

Algebraic Security Analysis of Key Generation with Physical Unclonable Functions

<u>Matthias Hiller¹</u>, Michael Pehl¹, Gerhard Kramer² and Georg Sigl^{1,3}

- ¹ Chair of Security in Information Technology
- ² Chair of Communications Engineering Technical University of Munich
- ³ Fraunhofer AISEC

Algebraic Security Analysis of Key Generation with Physical Unclonable Functions

Matthias Hiller¹, Michael Pehl¹, Gerhard Kramer² and Georg Sigl^{1,3}

¹ Chair of Security in Information Technology

- ² Chair of Communications Engineering
- ² Technical University of Munich
- ³ Fraunhofer AISEC

Introduction PUFs

Example: SRAM PUF

Guajardo et al. (CHES 2007)

Algebraic Security Analysis of Key Generation with Physical Unclonable Functions

Matthias Hiller¹, Michael Pehl¹, Gerhard Kramer² and Georg Sigl^{1,3}

¹ Chair of Security in Information Technology

- ² Chair of Communications Engineering
- ² Technical University of Munich
- ³ Fraunhofer AISEC

Secret Key Generation

Syndrome Coding

0110111001111111000011000110100111111100 0011100101011110111101101101111001011110

2-part approach

Secret PUF Response & & Public Helper Data

Secret Key Generation (2)

Need for Error Correction

520 Bit - Secret + Redundancy

Reproduction with 15% Bit Error Probability

Motivation

Initial Problem: Find a simple and generic representation of PUF key generation

Main Contribution:

New representation shows if helper data can leak key information (upper bound, qualitative result)

For quantitative results see e.g. Delvaux et al., CHES 2016

Algebraic Security Analysis of Key Generation with Physical Unclonable Functions

<u>Matthias Hiller¹, Michael Pehl¹, Gerhard Kramer² and Georg Sigl^{1,3}</u>

¹ Chair of Security in Information Technology

- ² Chair of Communications Engineering
- ² Technical University of Munich
- ³ Fraunhofer AISEC

Algebraic Core

Algebraic Security Analysis of Key Generation with PUFs

Algebraic Core

$[S W] = [R X] \mathbf{A}$

See paper for the algebraic cores of several key generation schemes

Algebraic Security Analysis of Key Generation with PUFs

Algebraic Security Analysis of Key Generation with Physical Unclonable Functions

Matthias Hiller¹, Michael Pehl¹, Gerhard Kramer² and Georg Sigl^{1,3}

¹ Chair of Security in Information Technology

- ² Chair of Communications Engineering
- ² Technical University of Munich
- ³ Fraunhofer AISEC

Generic Security Criterion

$S = [R X] \mathbf{A}_L$ $W = [R X] \mathbf{A}_R$

20.08.2016

Algebraic Security Analysis of Key Generation with PUFs

Generic Security Criterion

We define the rank loss Δ as $\Delta = rank(\mathbf{A}_L) + rank(\mathbf{A}_R) - rank(\mathbf{A})$

Result without proof:

No leakage between *S* and *W* if $\Delta = 0$

S and W can only be linearly independent iff $rank(\mathbf{A}) = rank(\mathbf{A}_L) + rank(\mathbf{A}_R)$

Example: Code-Offset Fuzzy Extractor (Dodis *et al.*, Eurocrypt 2004) (n,k,d) code with generator Matrix **G**

Example: Code-Offset Fuzzy Extractor (Dodis *et al.*, Eurocrypt 2004) (n,k,d) code with generator Matrix **G**

 $rank(\mathbf{A}_L) = n$ \mathbf{A}_L \mathbf{A}_R $rank(\mathbf{A}_R) = n$ G 0 k $rank(\mathbf{A}) = n + k$ Ι I П $\Delta = rank(\mathbf{A}_L) + rank(\mathbf{A}_R) - rank(\mathbf{A})$ =2n - (n+k)n n = n - k

20.08.2016

Example: Code-Offset Fuzzy Extractor

Result consistent with previous work but easier to obtain (e.g. Delvaux *et al.*, CHES 2016)

Approach	Δ
Fuzzy Commitment (CCS 1999)	0
Code Offset Fuzzy Extractor (Eurocrypt 2004)	n-k
Syndrome Construction (Eurocrypt 2004)	n-k
Parity Construction (S&P 1998)	2k-n
Systematic Low Leakage Coding (ASIACCS 2015)	0

Take Home Message

- Algebraic representation of key generation for PUFs
- Rank loss enables first security check
- Some state-of-the-art approaches enable zero leakage

Long-term vision

• Develop and characterize more complex approaches