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Introduction 
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Adversary injects faults 
into cryptosystems and 
analyzes the faulty output  
to recover   the key 

Easy to perform, does not 
require high end 
equipment 

Must design efficient 
countermeasures against 
fault attacks 

Weakens even 
mathematically robust 
cryptosystems  

Fault 
Analysis 



Introduction 

• Most widely explored 
• Low fault complexity 
• Complex analysis  
• Fault Locations 

– Datapath 
– Key-schedule 

• Fault models 
– Bit based 
– Nibble based 
– Byte based 
– Multiple byte based  

29-Sep-17 4 © PROOFS- Security Proofs for Embedded Systems- 2017 

PLAINTEXT 

ENCRYPTION  
ALGORITHM 

FAULT FREE 
CIPHERTEXT 

PLAINTEXT 

ENCRYPTION  
ALGORITHM 

FAULTY  
CIPHERTEXT 

ANALYSIS 

Differential Fault Analysis (DFA) 

 



Motivation (1/2) 

• Knowledge of all possible attacks 
– Exploitable Faults 

• Not every fault is exploitable 
– Filter out the space of exploitable faults 
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Testing Block Ciphers for Fault Attacks 

“Exploits” of Exploitable Faults 

• Designing precise countermeasures. 
• Testing countermeasures 

– On “non-random” exploitable fault space. 
• Cipher evaluation 

  



• Fault space for a block cipher: 
– Prohibitively large. 
– Manual fault analysis methodologies --  Impractical !!! 
– Demand: A fast automation to characterize each individual fault 
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Motivation (2/2) 

Challenges 

• Several block ciphers in use 
– Trend of designing application-specific lightweight ciphers 
– Demand: A generic automation 
 

 

  



Fault Attack Automation   

– Generic representation. 
– Use of SAT solvers. 
– Not so fast !!! 
– Lack of interpretability. 
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State-of-the-art 

– Program synthesis based 
– Demonstrated on Public key 

systems  

Synthesis of Fault attacks 

Algebraic Fault Attack (AFA) 
F. Zhang et.al. , “A Framework for the 
Analysis and Evaluation of Algebraic Fault 
Attacks on Lightweight Block  
Ciphers”, IEEE Transactions on Information 
Forensics and Security, 11(5), 1039-1054., 
2016 

Gilles Barthe, et al. "Synthesis of fault 
attacks on cryptographic 
implementations." Proceedings of the 2014 
ACM SIGSAC Conference on Computer 
and Communications Security., 2014. 

 



Proposed Approach 

• What DFA does? 
– Reduces the key search space with faults 
– Exhaustive search within practical limits 
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• What we suggest … 
– Do not perform the exhaustive search 
– Automatically compute the search complexity 

• Advantage 
– Fast characterization of each individual faults 
– Challenge: Generic algorithm. 



Proposed Approach (1/17) 

• Formalization of DFA: 
– A DFA algorithm can be represented as follows:  
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A fault distinguisher, Constructed over the XOR differentials of a 
cipher state 

An algorithm to evaluate the distinguisher over key guesses 

Remaining key space, filtered with the distinguisher 



Proposed Approach (2/17) 
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• Complexity of      : 232 

• Size of      : 232 
      

Formalization of DFA – Example of a Distinguisher 

But how to compute these automatically??? 



Proposed Approach (3/17) 
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The Automatic Flow 

Automatic 
Calculation of 
Distinguisher 
Evaluation 
Complexity 

Automatic 
Identification of 
Distinguisher  

Automatic 
Calculation of 

Remaining Key 
Space Size  

Automated DFA Framework 

Phase 1 Phase 2 Phase 3 

• Checks one fault at a time 
• Fault models: Bit, Byte, Nibble, Multiple 



Proposed Approach (4/17) 

• Key Idea: 
– Identify the distinguishers from fault simulation data. 
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Phase 1: Automatic Distinguisher Identification 

We analyze the dataset for each “state differential”   
 



Proposed Approach (5/17) 
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Phase 1: How to Identify a Distinguisher from Data? 

Representation of     : Set of nibbles/bytes  

Two Possible Cases 

Each        is statistically 
independent 

Calculate entropy H for each     -- State Differential Entropy 

Some of the       s are 
statistically dependent 

Case 1 Case 2 

 = 



Proposed Approach (6/17) 

• State Differential Entropy: 
– State differential entropy is the sum of individual entropies of 

each  
• Maximum Entropy of individual        

–  2m, m is bit width of each  
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Phase 1: Case 1 

•     Check the value ranges of each 
−   If some values are always missing, it causes entropy  
     reduction.  
−   Save each occurring value for future use. 

How to Calculate Entropy? 



Proposed Approach (7/17) 

• Check dependency among       s 
– Tricky,  no general method to identify and enumerate the 

relations. 
– Solution:  Frequent Itemset Mining  

 Itemsets exists       statistical dependency 
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Phase 1: Case 2 

• <v1, v2, v3> -- Variable set 
• Support: 2/6 = 0.33  
• Corresponding itemsets (1,5,7); 
(2,4,6) 

 

Itemsets and Variable Sets 



Proposed Approach (8/17) 

• Collect variable sets and corresponding Itemsets: 

 
 

• State differential entropy is the sum of the entropies of the variable 
sets 
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Phase 1: Case 2 



Proposed Approach (9/17) 
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• Calculate state differential entropy 
–  assuming independence of       s: 
–  if variable sets exist:  

 

• Set State differential entropy,      
 

• If                      : State differential is a key-distinguisher. 
 

Phase 1: Overall Flow 

min( , )i
j Ind AssnH H H=

End of Phase 1: 
Gives us distinguishers    
 



Proposed Approach (10/17)  

• Target: Evaluate a distinguisher 
– Identify the key bits to guess: 

 To evaluate each 
 To evaluate each variable set if exists. 
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Phase 2: Calculate Distinguisher Evaluation Complexity 

A Graph Based Abstraction of the Cipher 

• Cipher Dependency Graph (CDG) 
– Each node is a bit from any cipher state. 
– Directed links: Causal dependencies among bits  



Proposed Approach (11/17)  
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CDG: Basic Blocks 



Proposed Approach (12/17)  
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CDG: An Example 



Proposed Approach (13/17)  
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CDG: How Does it Work? 



Proposed Approach (13/17)  
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CDG: How Does it Work? 



Proposed Approach (13/17)  
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CDG: How Does it Work? 



Proposed Approach (14/17)  
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CDG: Maximum Independent Key Set and Variable Group 



Proposed Approach (16/17)  

• Each  (MKSh, VGh ) pair represents an independent subpart of 
the distinguisher evaluation. 

• Each Subpart can be evaluated in parallel.  

29-Sep-17 25 © PROOFS- Security Proofs for Embedded Systems- 2017 

CDG: Maximum Independent Key Set and Variable Group 



Proposed Approach (17/17) 

• Distinguisher evaluation returns a set of candidate keys. 
 
• Searched exhaustively.  

 
• Attack complexity:  

– max(distinguisher evaluation complexity, exhaustive search 
complexity) 

 
• Calculated with (MKSh, VGh ) pairs 
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Phase 3: Size of the Remaining Key Space 



Proposed Approach (17/17) 

• Calculate the “probability of occurrence of the distinguishing 
property” with each VGh 
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Phase 3: Size of the Remaining Key Space 

Calculated using these 
information 



Case Study I 

• 9 distinguishers identified 
 

• First 4 rejected 
• Excessive evaluation cost 
 

• Last 2 rejected 
• No nonlinear layer 

 
• Distinguisher: 

– Output of 9th round   
MixColumn 

 

• How? 
– 4 Variable sets 

 
 
 
 

– Each have 255 itemsets 
– Entropy of each variable set : 
– State entropy: 
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AES: Byte Fault at the Beginning of 8th Round 

How? 



Case Study I (cont…) 

29-Sep-17 29 © PROOFS- Security Proofs for Embedded Systems- 2017 

• Complexity of      : 232 

• Size of      : 232 
      VS (VG) 



Case Study I (continued..) 

• Each VG contains a single 
variable set (VS) 
 

• Each MKS contain 32 key bits. 
 

• There are 4 (MKS, VG) pairs. 
 

• Evaluation complexity: 232 

 

• 4 variable sets 
– Each with 255 itemsets 
–   
 

• Remaining key space for each 
VS (aka. VG) 
–   

 
• Total remaining key space 

–   
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Distinguisher Evaluation Remaining Key Space 

So, with a single fault the attack complexity reduces to 232 



Case Study II 

• Distinguisher at the 30th round 
– Each nibble can take only two values among 16 
–    
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PRESENT:  2-Byte Fault at the Beginning of 28th Round 

 



Case Study II (cont…) 
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CDG for PRESENT 

|MKS| = 32 



Case Study II 

• Distinguisher at the 30th round 
– Each nibble can take only 

two values among 16 
–    

• 4 (MKS, VG) pairs. 
–  Each have 32 key bits 

• Evaluation Complexity: 232 
 

• Key space complexity: 
 

• After another injection 
–   
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PRESENT:  2-Byte Fault at the Beginning of 28th Round 



Conclusion 
• Characterization of the exploitable fault space for a block cipher is a 

problem of immense practical value. 
• Exploitable fault space characterization demands fast, generic and 

automated mechanism for the characterization of individual fault 
instances. 

•  A fast automation is proposed 
– Need not to do the attack; just calculate the complexity 
– Automatic distinguisher identification from fault simulation data. 
– Automated identification of divide-and-conquer strategy for key 

guess 
– Automated complexity evaluation. 

• Future works: 
– Further generalization – Key schedule attacks, DFIA, MitM attacks 
– Automatic generation of attack equations. 
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Thank You 
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Questions? 
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Backup Slides 
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Proposed Approach (10/18) 
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• Return:  
– Range of each       :  

 
– Variable Set, Itemsets: 

 
– State differential entropy: 

 
• End of Phase 1: 

– Gives us distinguishers    
 

Phase 1: Overall Flow 



A Similar Suggestion: XFC  

• Characterizes the fault propagation 
path with colors 

• Assumes simple fault equations 
• Calculates the complexity using the 

equations and the colors 
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XFC Framework 

Issues 

• Over simplistic – mainly works with ciphers 
having byte level structures 

• Lacks proper automation  

 

Punit Khanna, Chester Rebeiro, and Aritra 
Hazra. "XFC: A Framework for eXploitable 
Fault Characterization in Block 
Ciphers." Proceedings of the 54th Annual 
Design Automation Conference 2017., 
2017. 



Issues with XFC 
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XFC assumes equations of the following form 

 

An Example – Impossible differential fault analysis on AES 

All the bytes 
are non zero 

Fault relations can be more general 

 



Proposed Approach (15/17)  
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CDG: Maximum Independent Key Set and Variable Group 



Proposed Approach (15/17)  
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CDG: Maximum Independent Key Set and Variable Group 



Proposed Approach (15/17)  
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CDG: Maximum Independent Key Set and Variable Group 



Case Study II 
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An Example – Impossible differential fault analysis on AES 

All the bytes 
are non zero 



Case Study II 

• Distinguisher: 
– The state before 9th round 

MixColumn. 
 

• Impossible Differential 
Distinguisher: 
– Entropy:   

• Distinguisher evaluation 
– Complexity: 232 

 

• Remaining key space: 
–   
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AES: Byte Fault at the Beginning of 7th Round 

Need multiple fault injections 



Case Study II 
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