Moving Hardware from "Security through Obscurity" to "Secure by Design"

Professor Ryan Kastner

Dept. of Computer Science and Engineering

University of California, San Diego

kastner.ucsd.edu

Classic System Design

Classic View of System Security

Modern View of System Security

Modern View of System Security

Many Stakeholders:

With different goals and objectives

Distributed Authority:

Multiple OS, VM, VMM, Access Control

HW/SW Coupling:

Hardware Accelerators, SW/FW Managed Resources

Shared Resources:

IP Cores, Memories, Communication, I/O

Hardware Security Vulnerabilities

Design flaws

case 1: ... case 2: ... : case n: ...

Timing channel

Power

Malicious code

Untrusted IP

EM radiation

Design Complexity

Hardware Design	<u># Transistors</u>	Lines of Verilog	Similar SW: LOC
Intel 4004	2.3K	1.25K	Simple App: 10K
Centaur Media Unit	430K	570K	Space Shuttle: 400K
Intel Pentium 4	41M	1 M	F22 Raptor: 1.7M
MIT Raw	100M	34K	Pacemaker: 80K
Oracle SPARC M7	10B	???	
nVidia Pascal	15B	???	
Xilinx Virtex Ultrascale	20B	???	
		Nat State of	1000 TO THE PROPERTY AND THE PARTY AND THE

Security is Expensive

- ❖ ~1 defect/error per 10 lines of code.
 - The Art of Good Design,Mike Keating, Synopsys
- ❖ RedHat Linux: Best Effort Safety (EAL 4+)
- Integrity RTOS: Design for Formal Evaluation (EAL 6+)
 - * \$10,000 per LOC
 - More evaluation of process, not end artifact

Hardware Security Proof Techniques

Proof by Obfuscation

sb68c6f7ce590ed3300f7d81ac17ce18d <= '0'; s7b6510ff2b7846dff5320e221cb8fe59 := 0; s0d0d1dcfd865493a3 if (s2b54be4bf78b53b251993adcf9203ed3 = '1') then s7b6510ff2b7846dff5320e221cb8fe59 := 1; end if; c s2b80eb4c41f61d24ee90a3613818a6df <= s1a11eab1533214865c1b32570b129413(15 downto 4) - 1; sc0983d67bc else s2b80eb4c41f61d24ee90a3613818a6df <= s1a11eab1533214865c1b32570b129413(15 downto 4); sc0983d67k s9fdbc2f6923f3102381742e7a19441d6 <= s582746f1d34949d4176b9bbd81e7c818(15 downto 4) - 1; s5854c377es else s9fdbc2f6923f3102381742e7a19441d6 <= s582746f1d34949d4176b9bbd81e7c818(15 downto 4); s5854c377e s6839b02361ea7740cff84daf9856c69f <= '1'; s4c087b32fa47953ab634f1e02cce6df0 := '1'; s323e92c4e2da25e sf383f215d82982b1c9a99c02feb8cb3f <= "111"; s7b6510ff2b7846dff5320e221cb8fe59 := 5; else sf383f215d8 end if; when 5 => s6839b02361ea7740cff84daf9856c69f <= '0'; s323e92c4e2da25ef110bda667bfe653 s6a1abdee9db5e44ccd0e44602a3a06c5 := s6a1abdee9db5e44ccd0e44602a3a06c5 + 1; if (s6a1abdee9db5e44ccd0 sf383f215d82982b1c9a99c02feb8cb3f <= "010"; s6839b02361ea7740cff84daf9856c69f <= '1'; s7b651 elsif (s6a1abdee9db5e44ccd0e44602a3a06c5(3) = '0' and s323e92c4e2da25ef110bda667bfe653e(3) = '1') th if (s6a1abdee9db5e44ccd0e44602a3a06c5 < s582746f1d34949d4176b9bbd81e7c818) then se89a31f14b1d4f22fa8

Proof by Handwaving

Proof by Intimidation

Proof by Exhaustion

Our Research

- ❖ Develop a secure hardware design flow that
 - Formally specifies security properties,
 - Identifies security vulnerabilities, and
 - Quantifies security threats.
- * Focus on security properties related to *confidentiality*, *integrity*, *isolation*, *separation*, *and side channels*.

Source: Intel & Tortuga Logic

Confidentiality

Integrity

Availability (Timing Channels)

Mixed-Trust Domains

CIA + Mixed-Trust

Information flow analysis solves all of these problems

Noninterference

"One group of users, using a certain set of commands, is noninterfering with another group of users if what the first group does with those commands has no effect on what the second group of users can see" [Goguen & Meseguer'82].

Information Flow: Inverter

а	О	
0	1	
1	0	
0	1	
0	0	

Gate Level Information Flow Tracking

Partial Truth Table

a	b	0
0 ^T	1 ^T	0^{T}
$\mathbf{0^U}$	1 ^U	$\mathbf{0^U}$
$\mathbf{0^U}$	1 ^T	$\mathbf{0^U}$
$\mathbf{0^T}$	1 ^U	$\mathbf{0^{T}}$

0^{U/T}: Untrusted/Trusted '0'

1^{U/T}: Untrusted/Trusted '1'

The output is marked as "untrusted" when at least one "untrusted" input can influence the output

Does this low level tracking help?

Simple assumption that "bad inputs" always leads to "bad outputs" is overly conservative

1-bit Counter

Safely Resetting the Counter

Simple assumption that "bad inputs" always leads to "bad outputs" is overly conservative

1-bit Counter

Formalizing GLIFT

"Original" Logic

Automatically generate logic that tracks labels

Tracking logic is compositional

Captures timing channels, and real time constraints

Security constraints can be expressed as hardware assertions

GLIFT Logic Composition

GLIFT Logic Generation Flow

Hardware Security Design Flow

* Speaker has significant financial interest

Crypto Core

Does my key leak?

Crypto Core in Verilog

Does my key leak?

```
module crypto (clk, reset, load_i, decrypt_i, data_i, key_i, ready_o, data_o); input [127:0] data_i; input [127:0] key_i; output [127:0] data_o; input clk, reset, load_i, decrypt_i; output ready_o;
```

How do we express this and test it?

```
assert iflow ( key_i =/=> data_o );
assert iflow ( key_i =/=> ready_o );
```

Crypto Core

Does my key leak? YES

How severe is the problem?

Quantitative Information Flow Tracking

[ICCAD15] Baolei Mao, Wei Hu, Alric Althoff, Janarbek Matai, Jason Oberg, Dejun Mu, Timothy Sherwood, and Ryan Kastner "Quantifying Timing-Based Information Flow in Cryptographic Hardware"

Challenges + Opportunities: Joint Analysis

- Gate Level Information Flow Tracking (GLIFT)
 - Proving non-interference
 - Identifying possible flows
- Quantitative measure
 - Numerous statistical & information theoretic metrics
 - Precise measurement of information flow
 - Detecting harmful flows and security vulnerabilities

Challenges + Opportunities: Joint Analysis

GLIFT:

assert iflow(key =/=> control); Fail

Mutual Information:

mi(key, control) = 31.6;

GLIFT:

assert iflow(secure_resources
=/=> io); Fail

Mutual Information:

mi(secure resources, io) = 0.1

GLIFT:

assert iflow(apps =/=>
 secure_resources); Pass

Mutual Information:

mi(apps, secure_resources) = 0;

Challenges + Opportunities: Measurement

- Methods for efficiently calculating security metrics
- ❖ Achieve a more accurate estimation of security metrics while collecting as few samples as possible.
 - Density estimation

Multivariate estimation

 Hardware accelerated techniques METRIC

- Languages for specifying security properties
- ❖ A security specification language for describing the security properties about the hardware design
 - What variables are important to secure?
 - What locations are easily visible?
 - What is your risk tolerance?

Assertion: Key only flows through AES

assert iflow (key =/=> \$all_outputs
ignoring aes.\$all_outputs)

- If assertion holds, key only flows to outputs through AES first
- ❖ Real design: 10M gates

Assertion: Key only flows through AES

assert iflow (key =/=> \$all_outputs
ignoring aes.\$all_outputs)

- If assertion holds, key only flows to outputs through AES first
- ❖ Real design: 10M gates

Assertion: Key only flows through AES

assert iflow (key =/=> \$all_outputs
ignoring aes.\$all_outputs)

- If assertion holds, key only flows to outputs through AES first
- ❖ Real design: 10M gates

Challenges + Opportunities: Faster Verification

- Simplify analysis logic
 - Add one sided errors
 - Incremental proofs

- Higher abstractions
 - Bits to bytes to words to ...
 - Gates to RTL to HLS to ...

Challenges + Opportunities: Real Applications

Tortuga Logic

- Working with top semiconductor companies
- Tools available to license
- Academic research to commercial tool

VeriDrone

- Formally verified hardware/software shims
- NSF CPS

Conclusion

Secure hardware design flow

- * Formally specify security properties,
- Identify security vulnerabilities, and
- Quantify security threats.

Focus on security properties related to confidentiality, integrity, isolation, separation, and side channels.

kastner.ucsd.edu

Questions?

Team

- UCSD: Wei Hu, Ali Irturk, Ryan Kastner, Jason Oberg, Jonathan Valamehr
- UCSB: Frederic T. Chong, Ben Hardekopf, Vineeth Kashyap, Xun Li, Bita Mazloom, Tim Sherwood, Hassan Wassel
- UT Austin: Mohit Tiwari

Publications

- [ISCA13] Hassan M. G. Wassel, Ying Gao, Jason K. Oberg, Ted Huffmire, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood, "
 SurfNoC: A Low Latency and Provably Non-Interfering approach to Secure Networks-On-Chip, International Symposium on Computer
 Architecture (ISCA), June 2013
- ESL13] Wei Hu, Jason Oberg, Janet Barrientos, Dejun Mu and Ryan Kastner, "Expanding Gate Level Information Flow Tracking for Multi-level Security", IEEE Embedded Systems Letters, Volume 5, Issue 2, June 2013
- * [D+T13] Jason Oberg, Timothy Sherwood and Ryan Kastner, "Eliminating Timing Information Flows in a Mix-trusted System-on-Chip", IEEE Design and Test of Computers, March/April 2013
- [ICCAD12] Wei Hu, Jason Oberg, Dejun Mu, and Ryan Kastner, "Simultaneous Information Flow Security and Circuit Redundancy in Boolean Gates", International Conference on Computer-Aided Design (ICCAD), November 2012
- * [TIFS12] Wei Hu, Jason Oberg, Ali Irturk, Mohit Tiwari, Timothy Sherwood, Dejun Mu and Ryan Kastner, "On the Complexity of Generating Gate Level Information Flow Tracking Logic", IEEE Transactions on Information Forensics and Security, vol. 7, no. 3, June 2012
- [TCAD11] Wei Hu, Jason Oberg, Ali Irturk, Mohit Tiwari, Timothy Sherwood, Dejun Mu and Ryan Kastner, "Theoretical Fundamentals of Gate Level Information Flow Tracking", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, issue 8, August 2011.
- ERSA11] Ryan Kastner, Jason Oberg, Wei Hu, and Ali Irturk, "Enforcing Information Flow Guarantees in Reconfigurable Systems with Mixtrusted IP", Engineering of Reconfigurable Systems and Algorithms (ERSA), July 2011 invited paper
- DAC11] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood, and Ryan Kastner, "Information Flow Isolation in I2C and USB", Design Automation Conference (DAC), June 2011
- [ISCA11] Mohit Tiwari, Jason Oberg, Xun Li, Jonathan K Valamehr, Timothy Levin, Ben Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood, "Crafting a Usable Microkernel, Processor, and I/O System with Strict and Provable Information Flow Security", International Symposium of Computer Architecture (ISCA), June 2011
- DAC10] Jason Oberg, Wei Hu, Ali Irturk and Ryan Kastner, "Theoretical Analysis of Gate Level Information Flow Tracking", Design Automation Conference (DAC), July 2010