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The Masking Countermeasure

Aim: observation of d intermediate computations cannot reveal
the secret x =⇒ d-th order masking

Splits a secret x in d+1 shares using random uniform
variables called masks

Operation-dependent, i.e boolean masking: x ⊕ m

At software level, usually added in the source code (easy to
identify secret variables)

Problems

Need to ensure that a masked program is leakage free in
practice

Compilation flow and optimizations (reordering, removal...)
may affect masking effectiveness
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Masked Programs Security: Existing Formal Verifications

[Bayrak,CHES13] SAT verification of sensitivity : an operation on a
secret must involve a random variable which is not a don’t care
variable (i.e it affects the result)

X Low level: LLVM programs
× Security property not sufficient

[Eldib,TACAS14] SMT verification of perfect masking, i.e statistical
independency of intermediate computations from secrets

X Strong security property
× C level & Bit-blasted programs (could be applied to low level)
× Lack of scalability (combinatorial blow-up of the enumeration)

[Barthe,Eurocrypt15] t-non-interference: joint probability
distribution of any t intermediate expressions is independent from
secrets

X Strong security property
X Good scalability
× Cannot conclude for some cases
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Our Goal

To verify side channel resistance:

Of 1st order masked programs

At assembly level

In the value-based model: instruction result leaks

Considering that: leakage-free instruction ⇐⇒ result is
statistically independent from secrets

With a symbolic approach that infers the distribution type of
instruction expressions
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Verification Scheme

# r0 ← k ; r 1 ← m1 ; r 2 ← m2 ; r 3 ← m3
1 e o r r4 , r0 , r 1 # k ⊕ m1
2 e o r r5 , r0 , r 2 # k ⊕ m2
3 and r5 , r5 , r 3 # ( k ⊕ m2) & m3
4 and r5 , r5 , r 4 # ( k ⊕ m1) & ( ( k ⊕ m2) & m3)

km1 m2

m3⊕

&

&

⊕

mask mask

mask

secret

Data dependency graph of the last
instruction

Is the root distribution statistically
independent from k?

I Inputs tagged with a
distribution type

I Bottom-up combination of
distribution types using defined
inference rules
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Symbolic Approach

4 distribution types for variables and expressions:

Random Uniform Distribution (RUD)

Unknown Distribution (UKD)

Constant (CST)

(Statistically) Independent from Secrets Distribution (ISD): not
necessarily uniform but identical for all values of the secrets.

k: secret
m1, m2: masks
e = (k ⊕ m1) & m2

e’= (k ⊕ m1) & m1

k m1 m2 e

0

0 0 0

P(e=0)= 3

4

P(e=1)= 1
4

0 1 0
1 0 0
1 1 1

1

0 0 0

P(e=0)= 3

4

P(e=1)= 1
4

0 1 1
1 0 0
1 1 0

e’
0


P(e’=0)= 1

2

P(e’=1)= 1
2

0
1
1
0

P(e’=0)=1
P(e’=1)=0

0
0
0
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Independence Notions

Which distribution types assert that an expression is statistically
independent from secrets?

Dependence between expression e and variable v:

structural =⇒ v appears in e

statistical =⇒ the distribution of the result of e depends on v

=⇒ Need to keep track of structural dependencies: (k ⊕ m) & m

Safe types:

e∼RUD
e∼ISD
e∼UKD with no structural
dependency on any secret

Unsafe type:

e∼UKD{dep} with structural
dependency on some secret
variable: dep ∩ S 6= ∅
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Dominant Masks

Aim: to find a mask that randomizes the whole expression

Dom Rule

expression e = e’ ⊕ m or e = e’ + m mod 2n

m∼RUD{m}
m 6∈ dep(e’)

=⇒ e∼RUD and m is a dominant mask of e.

2 sets of dominant masks:

dom⊕(e) the set of xor dominant masks of e

dom+(e) the set of additive dominant masks of e

Examples:

dom⊕((k + m1) ⊕ (k ⊕ m1 ⊕ m2)) = m2

dom+((k + m1) ⊕ 0) = dom+(k + m1) = m1
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Other Inference Rules

By distribution types:

Set of rules for ⊕, + mod 2n

Set of rules for AND and OR

Disjoint rule for binary operators

u∼ISD{dep0} and v∼ISD{dep1}
No masks in common: dep0 ∩ dep1 ∩ M = ∅

=⇒ (u op v)∼ISD{dep0 ∪ dep1} for every binary operation op

B More details in the paper
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Running Example

Type inference for the last instruction i4 :
(k ⊕ m1) & ((k ⊕ m2) & m3)

km1 m2

m3⊕

&

&

⊕

RUD{m1}

RUD{m3}

RUD

{k, m1}
RUD

{k, m2}

ISD {k, m2, m3}

ISD {k, m1, m2, m3}

RUD{m2}UKD{k}

B i4 is statistically independent from k
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Bit Level Analysis

When no conclusion is possible at word level:
=⇒ split the expression into several expressions at
bit level e0e1en e2

e ...

B case 1:

e0e1en e2

mn m2m1m0

...

ei∼RUD and different
dominant mask for each ei

B case 2:

e0eien ei+1... ei-1 ...

ISD CSTCST

Concatenation of an ISD
bit with CST bits

B case 3:

e0eien ei... ...

ISD CSTCST

...

ISDCST

Deduplicated ISD bit and
concatenation with CST bits

Example from mix columns in AES:
e = ((LSR(mt1 ⊕ mp ⊕ sbox5, 7) ⊕ LSR(mt2 ⊕ mp ⊕ sbox10, 7)) +

(((LSR(mt1 ⊕ mp ⊕ sbox5, 7) ⊕ LSR(mt2 ⊕ mp ⊕ sbox10, 7)) � 1)

b7 = mt17 ⊕ mp7 ⊕ sbox57 ⊕ mt27 ⊕ mp7 ⊕ sbox107

e =⇒ 0000 00b7b7 =⇒ ISD
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Comparison with Two Methods

Our method: distribution type inference implemented in
Python

C-enumerative: generates a C program that computes the
expression distribution by enumerating on all variable values

I returns: RUD, ISD or vulnerable

SMT-enumerative: extends Eldib et al.’s approach for n-bit
variables ( generates a SMT problem that searches for two
values of a secret for which the expression distribution is
different )

I returns: ISD or vulnerable
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Benchmarks

Program
#ASM Size

# masks # secrets
Secure in

inst in bits literature
Boolean programs for comparison with SMT

P6 [Eldib,TACAS14] 8 1 3 3 ×
Masked Chi

[Eldib,TACAS14]
8 1 2 3 X

Algorithms for switching between boolean and arithmetic maskings
Goubin Conversion

[Goubin01]
8 4 2 1 X

Coron Conversion
[Coron15]

37 4 3 1 X

Cryptographic algorithms
Masked AES 1st round

[Herbst06]
422 8 6 16 + 16 X

Simon TI 1st round
[Shahverdi17]

15 32 5 3 + 2 X
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Experimental Comparison

Ref (enumeration) Symbolic
Program

# RUD # ISD # Vuln # RUD # ISD # UKD # CST

P6 6 2 0 6 2 0 0
Masked Chi 2 2 4 2 2 4 0

Goubin
Conversion

7 1 0 5 0 3 0

Coron
Conversion

19 11 7 14 10 13 0

Masked AES
1st round

- - - 302 0 0 120

Simon TI
1st round

- - - 7 4 3 1

Enumeration methods =⇒ sound, complete but not applicable on
AES/Simon

Symbolic method =⇒ sound {Vuln} ⊆ {UKD} but not complete
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Verification Time

Program
Symbolic Enum C SMT

time time time
P6 <1s <1s <1s

Masked Chi <1s <1s <1s
Goubin

<1s <1s 35mn
Conversion

Coron
2s 1s 5,6h

Conversion
Masked AES

22s - -
1st round
Simon TI

8.5s - -
1st round

C-enumeration =⇒ fast but only for small programs

SMT-enumeration =⇒ can be long even for small programs

Symbolic method =⇒ better scalability
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Bit Level vs. Word Level Analysis

Program #UKDw #UKDb
#total

inst
P6 0 0 8

Masked Chi 4 4 8
Goubin Conversion 3 3 8
Coron Conversion 21 13 37

Masked AES
1st round

80 0 422

Simon
1st round

7 4 15

With bit level analysis:

For Coron Conversion & Simon TI: around 40% of unsafe
instructions become safe

For Masked AES: ALL unsafe instructions become safe
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Conclusion

We proposed a symbolic method:

For verifying side channel robustness of 1st order masked programs
at assembly level

Using type inference of expression distributions

Scalable, sound but not complete

Perspectives for future work:

Automatic tool that analyses an assembly code

Refine the set of rules / bit level analysis

Combine with enumerative approach at bit level (need to consider
inter-bit dependencies)

Extend to other leakage models (e.g transition-based model) /
higher masking orders
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Thank you for your attention!
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Algorithm 1 Distribution inference algorithm

1: function infer(e)

2: if e is a leaf then
3: if e ∈ S then return UKD{e}
4: else if e ∈ M then return RUD{e}
5: else return CST

6: else
7: le{ld} = infer(e.left child)

8: re{rd} = infer(e.right child)

9: if ∃ rule for (le{ld} e.op re{rd}) that returns RUD{dep}
then

10: return RUD{dep}
11: else if ∃ rule for (le{ld} e.op re{rd}) that returns

ISD{dep} then
12: return ISD{dep}
13: else return UKD{dep}
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