
Why Attackers Lose: Design and
Security Analysis of Arbitrarily
Large XOR Arbiter PUFs
Nils Wisiol, Christoph Graebnitz, Marian Margraf, Manuel Oswald, Tudor Soroceanu,
and Benjamin Zengin

nils.wisiol@fu-berlin.de · http://idm.mi.fu-berlin.de

PROOFS 2017, 29 Sep 2017, Taipei, Taiwan

Short History of
PUFs

● Optical implementation proposed by

Pappu et al. in 2002

● For all we know, secure

● Hardly practical

Illustration: Pappu, Ravikanth, et al. "Physical one-way functions." Science 297.5589 (2002): 2026-2030.

Arbiter PUFs

● Easy to build on ASIC

● Response based on signal delays

● Large challenge space

● Easy to model! (“Linear Model”)

Illustration (mod.): Tajik, Shahin, et al. "Laser fault attack on physically unclonable functions."
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2015 Workshop on. IEEE, 2015.

Arbiter PUFs

● Delay values are close to

a Gaussian distribution

(Berry-Esseen CLT)

● Simplifies analysis

Delay Value Frequencies of a Simulated 32-bit Arbiter PUF

Fitted Gaussian Distribution
(both shown as probability density)

XOR Arbiter PUFs

● Still easy to build in ASIC
○ But limited in size due to noise

● Response based on signal delays

● Large challenge space

● Harder to model when built large

Illustration: Ganji, Fatemeh, et al. "Lattice basis reduction attack against physically unclonable functions."
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 2015.

All Feasibly Large XOR Arbiter
PUFs Are Insecure

Becker, Georg T. "The gap between promise and reality: On the insecurity of XOR arbiter PUFs." International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, Berlin, Heidelberg, 2015.

Let’s make ‘em larger

Introducing:
Majority Vote XOR
Arbiter PUF

● Vote before XOR

● Increases stability

● Claim: Size can be increased

● Introduces volatile memory

● Evaluation time prolonged

Stability Gain

Stability Loss
VSIntroduced by majority vote

Introduced by huge XOR operation

Notion of Stability

Stability Frequencies of a Simulated 64-bit Arbiter PUF
(shown as log-scaled probability density)

We define: Stability is the probability to see a
noise-free response

The stability depends on the challenge given

Noise is modelled as Gaussian

Generate histogram data with pypuf: stability_calculation.py 64 1 1 0.33 10000 200 0xbeef

https://github.com/nils-wisiol/pypuf/releases/tag/2017-why-attackers-lose

Arbiter PUF Noise Analysis

● Fix Arbiter PUF instance and challenge c

● Fix noise parameters

● Analyze stability value for c

Arbiter PUF Noise Analysis

Assume Gaussian distributed Stab(c)

Stability Frequencies of a Simulated 64-bit Arbiter PUF

Analytic Stability Distribution
(both shown as probability density)

Boosting by Polynomial Majority Vote is Limited

● It’s impossible to boost all challenges very
close to one

● But it is possible to boost most challenges

close to one

Can be boosted very close to oneAlso
boosted

Boosting
goal

Boosting Result

Assumptions:

● n-bit challenges

● k arbiter chains

● α to select challenges

● α’ to set boosting goal

Required votes:

Stability Frequencies of a Simulated 64-bit Arbiter PUF

Using no votes and 12 votes, respectively
(both shown as probability density)

Generate histogram data with pypuf: stability_calculation.py 64 k votes 0.33 10000 200 0xbeef

https://github.com/nils-wisiol/pypuf/releases/tag/2017-why-attackers-lose

Number of Required Votes

Generate histogram data with pypuf: mv_num_of_votes.py .95 .80 32 32 2 .033 2000 200

https://github.com/nils-wisiol/pypuf/releases/tag/2017-why-attackers-lose

Stability Wins! Attackers Lose?

Logistic Regression
Rührmair, Ulrich, et al. "Modeling attacks on physical unclonable functions." Proceedings of the 17th ACM
conference on Computer and communications security. ACM, 2010.

● Parameterized model of the XOR

Arbiter PUF

● Regression with logistic function

● Depends on random start values

● Runtime increases exponentially
with k

Noise Side-Channel CMA-ES
Becker, Georg T. "The gap between promise and reality: On the insecurity of XOR arbiter PUFs." International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, Berlin, Heidelberg, 2015.

● Divide-and-conquer strategy

based on a noise side-channel

● Choosing number of votes such

that

Approx. Number of Required CRPs for Successful Attack against

increasingly large (Majority Vote) XOR Arbiter PUF

Data generation not yet in pypuf :-(

● Number of required CRPs

increases exponentially with k

● Runtime and required CRPs
increases exponentially with k

https://github.com/nils-wisiol/pypuf/releases/tag/2017-why-attackers-lose

Take Home
Message

● XOR Arbiter PUFs are insecure for all

feasible sizes

● Increasing size decreases stability

● Introducing majority vote increases

stability

● Stability increase wins with

reasonable number of votes

● Mitigate state-of-the-art attacks
● Adding attack surface

Future Work ● CMA-ES attack

● Specialized attacks against Majority

Vote XOR Arbiter PUF

● Derivatives of XOR Arbiter PUF

● Avoid low-stability challenges

pypuf

github.com/nils-wisiol/pypuf

● Simulation of PUFs
○ Many flavors of XOR Arbiter PUFs

● Attack on PUFs
○ Logistic Regression
○ CMA-ES (noise side-channel)
○ Some flavors of PAC learning

● Analysis of results

https://github.com/nils-wisiol/pypuf

Questions? Why Attackers Lose: Design and Security
Analysis of Arbitrarily Large XOR Arbiter
PUFs

Nils Wisiol, Christoph Graebnitz, Marian

Margraf, Manuel Oswald, Tudor Soroceanu,

and Benjamin Zengin

nils.wisiol@fu-berlin.de
idm.mi.fu-berlin.de

github.com/nils-wisiol/pypuf

