Formal Fault Analysis of Branch Predictors: Attacking countermeasures of Asymmetric key ciphers

Sarani Bhattacharya and Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur

PROOFS 2016 August 20, 2016

1 / 25

- Introduction
- Motivation of the problem
- Exponentiation primitives for Public key cryptography
- Formalizing Differential of branch misses simulated from 2-bit predictor
- Developing the Attack Algorithm
- Experimental validation over Hardware Performance Counters
- Conclusion

• Asymmetric key algorithm have been threatened via timing side channels due to the behavior of the underlying branch predictors.

- Asymmetric key algorithm have been threatened via timing side channels due to the behavior of the underlying branch predictors.
- Effect of faults on such predictors and the consequences thereof on security of crypto-algorithms have not been studied.

- Asymmetric key algorithm have been threatened via timing side channels due to the behavior of the underlying branch predictors.
- Effect of faults on such predictors and the consequences thereof on security of crypto-algorithms have not been studied.
- We develop a formal analysis of such a bimodal predictor under the effect of faults.

- Asymmetric key algorithm have been threatened via timing side channels due to the behavior of the underlying branch predictors.
- Effect of faults on such predictors and the consequences thereof on security of crypto-algorithms have not been studied.
- We develop a formal analysis of such a bimodal predictor under the effect of faults.
- Analysis shows that differences of branch misses under the effect of bit faults can be exploited to attack implementations of RSA-like asymmetric key algorithms, based on square and multiplication operations.

- Asymmetric key algorithm have been threatened via timing side channels due to the behavior of the underlying branch predictors.
- Effect of faults on such predictors and the consequences thereof on security of crypto-algorithms have not been studied.
- We develop a formal analysis of such a bimodal predictor under the effect of faults.
- Analysis shows that differences of branch misses under the effect of bit faults can be exploited to attack implementations of RSA-like asymmetric key algorithms, based on square and multiplication operations.
- The attack is also threatening against Montgomery ladder of CRT-RSA (RSA implemented using Chinese Remainder Theorem).

• The difference of branch misses observed through HPCs between the correct and the faulty execution can be modeled efficiently to develop a key recovery attack.

- The difference of branch misses observed through HPCs between the correct and the faulty execution can be modeled efficiently to develop a key recovery attack.
- We develop an iterative attack strategy, which simulates the branches corresponding to partially known exponent bits and observes the difference of branch misses from HPCs to reveal the next bit.

- The difference of branch misses observed through HPCs between the correct and the faulty execution can be modeled efficiently to develop a key recovery attack.
- We develop an iterative attack strategy, which simulates the branches corresponding to partially known exponent bits and observes the difference of branch misses from HPCs to reveal the next bit.
- The theoretical simulations are validated on secret key-dependent modular exponentiation algorithms as well as on CRT-RSA implementation.

• The scenario where the secret key gets flipped or corrupted can manifest as a fault.

- The scenario where the secret key gets flipped or corrupted can manifest as a fault.
- However, fault can also be introduced by skipping some target instructions as well [1].

- The scenario where the secret key gets flipped or corrupted can manifest as a fault.
- However, fault can also be introduced by skipping some target instructions as well [1].
- On platforms such as Xilinx Microblaze where the HPC accesses are provided [2], the instruction skip phenomenon can be exploited to reveal secret by monitoring events such as branching.

- The scenario where the secret key gets flipped or corrupted can manifest as a fault.
- However, fault can also be introduced by skipping some target instructions as well [1].
- On platforms such as Xilinx Microblaze where the HPC accesses are provided [2], the instruction skip phenomenon can be exploited to reveal secret by monitoring events such as branching.
- In recent processors, Rowhammer is a term coined for disturbances observed in DRAM devices, where repeated row activation causes the DRAM cells to electrically interact within themselves [3, 4].

- The scenario where the secret key gets flipped or corrupted can manifest as a fault.
- However, fault can also be introduced by skipping some target instructions as well [1].
- On platforms such as Xilinx Microblaze where the HPC accesses are provided [2], the instruction skip phenomenon can be exploited to reveal secret by monitoring events such as branching.
- In recent processors, Rowhammer is a term coined for disturbances observed in DRAM devices, where repeated row activation causes the DRAM cells to electrically interact within themselves [3, 4].
- Authors in [5] has exploited this Rowhammer vulnerability to flip secret exponent bits residing in the memory of a x86 system. This motivates the study of differential analysis of HPCs when there is a fault.

• In fault analysis attacks as well as their countermeasures, the adversary may be prevented in getting useful information but the hardware events reflects the systems internal state which may have a dependence on the secret.

- In fault analysis attacks as well as their countermeasures, the adversary may be prevented in getting useful information but the hardware events reflects the systems internal state which may have a dependence on the secret.
- HPCs can be of potential threat with respect to fault analysis attacks and more notably against their countermeasures.

Exponentiation and Underlying Multiplication Primitive

• Inputs(*M*) are encrypted and decrypted by performing modular exponentiation with modulus *N* on public or private keys represented as *n* bit binary string.

Square and Multiply Exponentiation

Algorithm 1: Binary version of Square and Multiply Exponentiation Algorithm

```
\begin{array}{l} S \leftarrow M \ ; \\ \text{for } i \ \text{from } 1 \ \text{to } n-1 \ \text{do} \\ S \leftarrow S \ast S \ \text{mod } N \ ; \\ \text{if } d_i = 1 \ \text{then} \\ S \leftarrow S \ast M \ \text{mod } N \ ; \\ \text{end} \\ \text{end} \\ \text{return } S \ ; \end{array}
```

 Conditional execution of instruction and their dependence on secret exponent is exploited by the simple power and timing side-channels [6].

イロト イポト イヨト イヨト

Montgomery Ladder Exponentiation Algorithm

- A naïve modification is to have a balanced ladder structure having equal number of squarings and multiplications.
- Most popular exponentiation primitive for Asymmetric-key cryptographic implementations.

Algorithm 2: Montgomery Ladder Algorithm

```
\begin{array}{l} R_0 \leftarrow 1 \ ; \\ R_1 \leftarrow M \ ; \\ \text{for } i \ \text{from } 0 \ \text{to } n-1 \ \text{do} \\ & \text{if } d_i = 0 \ \text{then} \\ & R_1 \leftarrow (R_0 \ast R_1) \mod N \ ; \\ & R_0 \leftarrow (R_0 \ast R_0) \mod N \ ; \\ & \text{end} \\ & \text{else} \\ & R_0 \leftarrow (R_0 \ast R_1) \mod N \ ; \\ & R_1 \leftarrow (R_1 \ast R_1) \mod N \ ; \\ & \text{end} \\ & \text{return } R_0 \ ; \end{array}
```

Approximating the System predictor with 2-bit branch predictor [7]

Figure: Variation of branch-misses from performance counters with increase in branch miss from 2-bit predictor algorithm

- Direct correlation observed for the branch misses from HPCs and from the simulated 2-bit dynamic predictor over a sample of exponent bitstream.
- This confirms assumption of 2-bit dynamic predictor being an approximation to the underlying system branch predictor.

9 / 25

Formalizing the differential of 2-bit predictor in fault attack setup

- We model the strong effect of the bimodal predictor to exploit the side-channel leakage of branch misses from the performance counters.
- Also we characterize the differential of branch misses from correct and faulty branching sequences based on the behavior of 2-bit predictor.

Various parameters used during the analysis are defined as follows:

- There is a sequence of *n* branches denoted as $(b_0, b_1, \dots, b_{n-1})$ generated from execution of the algorithm under attack.
- A fault at the *i*th execution of the algorithm changes the branching decision for the *i*th instance.
- Difference in branch misses (Δ_i) between the correct branching sequence (b₀, b₁, ..., b_i, ..., b_{n-1}) and the faulty sequence (b₀, b₁, ..., b_i, ..., b_{n-1}) simulated theoretically over a 2-bit predictor algorithm can be atleast -3 and atmost 3.

Table: Tabular Representation of Symbols

Symbols	Meanings with respect to their analysis
$(b_0, b_1, \cdots, b_{i-1})$	Sequence of taken or not-taken known branches
St_j^K	State of 2-bit predictor after j conditional branches with respect to the Correct Sequence
$St_j^{F_i}$	State of 2-bit predictor after j conditional branches with respect to the Faulty Sequence
P_{j+1}^K	Branch predicted by 2-bit predictor for branch statement corresponding to $\left(j+1\right)^{th}$ bit of Correct Sequence
$P_{j+1}^{F_i}$	Branch predicted by 2-bit predictor for branch statement corresponding to $\left(j+1\right)^{th}$ bit of Faulty Sequence

< ∃ →

Properties

- Property 1: If $St_{i-1}^{K} = S_0$ or $St_{i-1}^{K} = S_2$, then $P_i^{K} = P_i^{F} = b_{i-1}$.
- Property 2: If $St_{i-1}^{K} = S_0$ or $St_{i-1}^{K} = S_2$, then there are guaranteed mispredictions for branch statement at the *i*th instance for either K or F_i . If the branch statement corresponding to $(i + 1)^{th}$ instance is not same as the predicted P_i^{K} , then there is a mismatch between the correct and the faulty sequence in the predictor's output for the $(i + 2)^{th}$ position as $P_{i+2}^{K} \neq P_{i+2}^{F_i}$.

イロト 不得 トイヨト イヨト 二日

Differentials over 2-bit predictor

Figure: Variation of simulated branch-misses on the i^{th} branching decision having $St_{i-1} = S_0$

- 4 同 6 4 日 6 4 日 6

э

If $St_{i-1}^{K} = S_0$ and $b_i = 0$ then $\Delta_i \in \{0, 1, 2, 3\}$

Figure: Variation of simulated branch-misses on the i^{th} branching decision having $St_{i-1} = S_0$

э

• If
$$St_{i-1}^{K} = S_0$$
 and $b_i = 0$ then $\Delta_i \in \{0, 1, 2, 3\}$
• If $St_{i-1}^{K} = S_0$ and $b_i = 1$ then $\Delta_i \in \{0, -1, -2, -3\}$
• If $St_{i-1}^{K} = S_2$ and $b_i = 0$ then $\Delta_i \in \{0, -1, -2, -3\}$, and
• If $St_{i-1}^{K} = S_2$ and $b_i = 1$ then $\Delta_i \in \{0, 1, 2, 3\}$

≡ ∽ ९ (~

Differential behavior of HPC due to an i^{th} bit fault

- The secret and faulty sequences only differ at the *ith* bit, the previous 0th to (*i* 1)th bits being same for both the exponents, the branch sequences corresponding to secret and its faulty counterpart varies only at the *ith* bit.
- Initially the adversary observes the number of branch misses for exponentiation operation using the secret exponent from HPCs.
- In the next step, a fault induced at the target bit of secret key, simultaneously observing the number of branch misses from HPCs for exponentiation using the faulty exponent.
- The difference of branch misses obtained through HPCs is denoted as δ_i .

Figure: Variation of branch-misses from performance counters based on the i^{th} branching decision

If
$$St_{i-1}^{K} = S_0$$
,If $St_{i-1}^{K} = S_2$,• If $b_i = 0$, then $\delta_i > 0$ • If $b_i = 0$, then $\delta_i < 0$ • Else if $b_i = 1$, then $\delta_i < 0$ • Else if $b_i = 1$, then $\delta_i > 0$ • PROOFS 2016Sarani BhattacharyaFormal Fault Analysis of Branch Predictors

Let δ_i be the differences of branch misses over the secret and faulty exponent observed from the HPCs. We determine the next bit nb_i as,

If
$$St_{i-1}^{K} = S_0/S_2$$
:
• If $\delta_i < 0$,
• $nb_i = 0$, if $St_{i-1}^{K} = S_2$ and
• $nb_i = 1$, when $St_{i-1}^{K} = S_0$.
• Else if $\delta_i > 0$
• $nb_i = 0$, if $St_{i-1}^{K} = S_0$ and
• $nb_i = 1$, when $St_{i-1}^{K} = S_2$.

Else if, $St_{i-1}^{K} = S_1/S_3$: If we flip the $(i-1)^{th}$ bit, the state upto $(i-1)^{th}$ bit changes to S_0 or S_2 .

• the characteristic property for $St_{i-1} = S_1/S_3$ is such that

$$b_{i-2} = P_{i-1} = P_i \neq b_{i-1}.$$

If we inject a fault at $(i-1)^{th}$ position then branching decision b_{i-1} gets complemented. Effectively, if $St_{i-1}^{K} = S_1$ previously then after fault $St_{i-1}^{F_{i-1}}$ becomes S_0 . Similarly, if $St_{i-1}^{K} = S_3$ previously then after fault $St_{i-1}^{F_{i-1}}$ becomes S_2 .

Let $\delta_{i-1,i}$ be the differences of branch misses over the faulty exponents observed from the HPCs. We determine the next bit nb_i as,

19 / 25

Modelling the System Noise

(a) Due to exponentiation on secret exponent

(b) Due to environmental processes running in the system

Figure: Distribution of branch-misses of secret and faulty exponent on square and multiply implementation from HPCs having $St_{i-1} = S_0$

Fig.(a) has similar nature to this noise distribution in Fig.(b) with a shift in the respective statistics with an increase in branch misprediction due to the conditional statements from the secret exponents.

PROOFS 2016

Sarani Bhattacharya

Formal Fault Analysis of Branch Predictors

- We present the validation of previous discussion through experiments on 1024 bits of RSA.
- The fault model is simulated in software.
- Experiments are performed on various platforms as Core-2 Duo E7400, Intel Core i3 M350 and Intel Core i5-3470.

Experiments on Square and Multiply Algorithm

(a) $b_i = 0$ and $\delta_i = 14.014$ (b) $b_i = 1$ and $\delta_i = -35.79$ Figure: Distribution of branch-misses of secret and faulty exponent on square and multiply implementation from HPCs having $St_{i-1} = S_0$

- Fig.(a) show distribution of branch misses from the square and multiply exponentiation having St_{i-1} = S₀ for b_i = 0 and the fault being introduced at i = 1019th position.
- δ_i = 14.014 and since St_{i-1} = S₀, and with positive value of δ_i, the next branch is decided as nb_i = 0 and k_i = b_i.
- Similarly, Fig.(b) $i = 548^{th}$ location having $b_i = 1$ and $St_{i-1} = S_0$, we observed
 - $\delta_i = -35.79$ which correctly decides the *i*th branch as 1.

Experiments on Montgomery Ladder

(a) $b_i = 0$ and $\delta_i = 9.828$ (b) $b_i = 1$ and $\delta_i = -139.086$ Figure: Distribution of branch-misses of secret and faulty exponent on Montgomery Ladder implementation from HPCs having $St_{i-1} = S_0$

- Fig.(a) shows for $k_i = 1$ for i = 248 where $St_{i-1} = S_0$, $b_i = 0$ and the branch misses from HPCs $\delta_i = 9.828$ reveals a positive difference correctly identifying $nb_i = 0$.
- While Fig.(b) shows a negative difference $\delta_i = -139.086$ correctly identifying $k_1 = 0$ for i = 337.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Attacks on CRT-RSA implementation

(a) $d_{\rho_i} = 0$ and $\delta_i = 243.212$ (b) $d_{\rho_i} = 1$ and $\delta_i = -136.029$ Figure: Distribution of branch-misses of secret and faulty exponent on CRT-RSA implementation from HPCs having $St_{i-1} = S_0$

- Fig.(a),(b) show two instances of the CRT-RSA implementation with square and multiply and simulated fault induced in d_p , while exponentiation for d_q is computed unaffected.
- In both situation, the target exponent bits of d_p are shown to be retrieved correctly and uniquely.

• HPCs used as performance monitors in modern systems can be observed by adversaries to determine critical information of secret key bits.

3 🖌 🖌 3 🕨

- HPCs used as performance monitors in modern systems can be observed by adversaries to determine critical information of secret key bits.
- The attack we illustrate exploit strong correlation of the 2-bit dynamic predictor to unknown underlying branch predictor of the system.

- HPCs used as performance monitors in modern systems can be observed by adversaries to determine critical information of secret key bits.
- The attack we illustrate exploit strong correlation of the 2-bit dynamic predictor to unknown underlying branch predictor of the system.
- We present a differential fault analysis to show that difference of branch misses for a 2-bit predictor can be utilized to reveal information of key bits.

- HPCs used as performance monitors in modern systems can be observed by adversaries to determine critical information of secret key bits.
- The attack we illustrate exploit strong correlation of the 2-bit dynamic predictor to unknown underlying branch predictor of the system.
- We present a differential fault analysis to show that difference of branch misses for a 2-bit predictor can be utilized to reveal information of key bits.
- The attacks can be adapted to embedded soft-core processors with practical faults being introduced by instruction skips.

- HPCs used as performance monitors in modern systems can be observed by adversaries to determine critical information of secret key bits.
- The attack we illustrate exploit strong correlation of the 2-bit dynamic predictor to unknown underlying branch predictor of the system.
- We present a differential fault analysis to show that difference of branch misses for a 2-bit predictor can be utilized to reveal information of key bits.
- The attacks can be adapted to embedded soft-core processors with practical faults being introduced by instruction skips.
- Interestingly, fault attack countermeasures which stop or randomize the output when a fault occurs can still be attacked using these techniques.

- HPCs used as performance monitors in modern systems can be observed by adversaries to determine critical information of secret key bits.
- The attack we illustrate exploit strong correlation of the 2-bit dynamic predictor to unknown underlying branch predictor of the system.
- We present a differential fault analysis to show that difference of branch misses for a 2-bit predictor can be utilized to reveal information of key bits.
- The attacks can be adapted to embedded soft-core processors with practical faults being introduced by instruction skips.
- Interestingly, fault attack countermeasures which stop or randomize the output when a fault occurs can still be attacked using these techniques.
- The work raises the question of secured implementation of ciphers in presence of HPCs in modern processors where fault inductions are feasible.

25 / 25

AVR Freaks.

Instruction skipping after spurious interrupt, http://www.avrfreaks.net/forum/solved-instruction-skipping-after-spurious-interrupt, 2015.

mp-fpga.

Performance Counter for Microblaze, http://mp-fpga.blogspot.in/2007/10/performance-counter-for-microblaze.html, 2007.

Wikipedia.

Rowhammer wikipedia page, https://en.wikipedia.org/wiki/Row-hammer, 2016.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.

Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In ACM/IEEE 41st International Symposium on Computer Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014, pages 361–372. IEEE Computer Society, 2014.

Sarani Bhattacharya and Debdeep Mukhopadhyay.

Curious case of rowhammer: Flipping secret exponent bits using timing analysis. In CHES, 2015.

Paul C. Kocher.

Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems.

In Neal Koblitz, editor, CRYPTO '96: Proceedings of the 16th Annual International Cryptology Conference on Advances in Cryptology, volume 1109 of Lecture Notes in Computer Science, pages 104–113, London, UK, 1996. Springer-Verlag.

Sarani Bhattacharya and Debdeep Mukhopadhyay.

Who watches the watchmen?: Utilizing performance monitors for compromising keys of RSA on intel platforms. In Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer Science, pages 248–266. Springer, 2015.