
Sayandeep Saha, Ujjawal Kumar, Debdeep Mukhopadhyay,
and Pallab Dasgupta

An Automated Framework for Exploitable

Fault Identification in Block Ciphers
 – A Data Mining Approach

Outline
 Introduction

 Motivation

 Fault Attack Automation – State-of-the-art

 Proposed Approach

 Case Studies

 Conclusion

29-Sep-17 2 © PROOFS- Security Proofs for Embedded Systems- 2017

Introduction

29-Sep-17 3 © PROOFS- Security Proofs for Embedded Systems- 2017

Adversary injects faults
into cryptosystems and
analyzes the faulty output
to recover the key

Easy to perform, does not
require high end
equipment

Must design efficient
countermeasures against
fault attacks

Weakens even
mathematically robust
cryptosystems

Fault
Analysis

Introduction

• Most widely explored
• Low fault complexity
• Complex analysis
• Fault Locations

– Datapath
– Key-schedule

• Fault models
– Bit based
– Nibble based
– Byte based
– Multiple byte based

29-Sep-17 4 © PROOFS- Security Proofs for Embedded Systems- 2017

PLAINTEXT

ENCRYPTION
ALGORITHM

FAULT FREE
CIPHERTEXT

PLAINTEXT

ENCRYPTION
ALGORITHM

FAULTY
CIPHERTEXT

ANALYSIS

Differential Fault Analysis (DFA)

Motivation (1/2)

• Knowledge of all possible attacks
– Exploitable Faults

• Not every fault is exploitable
– Filter out the space of exploitable faults

29-Sep-17 5 © PROOFS- Security Proofs for Embedded Systems- 2017

Testing Block Ciphers for Fault Attacks

“Exploits” of Exploitable Faults

• Designing precise countermeasures.
• Testing countermeasures

– On “non-random” exploitable fault space.
• Cipher evaluation

• Fault space for a block cipher:
– Prohibitively large.
– Manual fault analysis methodologies -- Impractical !!!
– Demand: A fast automation to characterize each individual fault

29-Sep-17 6 © PROOFS- Security Proofs for Embedded Systems- 2017

Motivation (2/2)

Challenges

• Several block ciphers in use
– Trend of designing application-specific lightweight ciphers
– Demand: A generic automation

Fault Attack Automation

– Generic representation.
– Use of SAT solvers.
– Not so fast !!!
– Lack of interpretability.

29-Sep-17 7 © PROOFS- Security Proofs for Embedded Systems- 2017

State-of-the-art

– Program synthesis based
– Demonstrated on Public key

systems

Synthesis of Fault attacks

Algebraic Fault Attack (AFA)
F. Zhang et.al. , “A Framework for the
Analysis and Evaluation of Algebraic Fault
Attacks on Lightweight Block
Ciphers”, IEEE Transactions on Information
Forensics and Security, 11(5), 1039-1054.,
2016

Gilles Barthe, et al. "Synthesis of fault
attacks on cryptographic
implementations." Proceedings of the 2014
ACM SIGSAC Conference on Computer
and Communications Security., 2014.

Proposed Approach

• What DFA does?
– Reduces the key search space with faults
– Exhaustive search within practical limits

29-Sep-17 8 © PROOFS- Security Proofs for Embedded Systems- 2017

• What we suggest …
– Do not perform the exhaustive search
– Automatically compute the search complexity

• Advantage
– Fast characterization of each individual faults
– Challenge: Generic algorithm.

Proposed Approach (1/17)

• Formalization of DFA:
– A DFA algorithm can be represented as follows:

29-Sep-17 9 © PROOFS- Security Proofs for Embedded Systems- 2017

A fault distinguisher, Constructed over the XOR differentials of a
cipher state

An algorithm to evaluate the distinguisher over key guesses

Remaining key space, filtered with the distinguisher

Proposed Approach (2/17)

29-Sep-17 10 © PROOFS- Security Proofs for Embedded Systems- 2017

• Complexity of : 232

• Size of : 232

Formalization of DFA – Example of a Distinguisher

But how to compute these automatically???

Proposed Approach (3/17)

29-Sep-17 11 © PROOFS- Security Proofs for Embedded Systems- 2017

The Automatic Flow

Automatic
Calculation of
Distinguisher
Evaluation
Complexity

Automatic
Identification of
Distinguisher

Automatic
Calculation of

Remaining Key
Space Size

Automated DFA Framework

Phase 1 Phase 2 Phase 3

• Checks one fault at a time
• Fault models: Bit, Byte, Nibble, Multiple

Proposed Approach (4/17)

• Key Idea:
– Identify the distinguishers from fault simulation data.

29-Sep-17 12 © PROOFS- Security Proofs for Embedded Systems- 2017

Phase 1: Automatic Distinguisher Identification

We analyze the dataset for each “state differential”

Proposed Approach (5/17)

29-Sep-17 13 © PROOFS- Security Proofs for Embedded Systems- 2017

Phase 1: How to Identify a Distinguisher from Data?

Representation of : Set of nibbles/bytes

Two Possible Cases

Each is statistically
independent

Calculate entropy H for each -- State Differential Entropy

Some of the s are
statistically dependent

Case 1 Case 2

 =

Proposed Approach (6/17)

• State Differential Entropy:
– State differential entropy is the sum of individual entropies of

each
• Maximum Entropy of individual

– 2m, m is bit width of each

29-Sep-17 14 © PROOFS- Security Proofs for Embedded Systems- 2017

Phase 1: Case 1

• Check the value ranges of each
− If some values are always missing, it causes entropy
 reduction.
− Save each occurring value for future use.

How to Calculate Entropy?

Proposed Approach (7/17)

• Check dependency among s
– Tricky, no general method to identify and enumerate the

relations.
– Solution: Frequent Itemset Mining

 Itemsets exists statistical dependency

29-Sep-17 15 © PROOFS- Security Proofs for Embedded Systems- 2017

Phase 1: Case 2

• <v1, v2, v3> -- Variable set
• Support: 2/6 = 0.33
• Corresponding itemsets (1,5,7);
(2,4,6)

Itemsets and Variable Sets

Proposed Approach (8/17)

• Collect variable sets and corresponding Itemsets:

• State differential entropy is the sum of the entropies of the variable
sets

 29-Sep-17 16 © PROOFS- Security Proofs for Embedded Systems- 2017

Phase 1: Case 2

Proposed Approach (9/17)

29-Sep-17 17 © PROOFS- Security Proofs for Embedded Systems- 2017

• Calculate state differential entropy
– assuming independence of s:
– if variable sets exist:

• Set State differential entropy,

• If : State differential is a key-distinguisher.

Phase 1: Overall Flow

min(,)i
j Ind AssnH H H=

End of Phase 1:
Gives us distinguishers

Proposed Approach (10/17)

• Target: Evaluate a distinguisher
– Identify the key bits to guess:

 To evaluate each
 To evaluate each variable set if exists.

29-Sep-17 18 © PROOFS- Security Proofs for Embedded Systems- 2017

Phase 2: Calculate Distinguisher Evaluation Complexity

A Graph Based Abstraction of the Cipher

• Cipher Dependency Graph (CDG)
– Each node is a bit from any cipher state.
– Directed links: Causal dependencies among bits

Proposed Approach (11/17)

29-Sep-17 19 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: Basic Blocks

Proposed Approach (12/17)

29-Sep-17 20 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: An Example

Proposed Approach (13/17)

29-Sep-17 21 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: How Does it Work?

Proposed Approach (13/17)

29-Sep-17 22 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: How Does it Work?

Proposed Approach (13/17)

29-Sep-17 23 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: How Does it Work?

Proposed Approach (14/17)

29-Sep-17 24 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: Maximum Independent Key Set and Variable Group

Proposed Approach (16/17)

• Each (MKSh, VGh) pair represents an independent subpart of
the distinguisher evaluation.

• Each Subpart can be evaluated in parallel.

29-Sep-17 25 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: Maximum Independent Key Set and Variable Group

Proposed Approach (17/17)

• Distinguisher evaluation returns a set of candidate keys.

• Searched exhaustively.

• Attack complexity:

– max(distinguisher evaluation complexity, exhaustive search
complexity)

• Calculated with (MKSh, VGh) pairs

29-Sep-17 26 © PROOFS- Security Proofs for Embedded Systems- 2017

Phase 3: Size of the Remaining Key Space

Proposed Approach (17/17)

• Calculate the “probability of occurrence of the distinguishing
property” with each VGh

29-Sep-17 27 © PROOFS- Security Proofs for Embedded Systems- 2017

Phase 3: Size of the Remaining Key Space

Calculated using these
information

Case Study I

• 9 distinguishers identified

• First 4 rejected
• Excessive evaluation cost

• Last 2 rejected
• No nonlinear layer

• Distinguisher:

– Output of 9th round
MixColumn

• How?
– 4 Variable sets

– Each have 255 itemsets
– Entropy of each variable set :
– State entropy:

29-Sep-17 28 © PROOFS- Security Proofs for Embedded Systems- 2017

AES: Byte Fault at the Beginning of 8th Round

How?

Case Study I (cont…)

29-Sep-17 29 © PROOFS- Security Proofs for Embedded Systems- 2017

• Complexity of : 232

• Size of : 232
 VS (VG)

Case Study I (continued..)

• Each VG contains a single
variable set (VS)

• Each MKS contain 32 key bits.

• There are 4 (MKS, VG) pairs.

• Evaluation complexity: 232

• 4 variable sets
– Each with 255 itemsets
–

• Remaining key space for each
VS (aka. VG)
–

• Total remaining key space

–

29-Sep-17 30 © PROOFS- Security Proofs for Embedded Systems- 2017

Distinguisher Evaluation Remaining Key Space

So, with a single fault the attack complexity reduces to 232

Case Study II

• Distinguisher at the 30th round
– Each nibble can take only two values among 16
–

29-Sep-17 31 © PROOFS- Security Proofs for Embedded Systems- 2017

PRESENT: 2-Byte Fault at the Beginning of 28th Round

Case Study II (cont…)

29-Sep-17 32 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG for PRESENT

|MKS| = 32

Case Study II

• Distinguisher at the 30th round
– Each nibble can take only

two values among 16
–

• 4 (MKS, VG) pairs.
– Each have 32 key bits

• Evaluation Complexity: 232

• Key space complexity:

• After another injection
–

29-Sep-17 33 © PROOFS- Security Proofs for Embedded Systems- 2017

PRESENT: 2-Byte Fault at the Beginning of 28th Round

Conclusion
• Characterization of the exploitable fault space for a block cipher is a

problem of immense practical value.
• Exploitable fault space characterization demands fast, generic and

automated mechanism for the characterization of individual fault
instances.

• A fast automation is proposed
– Need not to do the attack; just calculate the complexity
– Automatic distinguisher identification from fault simulation data.
– Automated identification of divide-and-conquer strategy for key

guess
– Automated complexity evaluation.

• Future works:
– Further generalization – Key schedule attacks, DFIA, MitM attacks
– Automatic generation of attack equations.

29-Sep-17 34 © PROOFS- Security Proofs for Embedded Systems- 2017

Thank You

29-Sep-17 35 © PROOFS- Security Proofs for Embedded Systems- 2017

Questions?

29-Sep-17 36 © PROOFS- Security Proofs for Embedded Systems- 2017

Backup Slides

29-Sep-17 37 © PROOFS- Security Proofs for Embedded Systems- 2017

Proposed Approach (10/18)

29-Sep-17 38 © PROOFS- Security Proofs for Embedded Systems- 2017

• Return:
– Range of each :

– Variable Set, Itemsets:

– State differential entropy:

• End of Phase 1:

– Gives us distinguishers

Phase 1: Overall Flow

A Similar Suggestion: XFC

• Characterizes the fault propagation
path with colors

• Assumes simple fault equations
• Calculates the complexity using the

equations and the colors

29-Sep-17 39 © PROOFS- Security Proofs for Embedded Systems- 2017

XFC Framework

Issues

• Over simplistic – mainly works with ciphers
having byte level structures

• Lacks proper automation

Punit Khanna, Chester Rebeiro, and Aritra
Hazra. "XFC: A Framework for eXploitable
Fault Characterization in Block
Ciphers." Proceedings of the 54th Annual
Design Automation Conference 2017.,
2017.

Issues with XFC

29-Sep-17 40 © PROOFS- Security Proofs for Embedded Systems- 2017

XFC assumes equations of the following form

An Example – Impossible differential fault analysis on AES

All the bytes
are non zero

Fault relations can be more general

Proposed Approach (15/17)

29-Sep-17 41 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: Maximum Independent Key Set and Variable Group

Proposed Approach (15/17)

29-Sep-17 42 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: Maximum Independent Key Set and Variable Group

Proposed Approach (15/17)

29-Sep-17 43 © PROOFS- Security Proofs for Embedded Systems- 2017

CDG: Maximum Independent Key Set and Variable Group

Case Study II

29-Sep-17 44 © PROOFS- Security Proofs for Embedded Systems- 2017

An Example – Impossible differential fault analysis on AES

All the bytes
are non zero

Case Study II

• Distinguisher:
– The state before 9th round

MixColumn.

• Impossible Differential
Distinguisher:
– Entropy:

• Distinguisher evaluation
– Complexity: 232

• Remaining key space:
–

29-Sep-17 45 © PROOFS- Security Proofs for Embedded Systems- 2017

AES: Byte Fault at the Beginning of 7th Round

Need multiple fault injections

Case Study II

29-Sep-17 46 © PROOFS- Security Proofs for Embedded Systems- 2017

	�An Automated Framework for Exploitable Fault Identification in Block Ciphers� – A Data Mining Approach
	Outline
	Introduction
	Introduction
	Motivation (1/2)
	Motivation (2/2)
	Fault Attack Automation
	Proposed Approach
	Proposed Approach (1/17)
	Proposed Approach (2/17)
	Proposed Approach (3/17)
	Proposed Approach (4/17)
	Proposed Approach (5/17)
	Proposed Approach (6/17)
	Proposed Approach (7/17)
	Proposed Approach (8/17)
	Proposed Approach (9/17)
	Proposed Approach (10/17)
	Proposed Approach (11/17)
	Proposed Approach (12/17)
	Proposed Approach (13/17)
	Proposed Approach (13/17)
	Proposed Approach (13/17)
	Proposed Approach (14/17)
	Proposed Approach (16/17)
	Proposed Approach (17/17)
	Proposed Approach (17/17)
	Case Study I
	Case Study I (cont…)
	Case Study I (continued..)
	Case Study II
	Case Study II (cont…)
	Case Study II
	Conclusion
	Thank You
	Questions?
	Backup Slides
	Proposed Approach (10/18)
	A Similar Suggestion: XFC
	Issues with XFC
	Proposed Approach (15/17)
	Proposed Approach (15/17)
	Proposed Approach (15/17)
	Case Study II
	Case Study II
	Case Study II

