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quick intro to masking
• masking = countermeasure against DPA 

• idea: secret sharing 

• individual shares tell you nothing about the intermediate 

• power consumption tells you nothing about the intermediate 

• main difficulty: compute on masked data 

• AES / RSA / … 

• not as easy as it sounds

2

b = b1 + b2



masking common problems

• masking is hard to implement… 

• delicate to implement in SW, delicate to 
implement in HW 

• …but sometimes the scheme is structurally flawed 

• …especially tricky in higher-order scenario

3



de
si

gn
 a

bs
tr

ac
tio

n 
le

ve
l

Protocol 
Algorithm 
Architecture: co-design, HW/SW, SoC 
Micro-architecture: buses, registers, … 
Circuit

[IEEE Computer 2005]
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but maybe too late
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algorithmically secure 
provable secure 
relies on assumptions 
that may not be met by 
underlying HW

practically secure 
device-specific

practically insecure
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Garden of Eden
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provable secure 
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algorithmically secure 
provable secure 
relies on assumptions

practically secure 
device-specific

practically insecure

algorithmically insecure

lucky and imprudent



Evaluating masking 
at design time
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Algorithm 4 Masked Multiplication: (X,Y ) IPMult((L,R), (K,Q))
Input: Two Masked variables (L,R) and (K,Q)
Output: New masked variable (X,Y ) such that hX,Y i = hL,Ri ⌦ hK,Qi

1. for i = 0 to n� 1 do

2. for j = 1 to n do

3. Ũi⇤n+j  Li+1 ⌦Kj

4. Ṽi⇤n+j  Ri+1 ⌦Qj

5. (U ,V ) IPRefresh(Ũ , Ṽ )

6. A (U1, · · · , Un); C  (Un+1, · · · , Un2)

7. B  (V1, · · · , Vn); D  (Vn+1, · · · , Vn2)

8. Z  hC,Di
9. Y  IPHalfMask(Z,A)

10. X  A

11. Y  Y �B

12. return (X,Y )

3 A First-Order Flaw

Balasch et al. claim that the above IP masking scheme is secure against any side-channel
attack of order d = n � 1, or equivalently, that any family of n � 1 intermediate variables is
independent of any sensitive variable. We contradict this claim hereafter by showing that for
any fixed parameter n, there always exists a first-order side-channel attack on the IP masking
scheme. To this end, we will exhibit an intermediate variable that is statistically dependent
on some sensitive variable in both the IPRefresh and IPAdd procedures (Algorithms 2 and 3
above).

Let A = (A1, A2, . . . , An) and B = (B1, B2, . . . , Bn) be random vectors uniformly dis-
tributed over (F⇤

q)
n, and let R = (R1, R2, . . . , Rn) be a random vector uniformly distributed

over Fn
q , such that A, B and R are mutually independent. Consider the function fn defined

by:
fn(a, b) = Pr[hA,Ri = a ^ hB,Ri = b] . (1)

We first study fn with respect to n before exhibiting the IP masking flaw.

3.1 Study of fn

The study of fn developed in this section is recursive. First, in Lemma 1, we give an explicit
expression to f1. Then, in Lemma 2, we exhibit a recursive relationship for fn. Both lemmas
are eventually involved to provide an explicit expression to fn (Theorem 1).

Lemma 1. The function f1 satisfies

f1(a, b) =

8
><

>:

1
q if (a, b) = (0, 0)

0 if (a, b) 2 ({0}⇥ F⇤
q) [ (F⇤

q ⇥ {0})
1

q(q�1) if (a, b) 2 F⇤
q ⇥ F⇤

q

Proof. First, since both A1 and B1 are non-zero, we have

f1(0, 0) = Pr[A1 ⌦R1 = 0 ^B1 ⌦R1 = 0] = Pr[R1 = 0] =
1

q

.

Moreover, for any a 6= 0, we have

f1(a, 0) = Pr[R1 = a⌦A

�1
1 ^R1 = 0] = 0 .

Similarly, we also have f(0, b) = 0 if b 6= 0.
Eventually, the total probability law together with the mutual independence between A1, B1

and R1, imply

f1(a, b) =
X

a12F⇤
q

Pr[A1 = a1]⇥ Pr[R1 = a⌦ a

�1
1 ^B1 ⌦R1 = b] ,

which for a 6= 0 and b 6= 0 gives

f1(a, b) =
X

a12F⇤
q

Pr[A1 = a1]⇥ Pr[R1 = a⌦ a

�1
1 ^B1 = b (a�1 ⌦ a1)] =

1

q(q � 1)
.

⇤

Lemma 2. For every n > 1, there exist f

00
n , f

01
n , f

11
n 2 R such that

fn(a, b) =

8
<

:

f

00
n if (a, b) = (0, 0)
f

01
n if (a, b) 2 ({0}⇥ F⇤

q) [ (F⇤
q ⇥ {0})

f

11
n if (a, b) 2 F⇤

q ⇥ F⇤
q

Moreover, we have

f

00
n+1 =

1

q

f

00
n +

q � 1

q

f

11
n ,

f

01
n+1 =

2

q

f

01
n +

q � 2

q

f

11
n ,

f

11
n+1 =

1

q(q � 1)
f

00
n +

2(q � 2)

q(q � 1)
f

01
n +

(q � 1) + (q � 2)2

q(q � 1)
f

11
n .

Proof. The first statement is true for n = 1 by Lemma 1. It is then implied by recurrence
from the second statement. Therefore, we only need to show the latter statement.

For every n > 1, the total probability law implies

fn+1(a, b) =
X

(a0,b0)2F2
q

fn(a� a0, b� b0)f1(a0, b0) . (2)

1. For (a, b) = (0, 0), the terms in the sum (2) are of the form fn(a0, b0)f1(a0, b0). Then
by Lemma 1, we get

fn(a0, b0)f1(a0, b0) =

8
><

>:

1
qfn(0, 0) if (a0, b0) = (0, 0)

0 if (a0, b0) 2 ({0}⇥ F⇤
q) [ (F⇤

q ⇥ {0})
1

q(q�1)fn(a0, b0) if (a0, b0) 2 F⇤
q ⇥ F⇤

q

We deduce

fn+1(a, b) =
1

q

f

00
n + (q � 1)2

1

q(q � 1)
f

11
n . (3)
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2. For (a, b) 2 {0}⇥ F⇤
q , the terms in the sum (2) are of the form fn(a0, b� b0)f1(a0, b0),

with b 6= 0. Then by Lemma 1, we get

fn(a0, b� b0)f1(a0, b0) =

8
>>><

>>>:

1
qfn(0, b) if (a0, b0) = (0, 0)

0 if (a0, b0) 2 ({0}⇥ F⇤
q) [ (F⇤

q ⇥ {0})
1

q(q�1)fn(a0, 0) if (a0, b0) 2 F⇤
q ⇥ {b}

1
q(q�1)fn(a0, b0) if (a0, b0) 2 F⇤

q ⇥ (F⇤
q\{b})

We deduce

fn+1(a, b) =
1

q

f

01
n + (q � 1)

1

q(q � 1)
f

01
n + (q � 1)(q � 2)

1

q(q � 1)
f

11
n . (4)

For (a, b) 2 F⇤
q ⇥ {0}, we have the same equality by symmetry of the function fn.

3. For (a, b) 2 F⇤
q⇥F⇤

q , the terms in the sum (2) are of the form fn(a�a0, b�b0)f1(a0, b0),
with a 6= 0 and b 6= 0. Then by Lemma 1, we get

fn(a�a0, b�b0)f1(a0, b0) =

8
>>>>>>><

>>>>>>>:

1
qfn(a, b) if (a0, b0) = (0, 0)
1

q(q�1)fn(0, 0) if (a0, b0) = (a, b)

0 if (a0, b0) 2 ({0}⇥ F⇤
q) [ (F⇤

q ⇥ {0})
1

q(q�1)fn(a� a0, 0) if (a0, b0) 2 (F⇤
q\{a})⇥ {b}

1
q(q�1)fn(0, b� b0) if (a0, b0) 2 {a}⇥ (F⇤

q\{b})
1

q(q�1)fn(a� a0, b� b0) if (a0, b0) 2 (F⇤
q\{a})⇥ (F⇤

q\{b})

We deduce

fn+1(a, b) =
1

q

f

11
n +

1

q(q � 1)
f

00
n + 2

⇣
(q � 2)

1

q(q � 1)
f

01
n

⌘
+ (q � 2)2

1

q(q � 1)
f

11
n . (5)

Equations (3), (4) and (5) directly yield the second statement. ⇤

Theorem 1. For every n > 1 we have

fn(a, b) =

8
><

>:

1
q2 + 1

q2(q�1)n�2 if (a, b) = (0, 0)
1
q2 � 1

q2(q�1)n�1 if (a, b) 2 ({0}⇥ F⇤
q) [ (F⇤

q ⇥ {0})
1
q2 + 1

q2(q�1)n if (a, b) 2 F⇤
q ⇥ F⇤

q

Proof. From Lemma 2, we have

0

@
f

00
n+1

f

01
n+1

f

11
n+1

1

A =

0

B@

1
q 0 q�1

q

0 2
q

q�2
q

1
q(q�1)

2(q�2)
q(q�1)

(q�1)+(q�2)2

q(q�1)

1

CA ·

0

@
f

00
n

f

01
n

f

11
n

1

A = P ·

0

@
1 0 0
0 0 0
0 0 1

q�1

1

A · P�1 ·

0

@
f

00
n

f

01
n

f

11
n

1

A (6)

where P is the matrix of eigenvectors which satisfies

P =

0

@
1 1� q q

2 � 2q + 1
1 1

2(2� q) 1� q

1 1 1

1

A

By recursively applying (6), we can express (f00
n , f

01
n , f

11
n ) with respect to (f00

1 , f

01
1 , f

11
1 ) as

0

@
f

00
n

f

01
n

f

11
n

1

A = P ·

0

@
1 0 0
0 0 0
0 0 1

(q�1)n�1

1

A · P�1 ·

0

@
f

00
1

f

01
1

f

11
1

1

A

Finally, by Lemma 1 we have (f00
1 , f

01
1 , f

11
1 ) =

�
1
q , 0,

1
q(q�1)

�
, which together with the above

equation yields the theorem statement. ⇤

3.2 Application to the IP Masking Scheme

The flaw occurs in the mask-refreshing procedure IPRefresh and in the addition procedure
IPAdd (see in Algorithm 2 and Algorithm 3). For the sake of clarity, we first detail it in the
IPRefresh setting and then show it occurs as well in the IPAdd procedure.

Flaw in mask-refreshing procedure. The IPRefresh procedure takes an IP masking
(L,R) of some sensitive variable V (i.e. such that V = hL,Ri), and it returns a fresh masking
(L0

,R0) such that V = hL0
,R0i. The first step of the procedure consists in randomly picking

some vector A 2 Fn
q such that Ai 6= Li for every i. Then one computes L0 = L � A and

X = hA,Ri. Note that L and L0 are mutually independent and both uniformly distributed
over (F⇤

q)
n. We show hereafter that X leaks information on the sensitive variable V . Indeed

we have

Pr[X = x | V = v] =
Pr[V = v ^X = x]

Pr[V = v]
=

Pr[V = v ^X � V = x� v]

Pr[V = v]
.

Then from

Pr[V = v ^X � V = x� v] = Pr[hL,Ri = v ^ hL0
,Ri = x� v] = fn(v, x� v) ,

we get

Pr[X = x | V = v] =
fn(v, x� v)

Pr[V = v]
. (7)

By Theorem 1 and given that Pr[V = v] = 1
q , (7) gives

Pr[X = x | V = v] =

(
1
q +

1
q(q�1)n�2 if x = 0

1
q �

1
q(q�1)n�1 if x 6= 0

for v = 0, and

Pr[X = x | V = v] =

(
1
q �

1
q(q�1)n�1 if x = v

1
q +

1
q(q�1)n if x 6= v

otherwise.
We see that when the sensitive variable V equals 0, then the intermediate variable X is

more likely to equal 0 than another value in Fq. On the other hand, when V does not equal
0, the sensitive variable X is more likely to be any value of Fq but v. Although the bias is
exponentially small in n, for small values of n it may induce a significant information leakage.
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Fast leakage assessment
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Security notions

!
Can an adversary 
extract the key?

key recovery

“pragmatic” security notion

20
≈ DPA



Security notions

!

k=k1 k=k2

Can an adversary 
tell the two devices apart?

!
Can an adversary 
extract the key?

key recovery (in)distinguishability

“stronger” security notion“pragmatic” security notion

21
≈ DPA ≈ leakage assessment



Leakage assessment review
A. Take N measurements for each plaintext class 

B. For each class, describe the trace distribution 

A. normally use some descriptive statistic: 
mean, variances, skewness, kurtosis, … 

C. Compare the class-dependent statistics 

A. If significant difference -> fail test 

B. Otherwise: “pass”

statistical test

distribution statistic

measurement setup

22
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principle of operation
• Leakage detection test on simulated 

measurements 

• Statistically test if the distribution of each variable 
has secret-independent mean

23

FAIL PASS
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More heuristics
• Scale down algorithm 

• test first small instances: smaller bit-width, smaller fields. 
Biases normally more pronounced in smaller fields 

• smaller rounds, combine components  

• Deactivate parts of plaintext 

• Carefully pick input texts: fixed points, or inputs that are 
specially handled 

• AES sbox input 0

26
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results
• reproduced previous attacks 

• new second-order flaw on Schramm-Paar when unbalanced 
sboxes

Schramm-Paar 
Higher-order tables  
CT-RSA 2006

Coron-Prouff-Rivain 
CHES 2007

Rivain-Prouff 
“Provably secure”
CHES 2010

Coron-Prouff-Rivain-Roche 
FSE 2013

Balasch-Faust 
Gierlichs-Verbauwhede 
ASIACRYPT 2012

Prouff-Rivain-Roche 
CT-RSA 2014.

Reparaz-Bilgin-Nikova 
Gierlichs-Verbauwhede 
CRYPTO 2015

Bilgin-Gierlichs-Nikova 
Nikov-Rijmen 
ASIACRYPT 2014
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first-, second- and third-order attacks
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Software and hardware
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performance
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comparision with other 
approaches
• easycrypt: impressive scientific + engineering 

achievement 

• 188k lines of code
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Evaluating masking 
in HW circuits
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Work in progress: 
verification of HW circuits
• Glitches: unintentional, spurious signal transitions. Signals go thru different 

state changes till they stabilise. 

• A headache for many people: 

• glitches consume unnecessary power, energy 

• security implications: can make masking insecure [Mangard et al. 2005] 

• Mitigation: 

• manually 

• or by using techniques: TI, CMS, DOM, … 

• Next: verifying HW circuits, taking into consideration glitches.
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c2 = (a1*b1) + (a1*b2) + 
        + (a2*b1)+(a2*b2) + z

For every node n: 
E[n|secret=0] = E[n|secret=1]

first-order security=)

Model: perfect, zero-delay gates
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b2
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b1

a2
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a1 c2’ = (b2*a1)+(b2*a2) 
      = a*b2
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a1 c2’ = (b2*a1)+(b2*a2) 
      = a*b2
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E[c2’|a=0] = 0
E[c2’|a=1] = E[b2] 

              = 0.5

first-order leak



The “glitch function”
• The “glitch function” is a fictitious function. It is actually 

a family of functions. 

• Definition: the circuit computes “glitch functions” 
before getting a stable output 

• The “glitch function” is often very difficult to 
completely determine (need to have very careful 
characterisation of logic gate library, routing details). 
We assume it is unknown. 

• But we know certain properties!
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Leakage behaviour induced
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Can work at the RTL level: 
* no timing information, no library characterisation needed 
* at the expense of more false positives (overkill evaluation)



Key (obvious) observation

• glitch function depends only on input nodes! 

• If input nodes are (jointly) secret-independent, then 
no glitch function can make the node leak 

• in other words, I(input nodes; secret) = 0

46



Testing for glitch-security
• “One probe”: for each circuit node n 

• verify that I(inputs to n; secret) = 0 

• boils down to verifying distribution of inputs 
conditioned on secret are the same 

• “Two probes”: For each pair or circuit nodes (n1,n2) 

• Verify that I(inputs to n1 || inputs to n2 ; secret) = 
0
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Thank you for your attention 
Questions?


