
Introduction / Motivation Symbolic Method Experiments Conclusion

Symbolic Approach for Side-Channel Resistance
Analysis of Masked Assembly Codes

Workshop PROOFS

Inès Ben El Ouahma Quentin Meunier Karine Heydemann
Emmanuelle Encrenaz

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
France

September 29th, 2017, Taipei, Taiwan

1 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

1 Introduction / Motivation

2 Symbolic Method

3 Experiments

4 Conclusion

2 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Side-Channel Attacks

EM

emission

Power

Consumption

Execution

time

Measurements
Statistical analysis

for key recoverySide channels

3 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

The Masking Countermeasure

Aim: observation of d intermediate computations cannot reveal
the secret x =⇒ d-th order masking

Splits a secret x in d+1 shares using random uniform
variables called masks

Operation-dependent, i.e boolean masking: x ⊕ m

At software level, usually added in the source code (easy to
identify secret variables)

Problems

Need to ensure that a masked program is leakage free in
practice

Compilation flow and optimizations (reordering, removal...)
may affect masking effectiveness

4 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Masked Programs Security: Existing Formal Verifications

[Bayrak,CHES13] SAT verification of sensitivity : an operation on a
secret must involve a random variable which is not a don’t care
variable (i.e it affects the result)

X Low level: LLVM programs
× Security property not sufficient

[Eldib,TACAS14] SMT verification of perfect masking, i.e statistical
independency of intermediate computations from secrets

X Strong security property
× C level & Bit-blasted programs (could be applied to low level)
× Lack of scalability (combinatorial blow-up of the enumeration)

[Barthe,Eurocrypt15] t-non-interference: joint probability
distribution of any t intermediate expressions is independent from
secrets

X Strong security property
X Good scalability
× Cannot conclude for some cases

5 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Our Goal

To verify side channel resistance:

Of 1st order masked programs

At assembly level

In the value-based model: instruction result leaks

Considering that: leakage-free instruction ⇐⇒ result is
statistically independent from secrets

With a symbolic approach that infers the distribution type of
instruction expressions

6 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Plan

1 Introduction / Motivation

2 Symbolic Method

3 Experiments

4 Conclusion

7 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Verification Scheme

r0 ← k ; r 1 ← m1 ; r 2 ← m2 ; r 3 ← m3
1 e o r r4 , r0 , r 1 # k ⊕ m1
2 e o r r5 , r0 , r 2 # k ⊕ m2
3 and r5 , r5 , r 3 # (k ⊕ m2) & m3
4 and r5 , r5 , r 4 # (k ⊕ m1) & ((k ⊕ m2) & m3)

km1 m2

m3⊕

&

&

⊕

mask mask

mask

secret

Data dependency graph of the last
instruction

Is the root distribution statistically
independent from k?

I Inputs tagged with a
distribution type

I Bottom-up combination of
distribution types using defined
inference rules

8 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Symbolic Approach

4 distribution types for variables and expressions:

Random Uniform Distribution (RUD)

Unknown Distribution (UKD)

Constant (CST)

(Statistically) Independent from Secrets Distribution (ISD): not
necessarily uniform but identical for all values of the secrets.

k: secret
m1, m2: masks
e = (k ⊕ m1) & m2

e’= (k ⊕ m1) & m1

k m1 m2 e

0

0 0 0

P(e=0)= 3

4

P(e=1)= 1
4

0 1 0
1 0 0
1 1 1

1

0 0 0

P(e=0)= 3

4

P(e=1)= 1
4

0 1 1
1 0 0
1 1 0

e’
0

P(e’=0)= 1

2

P(e’=1)= 1
2

0
1
1
0

P(e’=0)=1
P(e’=1)=0

0
0
0

9 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Independence Notions

Which distribution types assert that an expression is statistically
independent from secrets?

Dependence between expression e and variable v:

structural =⇒ v appears in e

statistical =⇒ the distribution of the result of e depends on v

=⇒ Need to keep track of structural dependencies: (k ⊕ m) & m

Safe types:

e∼RUD
e∼ISD
e∼UKD with no structural
dependency on any secret

Unsafe type:

e∼UKD{dep} with structural
dependency on some secret
variable: dep ∩ S 6= ∅

10 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Dominant Masks

Aim: to find a mask that randomizes the whole expression

Dom Rule

expression e = e’ ⊕ m or e = e’ + m mod 2n

m∼RUD{m}
m 6∈ dep(e’)

=⇒ e∼RUD and m is a dominant mask of e.

2 sets of dominant masks:

dom⊕(e) the set of xor dominant masks of e

dom+(e) the set of additive dominant masks of e

Examples:

dom⊕((k + m1) ⊕ (k ⊕ m1 ⊕ m2)) = m2

dom+((k + m1) ⊕ 0) = dom+(k + m1) = m1

11 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Other Inference Rules

By distribution types:

Set of rules for ⊕, + mod 2n

Set of rules for AND and OR

Disjoint rule for binary operators

u∼ISD{dep0} and v∼ISD{dep1}
No masks in common: dep0 ∩ dep1 ∩ M = ∅

=⇒ (u op v)∼ISD{dep0 ∪ dep1} for every binary operation op

B More details in the paper

12 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Running Example

Type inference for the last instruction i4 :
(k ⊕ m1) & ((k ⊕ m2) & m3)

km1 m2

m3⊕

&

&

⊕

RUD{m1}

RUD{m3}

RUD

{k, m1}
RUD

{k, m2}

ISD {k, m2, m3}

ISD {k, m1, m2, m3}

RUD{m2}UKD{k}

B i4 is statistically independent from k

13 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Bit Level Analysis

When no conclusion is possible at word level:
=⇒ split the expression into several expressions at
bit level e0e1en e2

e ...

B case 1:

e0e1en e2

mn m2m1m0

...

ei∼RUD and different
dominant mask for each ei

B case 2:

e0eien ei+1... ei-1 ...

ISD CSTCST

Concatenation of an ISD
bit with CST bits

B case 3:

e0eien ei... ...

ISD CSTCST

...

ISDCST

Deduplicated ISD bit and
concatenation with CST bits

Example from mix columns in AES:
e = ((LSR(mt1 ⊕ mp ⊕ sbox5, 7) ⊕ LSR(mt2 ⊕ mp ⊕ sbox10, 7)) +

(((LSR(mt1 ⊕ mp ⊕ sbox5, 7) ⊕ LSR(mt2 ⊕ mp ⊕ sbox10, 7)) � 1)

b7 = mt17 ⊕ mp7 ⊕ sbox57 ⊕ mt27 ⊕ mp7 ⊕ sbox107

e =⇒ 0000 00b7b7 =⇒ ISD

14 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Plan

1 Introduction / Motivation

2 Symbolic Method

3 Experiments

4 Conclusion

15 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Comparison with Two Methods

Our method: distribution type inference implemented in
Python

C-enumerative: generates a C program that computes the
expression distribution by enumerating on all variable values

I returns: RUD, ISD or vulnerable

SMT-enumerative: extends Eldib et al.’s approach for n-bit
variables (generates a SMT problem that searches for two
values of a secret for which the expression distribution is
different)

I returns: ISD or vulnerable

16 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Benchmarks

Program
#ASM Size

masks # secrets
Secure in

inst in bits literature
Boolean programs for comparison with SMT

P6 [Eldib,TACAS14] 8 1 3 3 ×
Masked Chi

[Eldib,TACAS14]
8 1 2 3 X

Algorithms for switching between boolean and arithmetic maskings
Goubin Conversion

[Goubin01]
8 4 2 1 X

Coron Conversion
[Coron15]

37 4 3 1 X

Cryptographic algorithms
Masked AES 1st round

[Herbst06]
422 8 6 16 + 16 X

Simon TI 1st round
[Shahverdi17]

15 32 5 3 + 2 X

17 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Experimental Comparison

Ref (enumeration) Symbolic
Program

RUD # ISD # Vuln # RUD # ISD # UKD # CST

P6 6 2 0 6 2 0 0
Masked Chi 2 2 4 2 2 4 0

Goubin
Conversion

7 1 0 5 0 3 0

Coron
Conversion

19 11 7 14 10 13 0

Masked AES
1st round

- - - 302 0 0 120

Simon TI
1st round

- - - 7 4 3 1

Enumeration methods =⇒ sound, complete but not applicable on
AES/Simon

Symbolic method =⇒ sound {Vuln} ⊆ {UKD} but not complete

18 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Verification Time

Program
Symbolic Enum C SMT

time time time
P6 <1s <1s <1s

Masked Chi <1s <1s <1s
Goubin

<1s <1s 35mn
Conversion

Coron
2s 1s 5,6h

Conversion
Masked AES

22s - -
1st round
Simon TI

8.5s - -
1st round

C-enumeration =⇒ fast but only for small programs

SMT-enumeration =⇒ can be long even for small programs

Symbolic method =⇒ better scalability

19 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Bit Level vs. Word Level Analysis

Program #UKDw #UKDb
#total

inst
P6 0 0 8

Masked Chi 4 4 8
Goubin Conversion 3 3 8
Coron Conversion 21 13 37

Masked AES
1st round

80 0 422

Simon
1st round

7 4 15

With bit level analysis:

For Coron Conversion & Simon TI: around 40% of unsafe
instructions become safe

For Masked AES: ALL unsafe instructions become safe

20 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Plan

1 Introduction / Motivation

2 Symbolic Method

3 Experiments

4 Conclusion

21 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Conclusion

We proposed a symbolic method:

For verifying side channel robustness of 1st order masked programs
at assembly level

Using type inference of expression distributions

Scalable, sound but not complete

Perspectives for future work:

Automatic tool that analyses an assembly code

Refine the set of rules / bit level analysis

Combine with enumerative approach at bit level (need to consider
inter-bit dependencies)

Extend to other leakage models (e.g transition-based model) /
higher masking orders

22 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

References

[Bayrak,CHES13] Ali Galip Bayrak, Francesco Regazzoni, David Novo, Paolo Ienne.
Sleuth: Automated Verification of Software Power Analysis Countermeasures. CHES
2013: 293-310

[Eldib,TACAS14] Hassan Eldib, Chao Wang, Patrick Schaumont. SMT-Based
Verification of Software Countermeasures against Side-Channel Attacks. TACAS 2014:
62-77

[Barthe,Eurocrypt15] Gilles Barthe, Sonia Belad, Franois Dupressoir, Pierre-Alain
Fouque, Benjamin Grgoire, Pierre-Yves Strub. Verified Proofs of Higher-Order
Masking. EUROCRYPT (1) 2015: 457-485

[Goubin01] Louis Goubin. A sound method for switching between boolean and
arithmetic masking. In Cryptographic Hardware and Embedded SystemsCHES 2001,
pages 315. Springer, 2001.

[Coron15] Jean-S ebastien Coron, Johann Grosch adl, Mehdi Tibouchi, and Praveen
Kumar Vadnala. Conversion from arithmetic to boolean masking with logarithmic
complexity. In International Workshop on Fast Software Encryption, pages 130149.
Springer, 2015.

[Herbst06] Christoph Herbst, Elisabeth Oswald, and Stefan Mangard. An aes smart
card implementation resistant to power analysis attacks. In ACNS, volume 3989,
pages 239252. Springer, 2006.

[Shahverdi17] Aria Shahverdi, Mostafa Taha, and Thomas Eisenbarth. Lightweight
side channel resistance. Threshold implementations of simon. IEEE Transactions on
Computers, 66(4):661671, 2017.

23 / 24

Introduction / Motivation Symbolic Method Experiments Conclusion

Thank you for your attention!

24 / 24

Backup Slide 1

Algorithm 1 Distribution inference algorithm

1: function infer(e)

2: if e is a leaf then
3: if e ∈ S then return UKD{e}
4: else if e ∈ M then return RUD{e}
5: else return CST

6: else
7: le{ld} = infer(e.left child)

8: re{rd} = infer(e.right child)

9: if ∃ rule for (le{ld} e.op re{rd}) that returns RUD{dep}
then

10: return RUD{dep}
11: else if ∃ rule for (le{ld} e.op re{rd}) that returns

ISD{dep} then
12: return ISD{dep}
13: else return UKD{dep}

25 / 24

	Introduction / Motivation
	Symbolic Method
	Experiments
	Conclusion
	Appendix

