

PROOFS: Security Proofs for Embedded Systems 29th September, 2017 | Taipei, Taiwan

An Automated Framework for Exploitable Fault Identification in Block Ciphers – A Data Mining Approach

Sayandeep Saha, Ujjawal Kumar, Debdeep Mukhopadhyay, and Pallab Dasgupta

Outline

- Introduction
- Motivation
- Fault Attack Automation State-of-the-art
- Proposed Approach
- Case Studies
- Conclusion

Introduction

Introduction

Differential Fault Analysis (DFA)

- Most widely explored
- Low fault complexity
- Complex analysis
- Fault Locations
 - Datapath
 - Key-schedule
- Fault models
 - Bit based
 - Nibble based
 - Byte based
 - Multiple byte based

Motivation (1/2)

Testing Block Ciphers for Fault Attacks

- Knowledge of all possible attacks
 - Exploitable Faults
- Not every fault is exploitable
 - Filter out the space of exploitable faults

"Exploits" of Exploitable Faults

- Designing precise countermeasures.
- Testing countermeasures
 - On "non-random" exploitable fault space.
- Cipher evaluation

Fault Attack Automation

State-of-the-art

Algebraic Fault Attack (AFA)

- Generic representation.
- Use of SAT solvers.
- Not so fast !!!
- Lack of interpretability.

F. Zhang et.al., "A Framework for the Analysis and Evaluation of Algebraic Fault Attacks on Lightweight Block Ciphers", *IEEE Transactions on Information Forensics and Security*, *11*(5), 1039-1054., 2016

Synthesis of Fault attacks

- Program synthesis based
- Demonstrated on Public key systems

Gilles Barthe, et al. "Synthesis of fault attacks on cryptographic implementations." *Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security.*, 2014.

Proposed Approach

- What DFA does?
 - Reduces the key search space with faults
 - Exhaustive search within practical limits
- What we suggest ...
 - Do not perform the exhaustive search
 - Automatically compute the search complexity

• Advantage

- Fast characterization of each individual faults

– Challenge: Generic algorithm.

Proposed Approach (1/17)

• Formalization of DFA:

- A DFA algorithm can be represented as follows:

$$\mathscr{A} = \langle \mathscr{D}, \mathscr{T}, \mathscr{R} \rangle$$

A fault distinguisher, Constructed over the XOR differentials of a cipher state

 \mathscr{T} An algorithm to evaluate the distinguisher over key guesses

Remaining key space, filtered with the distinguisher

Proposed Approach (2/17)

Formalization of DFA – Example of a Distinguisher

Proposed Approach (3/17)

The Automatic Flow

Automated DFA Framework

- Checks one fault at a time
- Fault models: Bit, Byte, Nibble, Multiple

Proposed Approach (4/17)

Phase 1: Automatic Distinguisher Identification

- Key Idea:
 - Identify the distinguishers from fault simulation data.

Proposed Approach (5/17)

Phase 1: How to Identify a Distinguisher from Data?

Calculate entropy *H* for each δ_i^i -- State Differential Entropy

Representation of δ_i^i : Set of nibbles/bytes

$$\delta_j^i \equiv \langle w_1^{ij}, w_2^{ij}, \dots, w_l^{ij} \rangle$$

Proposed Approach (6/17)

Phase 1: Case 1

- State Differential Entropy:
 - State differential entropy is the sum of individual entropies of each w_z^{ij}
- Maximum Entropy of individua w_z^{ij}
 - -2^m , *m* is bit width of each w_z^{ij}

How to Calculate Entropy?

- Check the value ranges of each w_z^{ij}
 - If some values are always missing, it causes entropy reduction.
 - Save each occurring value for future use.

Proposed Approach (7/17)

Phase 1: Case 2

- Check dependency among w_z^{ij} s
 - Tricky, no general method to identify and enumerate the relations.
 - Solution: Frequent Itemset Mining
 - Itemsets exists → statistical dependency

TID	v_1	v_2	<i>v</i> ₃	<i>v</i> ₄	<i>V</i> 5
1	1	5	7	8	11
2	2	4	6	9	13
3	1	5	7	10	2
4	2	4	6	11	4
5	3	9	8	6	5
6	1	10	11	9	8

Itemsets and Variable Sets

• Corresponding itemsets (1,5,7); (2,4,6)

Proposed Approach (8/17)

PROOFS

Phase 1: Case 2

• Collect variable sets and corresponding Itemsets:

$$(VS_{\boldsymbol{\delta}_{j}^{i}}, \ \{IS_{\boldsymbol{\delta}_{j}^{i}}^{v}\}_{v=1}^{|ar{V}S_{\boldsymbol{\delta}_{j}^{i}}|})$$

State differential entropy is the sum of the entropies of the variable sets

for each
$$v \in VS_{\delta_j^i}$$
 do
 $tot := VarCount(v) \times m$
 $p_q'^v := \frac{1}{|IS_{\delta_j^i}^v|}, \forall q \in IS_{\delta_j^i}^v$
 $p_q'^v := 0, \forall q \notin IS_{\delta_j^i}^v$
 $H_{Assn}(v) := -\sum_{q=0}^{2^{tot}-1} p_q'^v \log_2(p_q'^v)$
 $H_{Assn}(\delta_j^i) := H_{Assn}(\delta_j^i) + H_{Assn}(v)$
end for

Proposed Approach (9/17)

Phase 1: Overall Flow

- Calculate state differential entropy
 - assuming independence of w_z^{ij} s: $H_{Ind}(\delta_i^i)$
 - if variable sets exist: $H_{Assn}(\delta_i^i)$
- Set State differential entropy, $H_{j}^{i} = \min(H_{Ind}, H_{Assn})$

• If $H_j^i < H_{max}(\delta_j^i)$: State differential is a key-distinguisher.

End of Phase 1:

Gives us distinguishers

$$\mathscr{D}_{j}^{i} := \langle \{w_{z}^{ij}\}_{z=1}^{l}, \{Rng_{w_{z}^{ij}}\}_{z=1}^{l}, VS_{\delta_{j}^{i}}, \{IS_{\delta_{j}^{i}}^{v}\}_{v=1}^{vS_{\delta_{j}^{i}}} \rangle$$

UC .

Proposed Approach (10/17)

Phase 2: Calculate Distinguisher Evaluation Complexity

- Target: Evaluate a distinguisher
 - Identify the key bits to guess:
 - To evaluate each W_z^{ij}
 - To evaluate each variable set if exists.

A Graph Based Abstraction of the Cipher

- Cipher Dependency Graph (CDG)
 - Each node is a bit from any cipher state.
 - Directed links: Causal dependencies among bits

Proposed Approach (11/17)

CDG: Basic Blocks

Proposed Approach (12/17)

CDG: An Example

Proposed Approach (13/17)

CDG: How Does it Work?

Proposed Approach (13/17)

CDG: How Does it Work?

Proposed Approach (13/17)

CDG: How Does it Work?

Proposed Approach (14/17)

CDG: Maximum Independent Key Set and Variable Group

Proposed Approach (16/17)

CDG: Maximum Independent Key Set and Variable Group

- Each (MKS_h, VG_h) pair represents an independent subpart of the distinguisher evaluation.
- Each Subpart can be evaluated in parallel.

$$\mathbb{T}(h) = 2^{|MKS_h|}$$

$$max_h(\mathbb{T}(1),\mathbb{T}(2),...,\mathbb{T}(M))$$

Proposed Approach (17/17)

Phase 3: Size of the Remaining Key Space

- Distinguisher evaluation returns a set of candidate keys.
- Searched exhaustively.
- Attack complexity:
 - max(distinguisher evaluation complexity, exhaustive search complexity)
- Calculated with (MKS_h, VG_h) pairs

Proposed Approach (17/17)

Phase 3: Size of the Remaining Key Space

 Calculate the "probability of occurrence of the distinguishing property" with each VG_h

$$\mathscr{D}_{j}^{i} := \langle \{w_{z}^{ij}\}_{z=1}^{l}, \{Rng_{w_{z}^{ij}}\}_{z=1}^{l}, VS_{\delta_{j}^{i}}, \{IS_{\delta_{j}^{i}}^{v}\}_{v=1}^{|VS_{\delta_{j}^{i}}|} \rangle$$

for each VG_h $k_{size} := BitCount(MKS_h)$

$$|\mathscr{R}|_{VG_h} := 2^{k_{size}} \times \mathbb{P}[VG_h]$$

$$|\mathscr{R}| := |\mathscr{R}| imes |\mathscr{R}|_{VG_h}$$

Calculated using these information

AES: Byte Fault at the Beginning of 8th Round

- 9 distinguishers identified
- First 4 rejected
 - Excessive evaluation cost
- Last 2 rejected
 - No nonlinear layer
- Distinguisher:
 - Output of 9th round
 MixColumn

$$\delta_9^4 = \langle w_1^{49}, w_2^{49}, ..., w_l^{49} \rangle$$

How?

- 4 Variable sets
 - $\begin{array}{c} (w_1^{49}, w_2^{49}, w_3^{49}, w_4^{49}) \\ (w_5^{49}, w_6^{49}, w_7^{49}, w_8^{49}) \\ (w_9^{49}, w_{10}^{49}, w_{11}^{49}, w_{12}^{49}) \\ (w_{13}^{49}, w_{14}^{49}, w_{15}^{49}, w_{16}^{49}) \end{array}$
- Each have 255 itemsets
- Entropy of each variable set :
- State entropy:

 $\sum_{q=1}^{255} \frac{1}{255} \log_2(255) = 7.99$

 $H_{Assn}(\delta_9^4) = 4 \times 7.99 = 31.96.$

Case Study I (cont...)

Case Study I (continued..)

- Each VG contains a single variable set (VS)
- Each MKS contain 32 key bits.
- There are 4 (MKS, VG) pairs.
- Evaluation complexity: 2³²

Remaining Key Space

- 4 variable sets
 - Each with 255 itemsets
 - $\mathbb{P}[VG_h] = \frac{255}{2^{32}}$
- Remaining key space for each VS (aka. VG)
 - $-2^{32} \times 2^{-24}$
- Total remaining key space $(2^8)^4 = 2^{32}$

So, with a single fault the attack complexity reduces to 2³²

PRESENT: 2-Byte Fault at the Beginning of 28th Round

- Distinguisher at the 30th round
 - Each nibble can take only two values among 16

$$- H_{Ind}(\delta_{30}^1) = 16$$

Case Study II (cont...)

PRESENT: 2-Byte Fault at the Beginning of 28th Round

- Distinguisher at the 30th round
 - Each nibble can take only two values among 16

$$- H_{Ind}(\delta_{30}^1) = 16$$

- 4 (MKS, VG) pairs.
 - Each have 32 key bits
- Evaluation Complexity: 2³²
- Key space complexity: 2⁸⁰
- After another injection - $(2^{32} \times (2^{-12})^2)^4 = 2^{32}$

Conclusion

- Characterization of the exploitable fault space for a block cipher is a problem of immense practical value.
- Exploitable fault space characterization demands fast, generic and automated mechanism for the characterization of individual fault instances.
- A fast automation is proposed
 - Need not to do the attack; just calculate the complexity
 - Automatic distinguisher identification from fault simulation data.
 - Automated identification of divide-and-conquer strategy for key guess
 - Automated complexity evaluation.
- Future works:
 - Further generalization Key schedule attacks, DFIA, MitM attacks
 - Automatic generation of attack equations.

Thank You

Questions?

Backup Slides

Proposed Approach (10/18)

Phase 1: Overall Flow

• Return:

- Range of each w_z^{ij} : $\{Rng_{w_z^{ij}}\}_{z=1}^l$
- Variable Set, Itemsets: $(VS_{\delta_j^i}, \{IS_{\delta_j^i}^v\}_{v=1}^{|\overline{V}S_{\delta_j^i}|})$

- State differential entropy: H_i^i

• End of Phase 1:

- Gives us distinguishers

$$\mathscr{D}_{j}^{i} := \langle \{w_{z}^{ij}\}_{z=1}^{l}, \{Rng_{w_{z}^{ij}}\}_{z=1}^{l}, VS_{\delta_{j}^{i}}, \{IS_{\delta_{j}^{i}}^{v}\}_{v=1}^{|VS_{\delta_{j}^{i}}|} \rangle$$

A Similar Suggestion: XFC

XFC Framework

- Characterizes the fault propagation path with colors
- Assumes simple fault equations
- Calculates the complexity using the equations and the colors

Punit Khanna, Chester Rebeiro, and Aritra Hazra. "XFC: A Framework for eXploitable Fault Characterization in Block Ciphers." *Proceedings of the 54th Annual Design Automation Conference 2017.*, 2017.

Issues

- Over simplistic mainly works with ciphers having byte level structures
- Lacks proper automation

9SR

9MC

Issues with XFC

An Example – Impossible differential fault analysis on AES

Fault relations can be more general

Proposed Approach (15/17)

CDG: Maximum Independent Key Set and Variable Group

Proposed Approach (15/17)

CDG: Maximum Independent Key Set and Variable Group

Proposed Approach (15/17)

CDG: Maximum Independent Key Set and Variable Group

PROOFS

An Example – Impossible differential fault analysis on AES

AES: Byte Fault at the Beginning of 7th Round

- Distinguisher:
 - The state before 9th round MixColumn.
- Impossible Differential Distinguisher:

– Entropy:
$$H_{Ind}(\delta_9^4) = 127.90$$

- Distinguisher evaluation
 - Complexity: 2³²
- Remaining key space:

$$- |\mathscr{R}|_{VG_1} = 2^{32} \times (\frac{255}{2^8})^4$$
$$= 2^{32} - 2^{26}$$

Need multiple fault injections

