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quick Intro to masking

masking = countermeasure against DPA

idea: secret sharing b = by + bo

individual shares tell you nothing about the intermediate

* power consumption tells you nothing about the intermediate

main difficulty: compute on masked data

« AES/RSA/ ...

- not as easy as it sounds



masking common problems

* masking Is hard to implement...

* delicate to implement in SW, delicate to
implement in HW

e ...but sometimes the scheme is structurally flawed

e ...especially tricky in higher-order scenario



Protocol

% Algorithm

% Architecture: co-design, HW/SW, SoC
Micro-architecture: buses, registers, ...
Circuit

design abstraction level

[IEEE Computer 2005]
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practically secure
device-specific

algorithmically secure
provable secure

relies on assumptions
that may not be met by
underlying HW

algorithmically insecure

practically insecure
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Evaluating masking
at design time ——
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timeline/history

Schramm-Paar )
Higher-order tables /"
CT-RSA 2006

=, Coron-Prouff-Rivain
i\ CHES 2007
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o, )\ CHES 2008

‘provably secure”
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CHES 2010 >
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Algorithm 4 Masked Multiplication: (X,Y) < IPMult((L, R), (K, Q))
INPUT: Two Masked variables (L, R) and (K, Q)
OutpuT: New masked variable (X,Y’) such that (X,Y) = (L, R) ® (K, Q)

.fori=0ton—-1 do
for j=1ton do
Uien+j + Liv1 @ K;
. ~i*n+j <~ Ri+~1 ®~QJ
. (U, V) + IPRefresh(U,V)
LA (Ur,-,Up); €+ (Upga, -
B+ (Vi,-+,V); D« (Voga,--
Z + (C,D)
.Y + IPHalfMask(Z, A)
10. X + A
11.Y+<Yo®B
12. return (X,Y)

: 7Un2)
: 7Vn2)

© 00 O U W N e

3 A First-Order Flaw

Balasch et al. claim that the above IP masking scheme is secure against any side-channel
attack of order d = n — 1, or equivalently, that any family of n — 1 intermediate variables is
independent of any sensitive variable. We contradict this claim hereafter by showing that for
any fixed parameter n, there always exists a first-order side-channel attack on the IP masking
scheme. To this end, we will exhibit an intermediate variable that is statistically dependent
on some sensitive variable in both the IPRefresh and IPAdd procedures (Algorithms 2 and 3
above).

Let A = (A1, Ay,...,A,) and B = (By, Bs,...,B,) be random vectors uniformly dis-
tributed over (F7)", and let R = (R, Ry, ..., R,) be a random vector uniformly distributed
over [y, such that A, B and R are mutually independent. Consider the function f,, defined
by:

fn(a,b) =Pr[(A,R) =a N (B,R) =0] . (1)

We first study f, with respect to n before exhibiting the IP masking flaw.

3.1 Study of f,

The study of f, developed in this section is recursive. First, in Lemma 1, we give an explicit
expression to fi. Then, in Lemma 2, we exhibit a recursive relationship for f,,. Both lemmas
are eventually involved to provide an explicit expression to f, (Theorem 1).

Lemma 1. The function fi satisfies

% if (a,b) = (0,0)
fila,b) =4 0 if(a,b) € ({0} x F}) U (F} x {0})
s f (a,b) € Fy x Fy

Proof. First, since both A; and B; are non-zero, we have

fl(0,0) = Pr[A1®R1:0ABl®R1:O] =

Moreover, for any a # 0, we have
fi(a,0) = Pr[Ri=a®A;'AR; =0] = 0.

Similarly, we also have f(0,b) =0 if b # 0.
Eventually, the total probability law together with the mutual independence between A, B
and Rj, imply

fl(a,b) = Z PI‘[Al :al] XPI“[Rl :a®af1/\Bl®R1 :b] ,
aleF;
which for a # 0 and b # 0 gives

fi(a,b) = Z Pr[A; =a1] xPr[Ri =a®a;' ABy=b(a ' ®a1)] =

o= 8 (g = 1)

Lemma 2. For every n > 1, there exist fO°, fO01 f11 € R such that

S0 if (a,b) = (0,0)
St if (a,b) € ({0} x Fy) U (F x {0})
ﬁlﬁ@memxm

fnla,b) =

Moreover, we have
1 qg—1
00 00 11
n+1 — afn + q fn )
2 q—2
01 01 11
n+1 — gfn + q fn )

1 (q—2) (g—1)+(¢—2)
q(q—1) (¢—1) q(q—1)

Proof. The first statement is true for n = 1 by Lemma 1. It is then implied by recurrence
from the second statement. Therefore, we only need to show the latter statement.
For every n > 1, the total probability law implies

fn+1(a7 b) = Z fn(a@GOab@bO)fl(a():bO) . (2)

(ao,bo)EFg

11
n+1 —

2 2
a2 oy R

1. For (a,b) = (0,0), the terms in the sum (2) are of the form f,(ag, bo)f1(ao,bop). Then
by Lemma 1, we get

o fn(0,0) if (ag, by) = (0,0)
fn(ao,bo)fl(ao,bo) = 0 if (ao,bo) S ({0} X F;) U (]FZ X {0})
ﬁfn(ao, bo) if (ao, bo) € FZ X FZ

We deduce

_1 00 _1)\2
fn+l(a7b)_qfn +(q 1) q(q_l)
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2. For (a,b) € {0} x Fy, the terms in the sum (2) are of the form f;,(ao, b ® bo) f1(ao, bo),
with b # 0. Then by Lemma 1, we get

L1, (0,5) (0,0)

if (ao, bo) =
0 if (a0, bo) € ({0} x Fy) U (F; x {0})
fn(a0,b® bo)fi(ao, bo) = q(q 1y fn(ao,0) if (ag,bg) e F x {b}
e fn(ao,bo) if (ag, bo) e]F* x (F2\{b})

We deduce

1 01 _ 1 11
G- + (e —1)(q 2)q(q_1)n~ (4)

For (a,b) € Fy x {0}, we have the same equality by symmetry of the function f,.

fus1(a,b) = i 04 (g - 1)

3. For (a,b) € Fy xFy, the terms in the sum (2) are of the form f,,(a ®ao, b®bo) f1(ao, bo),
with a # 0 and b # 0. Then by Lemma 1, we get

fn(a@ao,b@bo)fl(ao,bo) = ﬁfn(a@ ag, 0) if (ag, by) € (F*\{a}) % {b}

ﬁfn(o, b bg) if (Clo, bg) € {a} X (FZ\{b})
mfn(a@ ap, b @ bo) if (ao,bo) € (Fy\{a}) x (Fz\{b})

We deduce
1 1 1
fri(a,b) = ~f3! + q—2 ) +(g—2)° fal - (5
) = s 20— ) + -2 )
Equations (3), (4) and (5) directly yield the second statement. O
Theorem 1. For every n > 1 we have
b+ aane e =00
fn(a, b) = (721_ W Zf (CL, b) € ({O} X Fq) U (Fq X {O})
2T Fa=nn if (a,b) € Fy x F
Proof. From Lemma 2, we have
1 -1
2, . KN £ 10 0 (e
irg A 22 ()i | (o I O B R /3 (6)
1 q— qg—1)+(g— 00—
Jnia a(¢-1) al¢-1)  a(q-1) In -1 "

where P is the matrix of eigenvectors which satisfies

1 1—-¢ ¢*—-2¢+1
P=(112-9 1-g
1 1 1

% fn(a,b) if (ag, bo) = (0,0)
mfn(o, 0) if (ag,bp) = (a,b)
0 if (a0, bo) € ({0} x Fy) U (Fy x {0})

By recursively applying (6), we can express (£, f91, f11) with respect to (f2°, f1, fil) as

00 10 0 00

Ol =p.[00 0 P
1

n 00 =gy .

Finally, by Lemma 1 we have ( ?0, {)1, 111) = (%,O, q(qil*l))’ which together with the above
equation yields the theorem statement. (]

3.2 Application to the IP Masking Scheme

The flaw occurs in the mask-refreshing procedure IPRefresh and in the addition procedure
IPAdd (see in Algorithm 2 and Algorithm 3). For the sake of clarity, we first detail it in the
IPRefresh setting and then show it occurs as well in the IPAdd procedure.

Flaw in mask-refreshing procedure. The IPRefresh procedure takes an IP masking
(L, R) of some sensitive variable V' (i.e. such that V' = (L, R)), and it returns a fresh masking
(L', R) such that V = (L', R’). The first step of the procedure consists in randomly picking
some vector A € Fy such that A; # L; for every i. Then one computes L' =L® A and
X = (A, R). Note that L and L’ are mutually independent and both uniformly distributed
over (Fy)". We show hereafter that X leaks information on the sensitive variable V. Indeed
we have
Pr[V=vAX=2] Pr[V=vAX®V =z

PriX =x2|V=v]= Pr[V = o] = Pr[V = v]

Then from
PrlV=vAX®V=x®dv]=Pr(L,R)=vA(L,R)=2®v] = fu(v,zDv),

we get ( )
falv,z®ov
W’ (7)

By Theorem 1 and given that Pr[V = v] = 1, (7) gives

PriX =z |V=01=

Q

1 e
—|—W ifx=0

ifx#£0

Q[ =

Pr[X::U|V:v]:{

~alg=1)n T
for v =0, and

r_ 1

PriX =z |V =1]= { q q(qf%)nfl

1
a T @

ifr=v
ifx#v

otherwise.

We see that when the sensitive variable V' equals 0, then the intermediate variable X is
more likely to equal 0 than another value in F,. On the other hand, when V' does not equal
0, the sensitive variable X is more likely to be any value of IF, but v. Although the bias is
exponentially small in n, for small values of n it may induce a significant information leakage.
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leakage assessment
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Security notions

key recovery

Can an adversary
extract the key?

“pragmatic” security notion

~ DPA
20



Security notions

key recovery (in)distinguishability

Can an adversary Can an adversary
extract the key? tell the two devices apart?
“pragmatic” security notion “stronger” security notion

~ DPA ~ |leakage assessment

21



Statistics and Secret Leakage JEAN-SEBASTIEN CORON and DAVID NACCACHE

Gemplus

FC 2000 and
PAUL KOCHER
Cryptography Research, Inc.

| eakage assessment review

measurement setup A. Take N measurements for each plaintext class

distribution statistic B. For each class, describe the trace distribution

A. normally use some descriptive statistic:
mean, variances, skewness, kurtosis, ...

statistical test C. Compare the class-dependent statistics
A. If significant difference -> fail test

B. Otherwise: “pass”

22



principle of operation

* |eakage detection test on simulated

measurements

e Statistically test if the distribution of each variable

has secret-independent mean
FAIL

number of traces

23
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Statistics and Secret Leakage

JEAN-SEBASTIEN CORON and DAVID NACCACHE
Gemplus

and

PAUL KOCHER

Cryptography Research, Inc.

In addition to its usual complexity assumptions, cryptography silently assumes that information
can be physically protected in a single location. As one can easily imagine, real-life devices are not
ideal and information may leak through different physical channels.

This paper gives a rigorous definition of leakage immunity and presents several leakage detec-
tion tests. In these tests, failure confirms the probable existence of secret-correlated emanations
and indicates how likely the leakage is. Success does not refute the existence of emanations but
indicates that significant emanations were not detected on the strength of the evidence presented,
which of course, leaves the door open to reconsider the situation if further evidence comes to hand
at a later date.

24



Viore heuristics

® Scale down algorithm

® test first small instances: smaller bit-width, smaller fields.
Biases normally more pronounced in smaller fields

® smaller rounds, combine components
® Deactivate parts of plaintext

® Carefully pick input texts: fixed points, or inputs that are
specially handled

® AES sbox input O

20



70 void MaskRefresh(u8 *s) {

71 u8 r;

72 for (int i = 1; i < number_shares; i++) {
73 1 =1rnd ();

74 s[0] "= r;

75 s[i] °= r;

76 }

77 }

110 void SecMult (u8 *out, u8 *a, u8 *b) {
111 u8 aibj,ajbi;

114 for (int i = 0; i < number_shares; i++) {
115 for (int j =i + 1; j < number_shares; j++) {

119  aibj

= mult(alil, b[j1);
120 ajbi = mult(aljl, b[il);
$ ./ran

entering fixed_vs_fixed(00,01)
> leakage detected with 1.20k traces
higher order leakage between
line 74 and
line 120
with tvalue of -7.03 27



results

e reproduced previous attacks

Coron-Prouff-Rivain

Schramm-Paar SN
Jon \ CHES 2007

Higher-order tables
CT-RSA 2006

|
> Coron-Prouff-Rivain-Roche

Rivain-Prouff FSE 2013

“Provably secure”
CHES 2010 >

Prouff-Rivain-Roche

Balasch-Faust CT-RSA 2014.

Gierlichs-Verbauwhede
ASIACRYPT 2012 >

Reparaz-Bilgin-Nikova
Gierlichs-Verbauwhede

Bilgin-Gierlichs-Nikova
WA CRYPTO 2015

Nikov-Rijmen
ASIACRYPT 2014

e Nnew second-order flaw on Schramm-Paar when unbalanced
sboxes
28



first-, second- and third-order attacks

Fig. 5: Pairs of rounds with |t| > 80 Fig.6: Pairs of rounds with [t| > 5
29



t value
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Fig. 9: Influence of leakage function.
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Software and hardware

—3 8-bit

GF(2%)

> @\ﬁmult.
1
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Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

Fig. 7: Higher-order masked AES sbox from de Cnudde et al.
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performance

Scheme Flaw order Field size Time Traces needed

IP 1 4 0.04s 1k
RP 2 4 oS 14k
SP 3 4 0.2s 2k

Fig.8: Running time to discover flaw in the studied schemes, and number of
traces needed to detect the bias.
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comparision with other

approaches

* easycrypt: iImpressive scientific + engineering

achlevement

EasyCrypt / easycrypt

<> Code Pull requests 0 Pulse Graphs
EasyCrypt: Computer-Aided Cryptographic Proofs

OCaml ®eC Shell ® Python

e 188k lines of code

34
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Evaluating masking
N AW circults
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. not yet peer reviewed

Work In progress:
verification of HW circuits

® Glitches: unintentional, spurious signal transitions. Signals go thru different
state changes till they stabilise.

® A headache for many people:

® glitches consume unnecessary power, energy

® security implications: can make masking insecure [Mangard et al. 2005]
® Mitigation:

® manually

® or by using techniques: TI, CMS, DOM, ...

® Next: veritying HW circuits, taking into consideration glitches.
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by l
a1 —D ®W

<12

a

bD_@\
bg:j_é\

aq

b
Ao

Y

D

Model: perfect, zero-delay gates

For every node n:
E[n|secret=0] = E[n|secret=1]

—— first-order security

c2 = (a1*b1) + (a1*b2) +
+ (a2*b1)+(a2*b2) + z

»CQ
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E[c2’|]a=0] = 0
E[c2’|a=1] = E[b2]

b > - 0.5
ao first-order leak




The “glitch function”

® [he “glitch function” is a fictitious function. It is actually
a family of functions.

® Definition: the circuit computes “glitch functions”
before getting a stable output

® The “glitch function” is often very difficult to
completely determine (need to have very careful
characterisation of logic gate library, routing details).
We assume it is unknown.

® But we know certain properties!

44



L]

| eakage behaviour induceo

i

Can work at the RTL level:

* no timing information, no library characterisation needed
* at the expense of more false positives (overkill evaluation)
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Key (obvious) observation

® glitch function depends only on input nodes!

® [f input nodes are (jointly) secret-independent, then
no glitch function can make the node leak

® in other words, I(input nodes; secret) = 0

46



Testing for glitch-security

® “One probe™: for each circuit node n
® verity that [(inputs to n; secret) = 0

® pboils down to veritying distribution of inputs
conditioned on secret are the same

® "[wo probes”: For each pair or circuit nodes (n1,n2)

® \erify that I(inputs to n1 || inputs to N2 ; secret) =
0

47
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Thank you for your attent

Questions?



