Further Aspects

In Subsection 4.3 we rated the suitability of a subspace by its attack efficiency.
In [11] we developed a method to estimate the L2 distance of h̃∗t;k to ht;k. Let the
subkey k be fixed, and further x1, . . . , x2N , x

′
1, . . . , x

′
2N ∈ {0, 1}p with x′2j−1 =

x′2j for j = 1, . . . , N . As usual, it(x1, k), . . . , it(x
′
2N , k) denote the corresponding

power traces. It follows from formulae (13) and (16) in [11] that

2−p
∑

x∈{0,1}p
(ht;k − h̃∗t;k)2 ≈ (20)

87

1

2N

2N∑

j=1

(
it(xj , k)− h̃∗t;k(xj , k)

)2
− 1

2N

N∑

v=1

(
it(x

′
2v−1, k)− it(x′2v, k)

)2

for sufficiently large N , providing an estimate for the searched L2 distance (cf.
[11] for deetails). Similarly, in [11] we also introduced an estimator for the signal-
to-noise ratio.

5 Final Remarks

The stochastic approach is a very efficient attack variant. Moreover, it can also be
used to gain valuable design information, possibly pointing to weaknesses of the
implementation. The stochastic approach allows the verification or falsification
of leakage models, and it is a useful tool that supports constructive side-channel
analysis.

References

1. C. Archambeau, E. Peeters, F.-X. Standaert, J.-J. Quisquater: Template attacks
in Principal Subspaces. In: L. Goubin, M. Matsui (eds.): Cryptographic Hardware
and Embedded Systems — CHES 2006, Springer, Lecture Notes in Computer
Science 4249, Berlin 2006, 1–14.

2. E. Brier, C. Clavier, F. Olivier: Correlation Power Analysis with a Leakage model.
In: M. Joye, J.-J. Quisquater (eds.): Cryptographic Hardware and Embedded Sys-
tems — CHES 2004, Springer, Lecture Notes in Computer Science 3156, Berlin
2004, 16–29.

3. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi: Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In: M. Wiener (ed.): Advances in Cryptology —
CRYPTO ‘99, Springer, Lecture Notes in Computer Science 1666, Berlin 1999,
398–412.

4. S. Chari, J.R. Rao, P. Rohatgi: Template Attacks. In: B.S. Kaliski Jr., Ç.K. Koç,
C. Paar (eds.): Cryptographic Hardware and Embedded Systems — CHES 2002,
Springer, Lecture Notes in Computer Science 2523, Berlin 2003, 13–28.

5. J.-S. Coron and L. Goubin: On Boolean and Arithmetic Masking against Dif-
ferential Power Analysis. In: Ç.K. Koç, C. Paar (eds.): Cryptographic Hardware
and Embedded Systems — CHES 2000, Springer, Lecture Notes in Computer Sci-
ence 1965, Berlin 2000, 231-237.

6. J. Doget, E. Prouff, M. Rivain, F.-X. Standaert: Univariate Side Channel Attacks
and Leakage Modeling. In: COSADE 2011, Darmstadt 2011, 116.

7. DPA contest v2, http://www.dpacontest.org/
8. B. Gierlichs, K. Lemke, C. Paar: Templates vs. Stochastic Methods. In: L. Goubin,

M. Matsui (eds.): Cryptographic Hardware and Embedded Systems — CHES 2006,
Springer, Lecture Notes in Computer Science 4249, Berlin 2006, 15–29.

9. B. Gierlichs, L. Batina, P. Tuyls, B. Preneel: Mutual Information Analysis - A
Generic Side-Channel Distinguisher. In: E. Oswald, P. Rohatgi (eds.): Crypto-
graphic Hardware and Embedded Systems - CHES 2008, Lecture Notes in Com-
puter Science 5154, Springer, Berlin 2008, 426-442.

88

10. A. Heuser, M. Kasper, W. Schindler, M. Stöttinger: How a Symmetry Metric As-
sists Side-Channel Evaluation - A Novel Model Verification Method for Power
Analysis. In: P. Kitsos (Hrsg.): 14th EUROMICRO Conference on Digital System
Design — DSD 2011, IEEE Press 2011, 674–681.

11. A. Heuser, W. Schindler, M. Stöttinger: Revealing Side-Channel Issues of Complex
Circuits by High-Dimensional Leakage Models. In: Design, Automation & Test in
Europe — DATE 2012, IEEE Press 2012, 1179–1184.

12. A. Heuser, M. Kasper, W. Schindler, M. Stöttinger: A Difference Method for Side-
Channel Analysis Exploiting High-Dimensional Leakage Models. In: O. Dunkel-
man: (Hrsg.): Topics in Cryptology — CT-RSA 2012, Springer, Lecture Notes in
Computer Science 7178, Berlin 2012, 365–382.

13. M. Joye, P. Paillier, B. Schoenmakers: On Second-Order Differential Power Analy-
sis. In: J.R. Rao, B. Sunar (eds.): Cryptographic Hardware and Embedded Systems
— CHES 2005, Springer, Lecture Notes in Computer Science 3659, Berlin 2005,
293–308.

14. O.J.W.F. Kardaun: Classical Methods of Statistics, Springer, Berlin 2005.
15. M. Kasper, W. Schindler, M. Stöttinger: A Stochastic Method for Security Evalu-

ation of Cryptographic FPGA Implementations. In: 2010 International Conference
on Field-Programmable Technology — FPT 2010, IEEE Press, CFP10528−CDR,
2010, 146–153.

16. P. Kocher: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS and
Other Systems. In: N. Koblitz (ed.): Crypto 1996, Springer, Lecture Notes in Com-
puter Science 1109, Heidelberg 1996, 104–113.

17. P. Kocher, J. Jaffe, B. Jun: Differential Power Analysis. In: M. Wiener (ed.): Ad-
vances in Cryptology — CRYPTO ‘99, Springer, Lecture Notes in Computer Sci-
ence 1666, Berlin 1999, 388–397.

18. K. Lemke-Rust, C. Paar: Analyzing Side Channel Leakage of Masked Implementa-
tions with Stochastic Methods. In: J. Biskup, J. Lopez (eds.): Computer Security
— ESORICS 2007, Springer, Lecture Notes in Computer Science 4734, Berlin 2007,
454–468.

19. Y. Li, D. Nakatsu, Q. Li, K. Ohta, K. Sakiyama: Clockwise Collision Analysis
Overlooked Side-Channel Leakage Inside Your Measurements. Cryptology ePrint
Archive, Report 2011/579, http://eprint.iacr.org/2011/579

20. T.S. Messerges: Using Second-Order Power Analysis to Attack DPA Resistant Soft-
ware. In: Ç.K. Koç, C. Paar (eds.): Cryptographic Hardware and Embedded Sys-
tems — CHES 2000, Springer, Lecture Notes in Computer Science 1965, Berlin
2000, 238–251.

21. E. Oswald, S. Mangard: Template Attacks on Masking — Resistance is Futile. In:
M. Abe (ed.): Cryptographers’ Track — CT-RSA 2007, Springer, Lecture Notes in
Computer Science 4377, Berlin 2007, 243–256.

22. E. Peeters, F.-X. Standaert, N. Donckers, J.-J. Quisquater: Improved Higher-Order
Side-Channel Attacks with FPGA Experiments. In: J.R. Rao, B. Sunar (eds.):
Cryptographic Hardware and Embedded Systems — CHES 2005, Springer, Lecture
Notes in Computer Science 3659, Berlin 2005, 309–323.

23. W. Schindler, K. Lemke, C. Paar: A Stochastic Model for Differential Side Channel
Analysis. In: J.R. Rao, B. Sunar (eds.): Cryptographic Hardware and Embedded
Systems — CHES 2005, Springer, Lecture Notes in Computer Science 3659, Berlin
2005, 30–46.

24. W. Schindler: Advanced Stochastic Methods in Side Channel Analysis on Block
Ciphers in the Presence of Masking. Math. Crypt. 2 (2008), 291–310.

89

25. W. Schindler: Side-Channel Analysis – Mathematics has Met Engineering. In: A.
Biedermann, H.G. Molter (Hrsg.): Design Methodologies for Secure Embedded
Systems. Springer, Lecture Notes in Electrical Engineering 78, Berlin 2010, 43–62.

26. K. Schramm and C. Paar: Higher Order Masking of the AES. In: David Pointcheval
(ed.): The Cryptographers’ Track at the RSA Conference 2006, Springer, Lecture
Notes in Computer Science 3860, Berlin 2006, 208–225.

27. F.-X. Standaert, F. Koeune, W. Schindler: How to Compare Profiled Side-Channel
Attacks. In: M. Abdalla, D. Pointcheval, P.-A. Fouque, D. Vergnaud (eds.): Applied
Cryptography and Network Security — ACNS 2009, Springer, Lecture Notes in
Computer Science 5536, Berlin 2009, 485–498.

28. F.-X. Standaert, T.G. Malkin, M. Yung: A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks. In: A. Joux (ed.): Eurocrypt 2009, Lecture
Notes in Computer Science 5479, Berlin 2009, 443-461.

90

Toward Formal Design of Cryptographic
Processors Based on Galois Field Arithmetic

Naofumi Homma

Graduate School of Information Sciences, Tohoku University
homma@aoki.ecei.tohoku.ac.jp

Abstract. The continuing research and development of arithmetic cir-
cuits have been conducted by the growth of LSI design technologies as
well as the rapid expansion of the application area. In particular, the
importance of GF (Galois-field) arithmetic circuits has been rapidly in-
creasing due to the high demand of error correction codes and crypto-
graphic systems in recent embedded devices. On the other hand, most of
such GF arithmetic circuits are designed at the lowest level of abstrac-
tion by researchers who had trained in a particular way to understand
the basic arithmetic since the conventional HDLs (Hardware Description
Languages) do not have high-level arithmetic data structures, arithmetic
operations or formulae over GFs. Even the state-of-the-art design envi-
ronment (e.g. SystemC and System Verilog) can provide only limited
capability to design GF arithmetic circuit structures. The lack of a high-
level design methodology forces designers to verify structural details of
GF arithmetic circuits with a huge amount of time. In fact, it is almost
impossible to test all input patterns of GF circuits for practical word
lengths. Nevertheless, at the same time, complete verification of such
GF circuits is highly demanded in critical applications.
This talk presents a formal approach to describing and verifying GF
arithmetic circuits that can be used in many security applications. The
proposed method describes GF arithmetic circuits in the form of hi-
erarchical graph structures, where nodes represent sub-circuits whose
functions are defined by arithmetic formulae over GFs, and edges rep-
resent data dependency between nodes. The proposed description can
be formally verified by symbolic computations based on Gröbner Bases
and polynomial reduction. The verified description is then translated
into the equivalent HDL codes, which are available for the conventional
design flow. The proposed approach has a definite possibility of verify-
ing practical GF arithmetic circuits where the conventional simulation
techniques failed. The advantage of the proposed approach is demon-
strated through experimental designs of parallel multipliers over Galois
field GF (2m) for different word-lengths and irreducible polynomials. The
proposed approach is also applied to the design of a 128-bit AES (Ad-
vanced Encryption Standard) datapath. The results show that the pro-
posed method can describe the 128-bit datapath in a formal manner, as
well as that complete verification of such a datapath can be carried out
within a short period of time.

91

Analysing Cryptographic Hardware
Interfaces with Tookan

Invited Talk

Graham Steel

INRIA Project Prosecco, Paris, France
graham.steel@inria.fr

Abstract. Cryptographic hardware offers access to its functionality via
an application program interface (API). Designing such interfaces so that
they offer flexible functionality but cannot be abused to reveal keys or
secrets has proved to be extremely difficult, with a number of published
vulnerabilities in widely-used APIs appearing over the last decade. This
paper will discuss recent research on the use of formal methods to spec-
ify and verify cryptographic device interfaces in order to either detect
flaws or prove security properties. We will focus on the example of RSA
PKCS#11, the most widely used interface for cryptographic devices. We
will describe a tool, Tookan, which can reverse engineer the particular
configuration of PKCS#11 in use on some device under test, construct
a model of the device’s functionality, and call a model checker to search
for attacks. If an attack is found, it can be executed automatically on the
device. Tookan can also be used to prove security in its abstract model.
We will also discuss open problems and future work.

1 Introduction

A security API is an Application Program Interface that allows untrusted code
to access sensitive resources in a secure way. Examples of security APIs include
the interface between the tamper-resistant chip on a smartcard (trusted) and
the card reader (untrusted), the interface between a cryptographic Hardware
Security Module, or HSM (trusted) and the client machine (untrusted). The
crucial aspect of a security API is that it is designed to enforce a policy, i.e. no
matter what sequence of commands in the interface are called, and no matter
what the parameters are, certain security properties should continue to hold.
This means that if the less trusted code turns out to be malicious (or just
faulty), the carefully designed API should prevent compromise of critical data.

The first security vulnerability that may properly be called an ‘API attack’
on cryptographic hardware was discovered by Longley and Rigby in the early
1990s [27]. Their article showed how the logic programming language Prolog
could be used to analyse a key management interface of a cryptographic device.
Although the device was not identified at the time, it later became known that it
was an HSM manufactured by Eracom and used in the cash machine network. In

92

2000, Anderson published an attack on key loading procedures on another simi-
lar module manufactured by Visa [1], and the term ‘security API’ was coined by
Bond and Anderson [5, 6] in two subsequent papers giving more attacks. Clayton
and Bond showed how one of their more computationally intensive attacks could
be implemented against a real IBM device using programmable FPGA hardware
[11]. Independently from the Cambridge group, an MSc thesis by Clulow gave
more examples of attacks, mostly specific to the PIN translation and verifica-
tion commands offered by the API of Prism HSMs [12]. Clulow also published
attacks on the industry standard for cryptographic key management APIs, RSA
PKCS#11 [13].

Up until this point all the attacks had been discovered by manual analysis or
by ad-hoc semi-formal techniques specific to the particular API under considera-
tion. A first effort to apply more general formal tools, specifically the automatic
first-order theorem prover Otter, was not especially successful, and the results
remain unpublished (though they are available in a technical report [34]). The
researchers were unable to discover any new attacks, and because the modelling
lacked formal groundwork, when no attacks were found they were unable to con-
clude anything about the security of the device. One member of the team later
remarked that “It ended up being more about how to use the tools than about
analysing the device” [22].

Meanwhile, the formal analysis of protocols for e.g. cryptographic key ex-
change and authentication had become a mature field. A particularly success-
ful approach had centred around the so-called Dolev-Yao (DY) abstract model,
where bitstrings are modelled as terms in an abstract algebra, and cryptographic
functions are functions on these terms [17]. Together with suitable abstractions,
lazy evaluation rules and other heuristics, this model has proved highly amenable
to automated analysis, by model checking or theorem proving techniques [2, 4,
18, 28]. Modern automated tools can check secrecy and authentication properties
of (abstract models of) widely-used protocols such as Kerberos and TLS in a
few seconds.

The idea of applying protocol analysis techniques to the analysis of security
APIs seemed very attractive. However, initial experiments showed that existing
tools were not suitable for the problem [7, 25] for a number of reasons: In partic-
ular many of the attacks pertinent to security APIs are outside the scope of the
normal DY model. For example, they might involve an attacker learning a secret
value, such as a cash machine PIN, by observing error messages returned by the
API (a so-called error oracle attack). Furthermore, the functionality of security
APIs typically depends on global mutable state which may loop, a feature which
invalidates many abstractions and optimisations made by protocol analysis tools,
particularly when freshly generated nonces and keys are considered. There are
also problems of scale - a protocol might describe an exchange of 5 messages
between two participants, while an API will typically offer dozens of commands.

In this introductory paper, we will describe how protocol analysis techniques
have been adapted to analyse device APIs, in particular focusing on the example
of RSA PKCS#11.

93

2 Key Management APIs using RSA PKCS#11

Cryptographic key management, i.e. the secure creation, storage, backup, use
and destruction of keys has long been identified as a major challenge in applied
cryptography. Indeed, Schneier calls it “the hardest part of cryptography and
often the Achilles’ heel of an otherwise secure system.” [32]. In real-world appli-
cations, key management often involves the use of HSMs or other cryptographic
devices, since these are considered easier to secure than commodity hardware,
and indeed are mandated by standards in certain sectors [24]. There is also a
growing trend towards enterprise-wide schemes based around key management
servers offering cryptographic services over open networks [9]. All these solutions
aim to enforce security by dividing the system into trusted parts (HSM, server)
and untrusted parts (host computer, the rest of the network). The trusted part
makes cryptographic functions available via an API. How can we design an in-
terface for a key management device that can create, delete, import and export
keys from the device, as well as permitting their use for encryption, decryption,
signature and verification, all so that if the device comes into contact with a ma-
licious application we can be sure the keys stay secure? This is far from trivial,
as well will see from our case study of the most widely used standard for such
interfaces, RSA PKCS#11.

2.1 The PKCS#11 standard

RSA Public Key Cryptography Standards (PKCS) aim to standardise various as-
pects of cryptography to promote interoperability and security. PKCS#1, for ex-
ample, defines the RSA asymmetric encryption and signing algorithm. PKCS#11
describes the ‘Cryptoki’ API for cryptographic hardware. Version 1.0 was pub-
lished in 1995. The latest official version is v2.20 (2004) which runs to just
under 400 pages [31]. Adoption of the standard is almost ubiquitous in commer-
cial cryptographic tokens and smartcards, even if other interfaces are frequently
offered in addition.

In a PKCS#11-based API, applications initiate a session with the crypto-
graphic token, by supplying a PIN. Note that if malicious code is running on the
host machine, then the user PIN may easily be intercepted, e.g. by a keylogger
or by a tampered device driver, allowing an attacker to create his own sessions
with the device, a point conceded in the security discussion in the standard [31,
p. 31]. PKCS#11 is intended to protect its sensitive cryptographic keys even
when connected to a compromised host.

Once a session is initiated, the application may access the objects stored
on the token, such as keys and certificates. However, access to the objects is
controlled. Objects are referenced in the API via handles, which can be thought
of as pointers to or names for the objects. In general, the value of the handle,
e.g. for a secret key, does not reveal any information about the actual value of
the key. Objects have attributes, which may be bitstrings e.g. the value of a key,
or Boolean flags signalling properties of the object, e.g. whether the key may be
used for encryption, or for encrypting other keys. New objects can be created by

94

Initial knowledge: The intruder knows h(n1, k1) and
h(n2, k2). The name n2 has the attributes wrap and
decrypt set whereas n1 has the attribute sensitive and
extractable set.

Trace:

Wrap: h(n2, k2), h(n1, k1) → {|k1|}k2
SDecrypt: h(n2, k2), {|k1|}k2 → k1

Fig. 1. Wrap/Decrypt attack.

calling a key generation command, or by ‘unwrapping’ an encrypted key packet.
In both cases a new handle is returned.

When a function in the token’s API is called with a reference to a particular
object, the token first checks that the attributes of the object allow it to be used
for that function. For example, if the encrypt function is called with the handle
for a particular key, that key must have its encrypt attribute set. To protect a key
from being revealed, the attribute sensitive must be set to true. This means that
requests to view the object’s key value via the API will result in an error message.
Once the attribute sensitive has been set to true, it cannot be reset to false. This
gives us the principal security property stated in the standard: attacks, even if
they involve compromising the host machine, cannot “compromise keys marked
‘sensitive’, since a key that is sensitive will always remain sensitive”, [31, p. 31].
Such a key may be exported outside the device if it is encrypted by another key,
but only if its extractable attribute is set to true. An object with an extractable
attribute set to false may not be read by the API, and additionally, once set
to false, the extractable attribute cannot be set to true. Protection of the keys
essentially relies on the sensitive and extractable attributes.

2.2 The Wrap-Decrypt Attack

Clulow first published attacks on PKCS#11 based APIs in 2003 [13], where he
gave many examples of ways in which keys with the sensitive attribute set to
true could be read in clear outside the device. The most straightforward of these
is the ‘key separation’ attack, where the attributes of a key are set in such a way
as to give a key conflicting roles. Clulow gives the example of a key with the
attributes set for decryption of ciphertexts, and for ‘wrapping’, i.e. encryption
of other keys for secure transport.

To determine the value of a sensitive key, the attacker simply wraps it and
then decrypts it, as shown in Fig. 1. The attack is described with a notation
for PKCS#11 based APIs briefly defined in the following and more formally in
the next section: h(n1, k1) is a predicate stating that there is a handle encoded
by n1 for a key k1 stored on the device. The symmetric encryption of k1 under
key k2 is represented by {|k1|}k2 . Note also that according to the wrapping formats

95

defined in PKCS#11, the device cannot tell whether an arbitrary bitstring is
a cryptographic key or some other piece of plaintext. Thus when it executes
the decrypt command, it has no way of telling that the packet it is decrypting
contains a key.

It might appear easy to prevent such an attack, but as we shall see, it is
in fact rather difficult within the confines of PKCS#11. Before treating this in
detail, we will introduce our language for formal modelling of the API.

2.3 Formal Model

Our model follows the approach used by Delaune, Kremer and Steel (DKS) [15].
The device is assumed to be connected to a host under the complete control
of an intruder, representing a malicious piece of software. The intruder can call
the commands of the API in any order he likes using any values that he knows.
We abstract away details of the cryptographic algorithms in use, following the
classical approach of Dolev and Yao [17]. Bitstrings are modelled as terms in
an abstract algebra. The rules of the API and the abilities of an attacker are
written as deduction rules in the algebra.

Basic Notions We assume a given signature Σ, i.e. a finite set of function
symbols, with an arity function ar : Σ → N, a (possibly infinite) set of names N
and a (possibly infinite) set of variables X . Names represent keys, data values,
nonces, etc. and function symbols model cryptographic primitives, e.g. {|x|}y rep-
resenting symmetric encryption of plaintext x under key y, and {x}y representing
public key encryption of x under y. Function symbols of arity 0 are called con-
stants. This includes the Boolean constants true (>) and false (⊥). The set of
plain terms PT is defined by the following grammar:

t, ti := x x ∈ X
| n n ∈ N
| f(t1, . . . , tn) f ∈ Σ and ar(f) = n

We also consider a finite set F of predicate symbols, disjoint from Σ, from which
we derive a set of facts. The set of facts is defined as

FT = {p(t, b) | p ∈ F , t ∈ PT , b ∈ {>,⊥}}

In this way, we can explicitly express the Boolean value b of an attribute p on a
term t by writing p(t, b). For example, to state that the key referred to by n has
the wrap attribute set we write wrap(n,>).

The description of a system is given as a finite set of rules of the form

T ;L
new ñ−−−→ T ′;L′

where T, T ′ ⊆ PT are sets of plain terms L,L′ ⊆ F are sets of facts and ñ ⊆ N
is a set of names. The intuitive meaning of such a rule is the following. The rule

96

can be fired if all terms in T are in the intruder knowledge and if all the facts
in L hold in the current state. The effect of the rule is that terms in T ′ are
added to the intruder knowledge and the valuation of the attributes is updated
to satisfy L′. The new ñ means that all the names in ñ need to be replaced by
fresh names in T ′ and L′. This allows us to model nonce or key generation: if
the rule is executed several times, the effects are different as different names will
be used each time.

Example 1. The following rule models wrapping:

h(x1, y1), h(x2, y2); wrap(x1,>), extract(x2,>)→ {|y2|}y1
Intuitively, h(x1, y1) is a handle x1 for key y1 while term {|y2|}y1 represents a key y2
wrapped with y1. Since the attribute wrap for key y1 is set, noted as wrap(x1,>),
and key y2 is extractable, written extract(x2,>), then we can wrap y2 with y1,
creating {|y2|}y1 .

The semantics of the model is defined in a standard way in terms of a transi-
tion system. Each state in the model consists of a set of terms in the intruder’s
knowledge, and a set of global state predicates. The intruder’s knowledge in-
creases monotonically with each transition (he can only learn more things), but
the global state is non-monotonic (attributes may be set on and then off). For
a formal semantics, we refer to the literature [15]. We now present in Fig. 2 a
subset of PKCS#11 commands sufficient for some basic symmetric key man-
agement commands (the asymmetric key has also been treated in the literature
[16]). This will suffice to demonstrate the modelling technique and some attacks.

2.4 Using the Formal Model

We first add some rules to the model for the intruder that allow him to encrypt
and decrypt using his own keys (see Fig. 3). The intruder is assumed not to be
able to crack the encryption algorithm by brute-force search or similar means,
thus he can only read an encrypted message if he has the correct key. We analyse
security as reachability, in the model, of attack states, i.e. states where the
intruder knows the value of a key stored on the device with the sensitive attribute
set to true, or the extractable attribute set to false. We give the intruder some
initial knowledge, typically just some key ki that is not loaded on the device,
and then use a tool such as a model checker to search the model for a chain of
commands and intruder steps that leads to an attack state.

Unfortunately we immediately encounter both theoretical and practical prob-
lems. First, we know that the reachability problem in general for languages like
this is undecidable: even with fixed message size there is a reduction to the Post
correspondence problem [19, table 12, page 298]. Even so we might hope to find
some attacks in practice. But in fact the model checker is quickly swamped by the
combinatorial possibilities, many of which at first sight seem unlikely to lead to
an attack. For example, the intruder can take an already encrypted term {|k1|}k2 ,
and use it as input to the encrypt command along with some handle h(n, k3) to

97

KeyGenerate :
new n1,k1−−−−−→ h(n1, k1); L(n1), extract(n1,>)

Wrap :
h(x1, y1), h(x2, y2); wrap(x1,>), extract(x2,>) → {|y2|}y1
Unwrap :

h(x2, y2), {y1}y2 ; unwrap(x2,>)
new n1−−−−→ h(n1, y1); L(n1)

Encrypt : h(x1, y1), y2; encrypt(x1,>) → {|y2|}y1
Decrypt : h(x1, y1), {|y2|}y1 ; decrypt(x1,>) → y2

Set Wrap : h(x1, y1); wrap(x1,⊥) → wrap(x1,>)
Set Encrypt : h(x1, y1); encrypt(x1,⊥) → encrypt(x1,>)

...
...

UnSet Wrap : h(x1, y1); wrap(x1,>) → wrap(x1,⊥)
UnSet Encrypt : h(x1, y1); encrypt(x1,>) → encrypt(x1,⊥)

...
...

L = wrap(n1,⊥), unwrap(n1,⊥), encrypt(n1,⊥), decrypt(n1,⊥), sensitive(n1,⊥)

Fig. 2. PKCS#11 Symmetric Key Fragment.

x, y → {|x|}y
{|x|}y, y → x

Fig. 3. Intruder rules for symmetric key cryptography.

obtain {|{|k1|}k2 |}k3 . Unfortunately one cannot in general just delete these terms
from the intruder knowledge: they may be a necessary step for some fiendish
attack. Fortunately we can address both the the theoretical and practical prob-
lems at once, by means of a well-modedness result [16]. There it is shown that
each function symbol such as h(., .), {|.|}. can be given a unique interpretation in
terms of modes. For example, h(., .) has mode Nonce× Key→ Handle. We assign
to each constant symbol a mode. A term is well-moded if all the function symbols
in it are applied to symbols such that the modes are respected. Furthermore, any
reachability query that can be expressed with well-moded terms is satisfiable if
and only if it it is reachable by a sequence of steps where the intruder learns only
well-moded terms. This allows us to prune the search space dramatically, since
any branch that results in the creation of an ill-moded term can be ignored. If
the function symbols can be moded acyclically, we can also show decidability
provided we bound fresh handles and keys. Consult the paper for details and
proofs [16].

98

2.5 A Suite of Attacks

Equipped with a suitable formal model and a model checker, we can attempt to
find secure configurations of the standard. Clulow’s first suggestion for prevent-
ing the attack in Fig. 1 is to prevent attribute changing operations from allowing
a stored key to have both wrap and decrypt set. Note that in order to do this, it
is not sufficient merely to check that decrypt is unset before setting wrap, and to
check wrap is unset before setting decrypt. One must also add wrap and decrypt
to a list of ‘sticky’ attributes which once set, may not be unset, or the attack is
not prevented, [33]. Effectively this means the unset rules will be omitted from
the model for these attributes. Having applied these measures, we discover the
attack given in Fig. 4. The intruder imports his own key k3 by first encrypting
it under k2, and then unwrapping it. He can then export the sensitive key k1
under k3 to discover its value.

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2) and
the key k3; n1 has the attributes sensitive and extract set whereas n2 has
the attributes unwrap and encrypt set.

Trace:

Encrypt: h(n2, k2), k3 → {|k3|}k2
Unwrap: h(n2, k2), {|k3|}k2

new n3−−−→h(n3, k3)
Set wrap: h(n3, k3) → wrap(n3,>)
Wrap: h(n3, k3), h(n1, k1) → {|k1|}k3
Intruder: {|k1|}k3 , k3 → k1

Fig. 4. Attack using encrypt and unwrap.

To prevent the attack shown in Fig. 4, we add encrypt and unwrap to the list of
conflicting attribute pairs. Another new attack is discovered (see Fig. 5) of a type
discussed by Clulow, [13, Section 2.3]. Here the key k2 is first wrapped under k2
itself, and then unwrapped, gaining a new handle h(n4, k2). The intruder then
wraps k1 under k2, and sets the decrypt attribute on handle h(n4, k2), allowing
him to obtain k1.

One can attempt to prevent the attack in Fig. 5 by adding wrap and unwrap
to our list of conflicting attribute pairs. Now in addition to the initial knowledge
from the first three experiments, we give the intruder an unknown key k3 en-
crypted under k2. Again he is able to affect an attack similar to the one above,
this time by unwrapping {|k3|}k2 twice (see Fig. 6).

This sample of the attacks found show how difficult PKCS#11 is to configure
in a safe way, and indeed there are several more attacks documented in the
literature [8, 13, 16, 21] and perhaps more to discover. Another line of research has
consisted of trying to propose secure subsets of the API together with a suitable
security proof. An obstacle here is the fresh generation of keys and handles: if

99

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2); n1 has
the attributes sensitive, extract and whereas n2 has the attribute extract
set.

Trace:

Set wrap: h(n2, k2) → wrap(n2,>)
Wrap: h(n2, k2), h(n2, k2) → {|k2|}k2
Set unwrap: h(n2, k2) → unwrap(n2,>)

Unwrap: h(n2, k2), {|k2|}k2
new n4−−−→ h(n4, k2)

Wrap: h(n2, k2), h(n1, k1) → {|k1|}k2
Set decrypt: h(n4, k2) → decrypt(n4,>)
Decrypt: h(n4, k2), {|k1|}k2 → k1

Fig. 5. Re-import attack 1.

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2); n1 has
the attributes sensitive, extract and whereas n2 has the attribute extract
set. The intruder also knows {|k3|}k2 .
Trace:

Set unwrap: h(n2, k2) → unwrap(n2,>)

Unwrap: h(n2, k2), {|k3|}k2
new n3−−−→ h(n3, k3)

Unwrap: h(n2, k2), {|k3|}k2
new n4−−−→ h(n4, k3)

Set wrap: h(n3, k3) → wrap(n3,>)
Wrap: h(n3, k3), h(n1, k1) → {|k1|}k3
Set decrypt: h(n4, k3) → decrypt(n4,>)
Decrypt: h(n4, k3), {|k1|}k3 → k1

Fig. 6. Re-import attack 2.

there are no attacks in the model after generating n fresh keys, how do we know
there are no attacks after generating n+1? To address this problem, Fröschle and
Steel proposed abstractions for handles and keys that allow security proofs for
unbounded fresh data [21]. In particular, they showed the security of a symmetric
key management subset based around the proprietary extensions to PKCS#11
made by Eracom, where keyed hashes are used to bind attributes to keys under
wrapping, ensuring that they are re-imported with the same attributes.

2.6 Finding Attacks on Real Devices

Attacks on the standard are interesting in themselves, but in reality every device
implements a different subset of PKCS#11 with different restrictions on the use
of each command. How can one know whether a particular device is vulnera-
ble? To address this, Bortolozzo, Centenaro, Focardi and Steel developed the

100

Fig. 7. Tookan system diagram.

Tookan1 tool [8]. Tookan functions as shown in Fig. 7. First, Tookan extracts the
capabilities of the token following a reverse engineering process (1). The results
of this task are written in a meta-language for PKCS#11 models. Tookan uses
this information to generate a model the language described above (2), which is
encoded for input to the SATMC model checker [3]. If SATMC finds an attack,
the attack trace (3) is sent to Tookan for testing directly on the token (4).

Changes to the model There are several differences between Tookan’s model
and the model of section 2.3. One is that Tookan takes into account key templates.
In section 2.3, the key generation commands create a key with all attributes un-
set (see Fig. 2). Attributes are then enabled one by one using the SetAttribute
command. In our experiments with real devices, we discovered that some tokens
do not allow attributes of a key to be changed. Instead, they use a key tem-
plate specifying settings for the attributes which are given to freshly generated
keys. Templates are used for the import of encrypted keys (unwrapping), key
creation using CreateObject and key generation. The template to be used in a
specific command instance is specified as a parameter, and must come from a
set of valid templates, which we label G, C and U for the valid templates for key
generation, creation and unwrapping respectively. Tookan can construct the set
of templates in two ways: the first, by exhaustively testing the commands using
templates for all possible combinations of attribute settings, which may be very
time consuming, but is necessary if we aim to verify the security of a token.
The second method is to construct the set of templates that should be allowed
based on the reverse-engineered attribute policy (see next paragraph). This is
an approximate process, but can be useful for quickly finding attacks. Indeed,
in our experiments, we found that these models reflected well the operation of
the token, i.e. the attacks found by the model checker all executed on the tokens
without any ‘template invalid’ errors.

Attribute Policies Most tokens tested attempt to impose some restrictions
on the combinations of attributes that can be set on a key and how these may
be changed. There are four kinds of restriction that Tookan can infer from its
reverse engineering process:

Sticky on These are attributes that once set, may not be unset. The PKCS
#11 standard lists some of these [31, Table 15]: sensitive for secret keys, for

1 Tool for cryptoki analysis.

101

example. The UnsetAttribute rule is only included for attributes which are not
sticky on. To test if a device treats an attribute as sticky on, Tookan attempts
to create a key with the attribute on, and then calls SetAttribute to change the
attribute to off.

Sticky off These are attributes that once unset may not be set. In the
standard, extractable is listed as such an attribute. The SetAttribute rule is only
included for attributes which are not sticky off. To test if a device treats an
attribute as sticky on, Tookan attempts to create a key with the attribute off,
and then calls SetAttribute to change the attribute to on.

Conflicts Many tokens (appear to) disallow certain pairs of attributes to
be set, either in the template or when changing attributes on a live key. For
example, some tokens do not allow sensitive and extractable to be set on the same
key. The SetAttribute rule is adjusted to prevent conflicting attributes from being
set on an object or on the template. When calculating the template sets C,G,U
(see above), we forbid templates which have both the conflicting attributes set.
To test if a device treats an attribute pair as a conflict, Tookan attempts to
generate a key with the the pair of attributes set, then if no error is reported,
it calls GetAttribute to check that the token really has created a key with the
desired attributes set.

Tied Some tokens automatically set the value of some attributes based on the
value of others. For example, many tokens set the value of always sensitive based
on the value of the attribute sensitive. The SetAttribute and UnsetAttribute rules
are adjusted to account for tied attributes. The template sets C,G,U are also
adjusted accordingly. To test if a device treats an attribute pair as tied, Tookan
attempts to generate a key with some attribute a on and all other attributes off.
It then uses GetAttribute to examine the key as it was actually created, and tests
to see if any other attributes were turned on.

Limitations of Reverse Engineering Tookan’s reverse engineering process
is not complete: it may result in a model that is too restricted to find some
attacks possible on the token, and it may suggest false attacks which cannot be
executed on the token. This is because in theory, no matter what the results of
our finite test sequence, the token may be running any software at all, perhaps
even behaving randomly. However, if a token implements its attribute policy in
the manner in which we can describe it, i.e. as a combination of sticky on, sticky
off, conflict and tied attributes, then our process is complete in the sense that
the model built will reflect exactly what the token can do (modulo the usual
Dolev-Yao abstractions for cryptography).

In our testing, the model performed very well: the Tookan consistently found
true attacks on flawed tokens, and we were unable to find ‘by hand’ any attacks
on tokens which the model checker deemed secure. This suggests that real devices
do indeed implement their attribute policies in a manner similar to our model.

102

Device Supported Functionality Attacks found
Company Model sym asym cobj chan w ws a1 a2 a3 a4 a5 mc

USB

Aladdin eToken PRO X X X X X X X X a1
Athena ASEKey X X X
Bull Trustway RCI X X X X X X X X a1
Eutron Crypto Id. ITSEC X X
Feitian StorePass2000 X X X X X X X X X a3
Feitian ePass2000 X X X X X X X X X a3
Feitian ePass3003Auto X X X X X X X X X a3
Gemalto SEG X X
MXI Security Stealth MXP Bio X X X
RSA SecurID 800 X X X X X X X a3
SafeNet iKey 2032 X X X X
Sata DKey X X X X X X X X X X X a3

Card
ACS ACOS5 X X X X
Athena ASE Smartcard X X X
Gemalto Cyberflex V2 X X X X X X a2
Gemalto Classic TPC IS V1 X X
Gemalto Classic TPC IS V2 X X X X X X X X X X a3
Siemens CardOS V4.3 B X X X X X a4

Soft
Eracom HSM simulator X X X X X X X X a1
IBM opencryptoki 2.3.1 X X X X X X X X X a1

Table 1. Summary of results on devices.

2.7 Results

Table 1 summarises the results obtained by Tookan on a number of devices as well
as two software simulators. Supported functionality and attacks are summarized
in Table 2 and described below.

Implemented functionality Columns ‘sym’ and ‘asym’ respectively indicate
whether or not symmetric and asymmetric key cryptography are supported.
Column ‘cobj’ refers to the possibility of inserting external, unencrypted, keys
on the device via C CreateObject PKCS#11 function. This is allowed by almost
all of the analysed tokens, although it wasn’t included in the original model of the
standard used by Delaune, Kremer and Steel [16]. The next column, ‘chan’, refers
to the possibility of changing key attributes through C SetAttributeValue. The
following two columns, ‘w’ and ‘ws’, respectively indicate whether the token
permits wrapping of nonsensitive and sensitive keys.

Attacks Attack a1 is a wrap/decrypt attack as discussed in section 2.2. The
attacker exploits a key k2 with attributes wrap and decrypt and uses it to attack

103

Acronym Description

Supported
functionality

sym symmetric-key cryptography
asym asymmetric-key cryptography
cobj inserting new keys via C CreateObject

chan changing key attributes
w wrapping keys
ws wrapping sensitive keys

Attacks

a1 wrap/decrypt attack based on symmetric keys
a2 wrap/decrypt attack based on asymmetric keys
a3 sensitive keys are directly readable
a4 unextractable keys are directly readable (forbidden

by the standard)
a5 sensitive/unextractable keys can be changed into

nonsensitive/extractable
mc first attack found by Tookan

Table 2. Key for table 1.

a sensitive key k1. Using our notation from section 2.3:

Wrap: h(n2, k2), h(n1, k1) →{|k1|}k2
Decrypt: h(n2, k2), {|k1|}k2 →k1

As we have discussed above, the possibility of inserting new keys in the token
(column ‘cobj’) might simplify further the attack. It is sufficient to add a known
wrapping key:

CreateObject: k2
new n2−−−−→h(n2, k2)

Wrap: h(n2, k2), h(n1, k1) →{|k1|}k2
The attacker can then decrypt {|k1|}k2 since he knows key k2. SATMC discovered
this variant of the attack on several vulnerable tokens. Despite its apparent sim-
plicity, this attack had not appeared before in the PKCS#11 security literature
[13, 15].

Attack a2 is a variant of the previous ones in which the wrapping key is a
public key pub(z) and the decryption key is the corresponding private key priv(z):

Wrap: h(n2, pub(z)), h(n1, k1) →{k1}pub(z)
ADecrypt: h(n2, priv(z)), {k1}pub(z) →k1

In this case too, the possibility of importing key pairs simplifies even more the
attacker’s task by allowing him to import a public wrapping key while knowing
the corresponding private key. Once the wrap of the sensitive key has been
performed, the attacker can decrypt the obtained ciphertext using the private
key.

Attack a3 is a clear flaw in the PKCS#11 implementation. It is explicitly
required that the value of sensitive keys should never be communicated outside

104

the token. In practice, when the token is asked for the value of a sensitive key,
it should return some “value is sensitive” error code. Instead, we found that
some of the analysed devices just return the plain key value, ignoring this basic
policy. Attack a4 is similar to a3: PKCS#11 requires that keys declared to be
unextractable should not be readable, even if they are nonsensitive. If they are
in fact readable, this is another violation of PKCS#11 security policy.

Finally, attack a5 refers to the possibility of changing sensitive and unex-
tractable keys respectively into nonsensitive and extractable ones. Only the Sata
and Gemalto SafeSite Classic V2 tokens allow this operation. However, notice
that this attack is not adding any new flaw for such devices, given that attacks
a3 and a4 are already possible and sensitive or unextractable keys are already
accessible.

Model-checking results Column ‘mc’ reports which of the attacks was auto-
matically rediscovered via model-checking. SATMC terminates once it has found
an attack, hence we report the attack that was found first. Run-times for finding
the attacks vary from a couple of seconds to just over 3 minutes.

2.8 Finding Secure Configurations

As we observed in the last section, none of the tokens we tested are able to im-
port and export sensitive keys in a secure fashion. In particular, all the analysed
tokens are either insecure or have been drastically restricted in their function-
ality, e.g. by completely disabling wrap and unwrap. In this section, we present
CryptokiX, a software implementation of a Cryptoki token which can be fiXed
by selectively enabling different patches. The starting point is openCryptoki [30],
an open-source PKCS#11 implementation for Linux including a software token
for testing. As shown in Table 1, the analysis of openCryptoki software token
has revealed that it is subject to all the non-trivial attacks. This is in a sense
expected, as it implements the standard ‘as is’, i.e., with no security patches.
CryptokiX extends openCryptoki with:

Conflicting attributes We have seen, for example, that it is insecure to allow
the same key to be used for wrapping and decrypting. In CryptokiX it is possible
to specify a set of conflicting attributes.

Sticky attributes We know that some attributes should always be sticky, such
as sensitive. This is also useful when combined with the ‘conflicting attributes’
patch above: if wrap and decrypt are conflicting, we certainly want to avoid that
the wrap attribute can be unset so as to allow the decrypt attribute to be set.

Wrapping formats It has been shown that specifying a non-conflicting at-
tribute policy is not sufficient for security [13, 15]. A wrapping format should
also be used to correctly bind key attributes to the key. This prevents attacks
where the key is unwrapped twice with conflicting attributes.

Secure templates We limit the set of admissible attribute combinations for
keys in order to avoid that they ever assume conflicting roles at creation time.

105

This is configurable at the level of the specific PKCS#11 operation. For example,
we can define different secure templates for different operations such as key
generation and unwrapping.

A way to combine the first three patches with a wrapping format that binds
attributes to keys in order to create a secure token has already been demon-
strated [21] and discussed in section 2.5. One can also use the fourth patch
to produce a secure configuration that does not require any new cryptographic
mechanisms to be added to the standard, making it quite simple and cheap
to incorporate into existing devices. We consider here a set of templates with
attributes sensitive and extractable always set. Other attributes wrap, unwrap,
encrypt and decrypt are set as follows:

Key generation We allow three possible templates:

1. wrap and unwrap, for exporting/importing other keys;
2. encrypt and decrypt, for cryptographic operations;
3. neither of the four attributes set, i.e. the default template if none of the

above is specified.

Key creation/import We allow two possible templates for any key created
with CreateObject or imported with Unwrap:

1. unwrap,encrypt set and wrap,decrypt unset;
2. none of the four attributes set.

The templates for key generation are rather intuitive and correspond to a clear
separation of key roles, which seems a sound basis for a secure configuration.
The rationale behind the single template for key creation/import, however, is
less obvious and might appear rather restrictive. The idea is to allow wrapping
and unwrapping of keys while ‘halving’ the functionality of created/unwrapped
keys: these latter keys can only be used to unwrap other keys or to encrypt
data, wrapping and decrypting under such keys are forbidden. This, in a sense,
offers an asymmetric usage of imported keys: to achieve full-duplex encrypted
communication two devices will each have to wrap and send a freshly generated
key to the other device. Once the keys are unwrapped and imported in the
other devices they can be used to encrypt outgoing data in the two directions.
Notice that imported keys can never be used to wrap sensitive keys. Note also
that we require that all attributes are sticky on and off, and that we assume for
bootstrapping that any two devices that may at some point wish to communicate
have a shared long term symmetric key installed on them at personalisation
time. This need only be used once in each direction. Our solution works well for
pairwise communication, where the overhead is just one extra key, but would be
more cumbersome for group key sharing applications.

The developed solution has been implemented and analysed by extracting a
model using Tookan. A model for SATMC was constructed using the abstractions
described above (see end of section 2.5). Given the resulting model, SATMC ter-
minates with no attacks in a couple of seconds, allowing us to conclude the patch
is safe in our abstract model for unbounded numbers of fresh keys and handles.

106

Note that although no sensitive keys can be extracted by an intruder, there is
of course no integrity check on the wrapped keys that are imported. Indeed,
without having an encryption mode with an integrity check this would seem to
be impossible. This means that one cannot be sure that a key imported on to
the device really corresponds to a key held securely on the intended recipient’s
device. This limitation would have to be taken into account when evaluating
the suitability of this configuration for an application. CryptokiX is available
online2.

3 Conclusions

We have seen how RSA PKCS#11 describes an API for key management where
the usage policy for each key is described by a set of attributes. This interface, if
not configured carefully, can be vulnerable to a variety of attacks, and we have
seen that these vulnerabilities affect not just theoretical models but real devices.
We have shown how to use formal modelling techniques to systematically find
attacks and then verify the security of models. We have also seen how Tookan
can help to automate this process. We saw that it is possible to propose secure
configurations, [8, 21], but security proofs here are only in the symbolic model
of cryptography: there is more work to be done to reconcile these proofs to the
cryptographic details of real implementations, though work in this direction is
underway [26]. There have also been articles proposing completely new designs
for key management APIs [10, 14]. Indeed at least two new industrial standards
which address key management are currently at the draft stage: IEEE 1619.3
[23] (for secure storage) and OASIS Key Management Interoperability Protocol
(KMIP) [29]. It remains to be seen how these latter designs will address security
concerns.

Security API analysis has also proved useful in other domains. For example,
in a longer version of this article co-authored with Focardi and Luccio, we ex-
plore the use of API analysis in PIN processing APIs such as are used in the
international cash machine networks [20]. Here the problem is to ensure that no
combination of API calls can leak the value of a customer PIN.

Our experience has shown that automated tools provide a way for engineers
without a formal methods background to benefit from the power of these tech-
niques. We intend to continue researching automated formal analysis tools for
API security problems.

References

1. R. Anderson. The correctness of crypto transaction sets. In 8th International Work-
shop on Security Protocols, April 2000. http://www.cl.cam.ac.uk/ftp/users/

rja14/protocols00.pdf.

2 http://secgroup.ext.dsi.unive.it/cryptokix.

107

2. A. Armando, D.A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar,
P. Hankes Drielsma, P. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vi-
gneron. The AVISPA tool for the automated validation of internet security proto-
cols and applications. In Kousha Etessami and Sriram K. Rajamani, editors, CAV,
volume 3576 of Lecture Notes in Computer Science, pages 281–285. Springer, 2005.

3. A. Armando and L. Compagna. SAT-based model-checking for security protocols
analysis. Int. J. Inf. Sec., 7(1):3–32, 2008. Software available at http://www.

ai-lab.it/satmc. Currently developed under the AVANTSSAR project, http:

//www.avantssar.eu.
4. B. Blanchet. From secrecy to authenticity in security protocols. In

M. Hermenegildo and G. Puebla, editors, International Static Analysis Sympo-
sium (SAS’02), volume 2477 of Lecture Notes in Computer Science, pages 342–359,
Madrid, Spain, September 2002.

5. M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings of the
3rd International Workshop on Cryptographic Hardware and Embedded Systems
(CHES’01), volume 2162 of LNCS, pages 220–234, Paris, France, 2001. Springer.

6. M. Bond and R. Anderson. API level attacks on embedded systems. IEEE Com-
puter Magazine, 34(10):67–75, October 2001.

7. M. Bond and J. Clulow. Extending security protocol analysis: New challenges.
Electronic Notes in Theoretical Computer Science, 125(1):13–24, 2005.

8. M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing
PKCS#11 security tokens. In Proceedings of the 17th ACM Conference on Com-
puter and Communications Security (CCS’10), pages 260–269, Chicago, Illinois,
USA, October 2010. ACM Press.

9. C. Cachin and J. Camenisch. Encrypting keys securely. IEEE Security & Privacy,
8(4):66–69, 2010.

10. C. Cachin and N. Chandran. A secure cryptographic token interface. In Com-
puter Security Foundations (CSF-22), pages 141–153, Long Island, New York, 2009.
IEEE Computer Society Press.

11. R. Clayton and M. Bond. Experience using a low-cost FPGA design to crack
DES keys. In Cryptographic Hardware and Embedded System - CHES 2002, pages
579–592, 2002.

12. J. Clulow. The design and analysis of cryptographic APIs for security devices.
Master’s thesis, University of Natal, Durban, 2003.

13. J. Clulow. On the security of PKCS#11. In Proceedings of the 5th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES’03), volume
2779 of LNCS, pages 411–425. Springer, 2003.

14. V. Cortier and G. Steel. A generic security API for symmetric key management on
cryptographic devices. In Michael Backes and Peng Ning, editors, Proceedings of
the 14th European Symposium on Research in Computer Security (ESORICS’09),
volume 5789 of Lecture Notes in Computer Science, pages 605–620, Saint Malo,
France, September 2009. Springer.

15. S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Proceedings
of the 21st IEEE Computer Security Foundations Symposium (CSF’08), pages
331–344, Pittsburgh, PA, USA, June 2008. IEEE Computer Society Press.

16. S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11 and proprietary
extensions. Journal of Computer Security, 18(6):1211–1245, November 2010.

17. D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions
in Information Theory, 2(29):198–208, March 1983.

108

18. A. Durante, R. Focardi, and R. Gorrieri. A compiler for analyzing cryptographic
protocols using noninterference. ACM Transactions on Software Engineering and
Methodology, 9(4):488–528, 2000.

19. N.A. Durgin, P. Lincoln, and J.C. Mitchell. Multiset rewriting and the complexity
of bounded security protocols. Journal of Computer Security, 12(2):247–311, 2004.

20. Riccardo Focardi, Flaminia L. Luccio, and Graham Steel. An introduction to secu-
rity API analysis. In Alessandro Aldini and Roberto Gorrieri, editors, Foundations
of Security Analysis and Design – FOSAD Tutorial Lectures (FOSAD’VI), volume
6858 of Lecture Notes in Computer Science, pages 35–65. Springer, September
2011.

21. S. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with un-
bounded fresh data. In Pierpaolo Degano and Luca Viganò, editors, Revised Se-
lected Papers of the Joint Workshop on Automated Reasoning for Security Protocol
Analysis and Issues in the Theory of Security (ARSPA-WITS’09), volume 5511
of Lecture Notes in Computer Science, pages 92–106, York, UK, August 2009.
Springer.

22. J. Herzog. Applying protocol analysis to security device interfaces. IEEE Security
& Privacy Magazine, 4(4):84–87, July-Aug 2006.

23. IEEE 1619.3 Technical Committee. IEEE storage standard 1619.3 (key manage-
ment) (draft). available from https://siswg.net/.

24. International Organization for Standardization. ISO 9564-1: Banking personal
identification number (PIN) management and security. 30 pages.

25. G. Keighren. Model checking security APIs. Master’s thesis, University of Edin-
burgh, 2007.

26. S. Kremer, G. Steel, and B. Warinschi. Security for key management inter-
faces. In Proceedings of the 24th IEEE Computer Security Foundations Symposium
(CSF’11), Cernay-la-Ville, France, June 2011. IEEE Computer Society Press. To
appear.

27. D. Longley and S. Rigby. An automatic search for security flaws in key management
schemes. Computers and Security, 11(1):75–89, March 1992.

28. G. Lowe. Breaking and fixing the Needham Schroeder public-key protocol using
FDR. In Proceedings of TACAS, volume 1055, pages 147–166. Springer Verlag,
1996.

29. OASIS Key Management Interoperability Protocol (KMIP) Technical Committee.
KMIP – key management interoperability protocol. available from http://xml.

coverpages.org/KMIP/, february 2009.
30. openCryptoki. http://sourceforge.net/projects/opencryptoki/.
31. RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Standard.,

June 2004.
32. B. Schneier. Applied Cryptography. John Wiley and Sons, 2nd edition, 1996.
33. E. Tsalapati. Analysis of PKCS#11 using AVISPA tools. Master’s thesis, Univer-

sity of Edinburgh, 2007.
34. P. Youn, B. Adida, M. Bond, J. Clulow, J. Herzog, A. Lin, R. Rivest, and R. An-

derson. Robbing the bank with a theorem prover. Technical Report UCAM-CL-
TR-644, University of Cambridge, August 2005.

109

110

Committees

Programme Committee:

• Alessandro Barenghi, Politecnico di Milano, Italy.

• Gilles Barthe, Fundación IMDEA Software, Spain.

• Loïc Correnson, CEA LIST, France.

• Emmanuelle Encrenaz, LIP6, France.

• Naofumi Homma, Tohoku U., Japan.

• Éliane Jaulmes, ANSSI, France.

• Gerwin Klein, NICTA, Australia.

• Debdeep Mukhopadhyay, IIT Kharagpur, India.

• Svetla Nikova, K.U.Leuven, Belgium.

• Renaud Pacalet, TELECOM-ParisTech, France.

• Bruno Robisson, ENSMSE, France.

• Timothy Sherwood, UCSB, USA.

• Graham Steel, LSV, France.

Steering committee:

• Sylvain Guilley, TELECOM-ParisTech, France.

• Çetin Kaya Koç, UCSB, USA.

• David Naccache, ENS, France.

• Akashi Satoh, AIST, Japan.

• Werner Schindler, BSI, Germany.

Local committee:

• Prof. Jean-Luc Danger, TELECOM-ParisTech, France.

• Dr. Svetla Nikova, K.U.Leuven, Belgium.

• Prof. Ingrid Verbauwhede, K.U.Leuven, Belgium.

Sub-reviewers:

• David Cock, CSE/NICTA, Australia.

• Chester D. Rebeiro, IIT Kharagpur, India.

112

	Preface
	Forewords
	PROOFS Program
	Contributed Paper #1: ``A formal study of two physical countermeasures against side channel attacks'', by Sébastien Briais, Sylvain Guilley and Jean-Luc Danger
	Contributed Paper #2: ``Formal verification of an implementation of CRT-RSA Vigilant's algorithm'', by Maria Christofi, Boutheina Chetali, Louis Goubin and David Vigilant
	Contributed Paper #3: ``Toward A Taxonomy of Communications Security Models'', by Mark Brown
	Invited Paper #1: ``Understanding the reasons for the side-channel leakage is indispensable for secure design'', by Werner Schindler
	Invited Paper #2: ``Toward Formal Design of Cryptographic Processors Based on Galois Field Arithmetic'', by Naofumi Homma
	Invited Paper #3: ``Analysing Cryptographic Hardware Interfaces with Tookan'', by Graham Steel
	Committees

