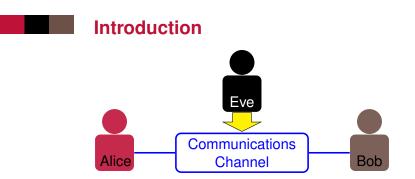


THALES

SECURE

Using Modular Extension to Provably Protect Edwards Curves Against Fault Attacks

Margaux Dugardin, Sylvain Guilley, Martin Moreau, Zakaria Najm, Pablo Rauzy PROOFS 2016 - Santa Barbara, CA

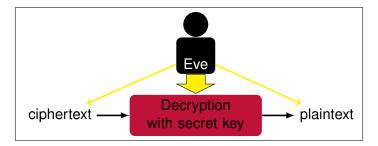


We need :

- Encryption/Decryption
- Key exchange
- Signature
- \Rightarrow Asymmetric cryptography

THALES

Introduction



Eve is able to:

- observe the Alice's computation
- change the input
- have the output
- inject a fault during the computation

THALES

Fault attacks

Fault attacks:

- Safe-error attacks
- Cryptosystems parameters alteration
- Differential Fault Analysis (DFA) e.g. BellCoRe attack, sign-change attacks.

Fault model:

- Randomizing faults (Boneh et al, EUROCRYPT 1997)
- Zeroing faults (Clavier, CHES 2007)
- Instruction skip faults (Moro et al, JCE 2014)

Classical Algorithm Scalar Multiplication

Algorithm 1 Double and Add Left-to-RightInput: $P \in E(\mathbb{F}_p)$, $k = (k_{n-1}k_{n-2} \dots k_0)_2$, $\forall i, k_i \in \{0, 1\}$ Output: [k]P1: $Q \leftarrow \mathcal{O}$ > the point at infinity2: for i = n - 1 downto 0 do3: $Q \leftarrow 2Q$ > EC-DBL4: if $k_i = 1$ then5: $Q \leftarrow Q + P$ > EC-ADD6: end if7: end for

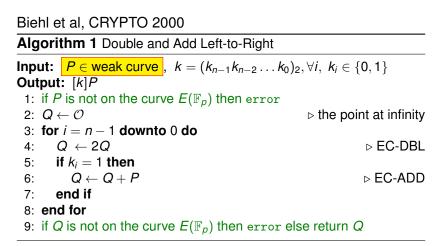
Fault Attack: Invalid input point

Biehl et al, CRYPTO 2000

Algorithm 1 Double and Add Left-to-Right

Input: $P \in \text{weak curve}$ $k = (k_{n-1}k_{n-2} \dots k_0)_2, \forall i, k_i \in \{0, 1\}$ Output:[k]P \triangleright the point at infinity1: $Q \leftarrow \mathcal{O}$ \triangleright the point at infinity2:for i = n - 1 downto 0 do \triangleright EC-DBL3: $Q \leftarrow 2Q$ \triangleright EC-DBL4:if $k_i = 1$ then \triangleright EC-ADD5: $Q \leftarrow Q + P$ \triangleright EC-ADD6:end if7:end for

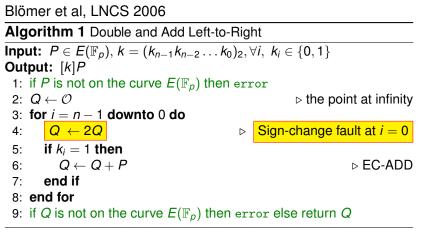
Fault Attack: Invalid input point



Countermeasure: Verify the input/output point and the curve parameters

THALES

Sign-change fault attack



Countermeasure: Verify the input/output point and the curve parameters

Sign-change fault attack

Blömer et al, LNCS 2006

Algorithm 1 Double and Add Left-to-Right

Input: $P \in E(\mathbb{F}_p), k = (k_{n-1}k_{n-2} \dots k_0)_2, \forall i, k_i \in \{0, 1\}$ Output: [k]P

1: if *P* is not on the curve $E(\mathbb{F}_p)$ then error

2: $\mathbf{Q} \leftarrow \mathcal{O}$

- 3: for i = n 1 downto 0 do
- 4: $Q \leftarrow 2Q$
- 5: if $k_i = 1$ then
- 6: $Q \leftarrow Q + P$
- 7: end if
- 8: end for
- 9: if Q is not on the curve $E(\mathbb{F}_p)$ then error else return Q

$$\begin{cases} Q = [k_0 + 2\sum_{i=1}^{n-1} k_i 2^{i-1}]P \\ Q^* = [k_0 - 2\sum_{i=1}^{n-1} k_i 2^{i-1}]P \implies Q + Q^* = [2k_0]P. \end{cases}$$

 \triangleright

THALES

b the point at infinity

PROOFS 2016

▷ EC-ADD

Sign-change fault at i = 0

Sign-change fault attack

Blömer et al, LNCS 2006

Algorithm 1 Double and Add Left-to-Right

Input: $P \in E(\mathbb{F}_p), k = (k_{n-1}k_{n-2} \dots k_0)_2, \forall i, k_i \in \{0, 1\}$ Output: [k]P

- 1: if *P* is not on the curve $E(\mathbb{F}_p)$ then error
- 2: $\mathbf{Q} \leftarrow \mathcal{O}$
- 3: for i = n 1 downto 0 do
- 4: $Q \leftarrow 2Q$
- 5: **if** $k_i = 1$ **then**
- 6: $Q \leftarrow Q + P$
- 7: end if
- 8: end for
- 9: if Q is not on the curve $E(\mathbb{F}_p)$ then error else return Q

$$\begin{cases} Q = [2k_1 + k_0 + 4\sum_{i=2}^{n-1} k_i 2^{i-2}]P \\ Q^* = [2k_1 + k_0 - 4\sum_{i=2}^{n-1} k_i 2^{i-2}]P \implies Q + Q^* = [2(2k_1 + k_0)]P. \end{cases}$$

 \triangleright

THALES

b the point at infinity

PROOFS 2016

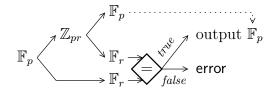
▷ EC-ADD

Sign-change fault at i = 1

Shamir countermeasures

Computional protections against fault injection:

 \Rightarrow Modular extension



PROOFS 2016

6/24

BOS countermeasure

Blömer et al, LNCS 2006

Algorithm 2 ECSM protected with BOS countermeasure

Input:
$$P \in E(\mathbb{F}_p), k \in \{1, \dots, ord(P) - 1\}$$

Output: $Q = [k]P \in E(\mathbb{F}_p)$

- 1: Choose a small prime r, a curve $E(\mathbb{F}_r)$, and a point P_r on that curve.
- 2: Determine the combined curve $E(\mathbb{Z}_{pr})$ and point P_{pr} using the CRT.
- 3: $(X_{pr}: Y_{pr}: Z_{pr}) = \mathsf{ECSM}(P_{pr}, k, pr)$

4:
$$(X_r: Y_r: Z_r) = \text{ECSM}(P_r, k, r)$$

- 5: if $(X_{pr} \mod r : Y_{pr} \mod r : Z_{pr} \mod r) = (X_r : Y_r : Z_r)$ then
- 6: return ($X_{pr} \mod p$: $Y_{pr} \mod p$: $Z_{pr} \mod p$)
- 7: else
- 8: return error
- 9: end if

THALES

BOS countermeasure

Blömer et al, LNCS 2006

Algorithm 3 ECSM protected with BOS countermeasure

Input:
$$P \in E(\mathbb{F}_p), k \in \{1, \dots, ord(P) - 1\}$$

Output: $Q = [k]P \in E(\mathbb{F}_p)$

- 1: Choose a small prime r, a curve $E(\mathbb{F}_r)$, and a point P_r on that curve.
- 2: Determine the combined curve $E(\mathbb{Z}_{pr})$ and point P_{pr} using the CRT.
- 3: $(X_{pr}: Y_{pr}: Z_{pr}) = \mathsf{ECSM}(P_{pr}, k, pr)$
- 4: $(X_r : Y_r : Z_r) = \text{ECSM}(P_r, k, r)$
- 5: if $(X_{pr} \mod r : Y_{pr} \mod r : Z_{pr} \mod r) = (X_r : Y_r : Z_r)$ then
- 6: return ($X_{pr} \mod p : Y_{pr} \mod p : Z_{pr} \mod p$)
- 7: else
- 8: return error
- 9: end if

BOS countermeasure

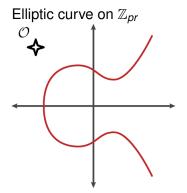
Blömer et al, LNCS 2006

Algorithm 4 ECSM protected with BOS countermeasure

Input:
$$P \in E(\mathbb{F}_p), k \in \{1, \dots, ord(P) - 1\}$$

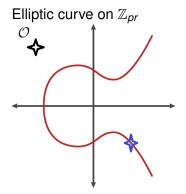
Output: $Q = [k]P \in E(\mathbb{F}_p)$

- 1: Choose a small prime r, a curve $E(\mathbb{F}_r)$, and a point P_r on that curve.
- 2: Determine the combined curve $E(\mathbb{Z}_{pr})$ and point P_{pr} using the CRT.
- 3: $(X_{pr}: Y_{pr}: Z_{pr}) = \mathsf{ECSM}(P_{pr}, k, pr)$
- 4: $(X_r : Y_r : Z_r) = \text{ECSM}(P_r, k, r)$ \triangleright without test in EC-ADD
- 5: if $(X_{pr} \mod r : Y_{pr} \mod r : Z_{pr} \mod r) = (X_r : Y_r : Z_r)$ then
- 6: return ($X_{pr} \mod p$: $Y_{pr} \mod p$: $Z_{pr} \mod p$)
- 7: else
- 8: return error
- 9: end if



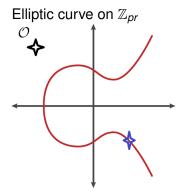
Elliptic curve on \mathbb{F}_r

THALES



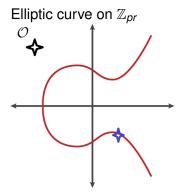
Elliptic curve on \mathbb{F}_r

THALES



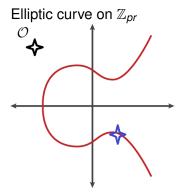
Elliptic curve on \mathbb{F}_r

THALES



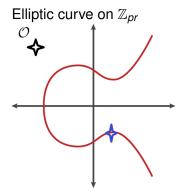
Elliptic curve on \mathbb{F}_r

THALES



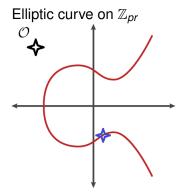
Elliptic curve on \mathbb{F}_r

THALES



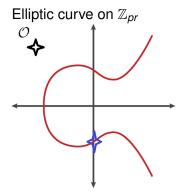
Elliptic curve on \mathbb{F}_r

THALES



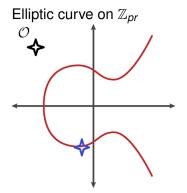
Elliptic curve on \mathbb{F}_r

THALES



Elliptic curve on \mathbb{F}_r

THALES

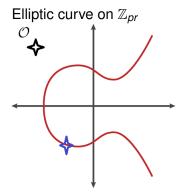


Elliptic curve on \mathbb{F}_r

THALES

PROOFS 2016

Margaux Dugardin

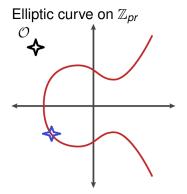


Elliptic curve on \mathbb{F}_r

THALES

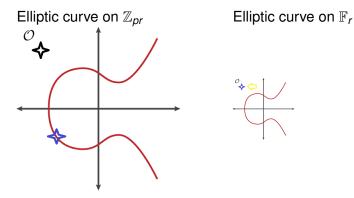
PROOFS 2016

Margaux Dugardin



Elliptic curve on \mathbb{F}_r

THALES



Without fault injection, there are an error because $\mathcal{O} \neq [k]P \mod r$

- Security analysis of modular extension countermeasure
- Correct the BOS countermeasure using Edwards and Twisted Edward curve

Security Analysis of Modular Extension

Definition 1: Fault model

We consider an attacker who can fault data by randomizing or zeroing any intermediate variable, and fault code by skipping any number of consecutive instructions.

Definition 2: Attack order

We call order of the attack the number of faults (in the sense of Def. 1) injected during the target execution.

Definition 3: Secure algorithm

An algorithm is said secure if it is correct and if it either returns the right result or an error constant when faults have been injected, with an overwhelming probability.

Security Analysis of Modular Extension

Theorem 1: Security of test-free modular extension

Test-free algorithms protected using the modular extension technique, are secure as per Def. 3 . In particular, the probability of non-detection is inversely proportional to the security parameter r.

Faulted results are polynomials of faults.

- We give the formal name \hat{x} to any faulted variable x.
- For convenience, we denote them by \hat{x}_i , $1 \le i \le n$, where $n \ge 1$ is the number of injected faults.
- The result of asymmetric computation consists in additions, subtractions, and multiplications of those formal variables (and inputs). Such expression is a multivariate polynomial.
- If the inputs are fixed, then the polynomial has only *n* formal variables. We call it $P(\hat{x_1}, \dots, \hat{x_n})$.
- For now, let us assume that n = 1, i.e., that we face a single fault. Then *P* is a monovariate polynomial. Its degree *d* is the multiplicative depth of $\hat{x_1}$ in the result.

Non-detection probability is inversely proportional to *r*

A fault is not detected if and only if $P(\hat{x}_1) = P(x_1) \mod r$, whereas $P(\hat{x}_1) \neq P(x_1) \mod p$. As the faulted variable \hat{x}_1 can take any value in \mathbb{Z}_{pr} , the non-detection probability $\mathbb{P}_{n.d.}$ is given by:

$$\mathbb{P}_{n.d.} = \frac{1}{\rho r - 1} \cdot \sum_{\widehat{x_1} \in \mathbb{Z}_{\rho r} \setminus \{x_1\}} \mathbf{1}_{P(\widehat{x_1})} = P(x_1) \mod r$$
$$= \frac{1}{\rho r - 1} \cdot \Big(-1 + \rho \sum_{\widehat{x_1} = 0}^{r-1} \mathbf{1}_{P(\widehat{x_1})} = P(x_1) \mod r \Big).$$
(1)

Let $\widehat{x_1} \in \mathbb{Z}_r$, if $P(\widehat{x_1}) = P(x_1) \mod r$, then $\widehat{x_1}$ is a root of the polynomial $\Delta P(\widehat{x_1}) = P(\widehat{x_1}) - P(x_1)$ in \mathbb{Z}_r . We denote by #roots(ΔP) the number of roots of ΔP over \mathbb{Z}_r . Thus (1) computes $(p \times \#$ roots($\Delta P) - 1$)/ $(pr - 1) \approx \#$ roots(ΔP)/r.

THALES TELECOM Paristech

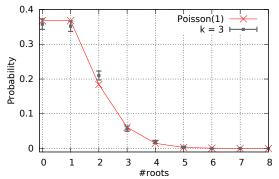
Theoretical Upper-Bound for #roots

#roots(ΔP) can be as high as the degree *d* of ΔP in \mathbb{Z}_r , i.e., min(*d*, *r* - 1). However, in practice, ΔP looks like a random polynomial over the finite field \mathbb{Z}_r , for several reasons:

- inputs are random numbers in most cryptographic algorithms, such as probabilistic signature schemes,
- the coefficients of △P in Z_r are randomized due to the reduction modulo r.

Theoretical Upper-Bound for #roots

Leont'ev proved in Mathematical Notes 2006 that if *P* is a random polynomial in \mathbb{F}_p then $\# \operatorname{roots}(P) \sim \operatorname{Poisson}(\lambda = 1)$, i.e., $\mathbb{P}(\#\operatorname{roots}(P) = n) = \frac{1}{en!}$. In the case of $\Delta P \mod r$, we know that there is always at least one root, when $\widehat{x_1} = x_1$



Non-detection probability is inversely proportional to r.

PROOFS 2016

Margaux Dugardin

Correct BOS countermeasure

Definition 4: Edwards curves

On the finite field \mathbb{F}_p with *p* a prime number, an elliptic curve in Edwards form has parameters *c*, *d* in the finite field \mathbb{F}_p and coordinates (*x*, *y*) satisfying the following equation:

$$x^{2} + y^{2} = c^{2}(1 + dx^{2}y^{2}),$$
 (2)

with $cd(1-c^4d) \neq 0$.

The main advantage to use the Edwards curves is that addition formulas ECADD-complete are :

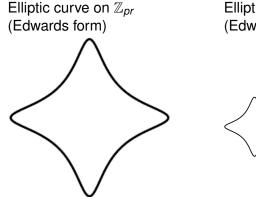
complete

unified

 \Rightarrow no test in EC-ADD-unified formula

THALES

Correct BOS countermeasure

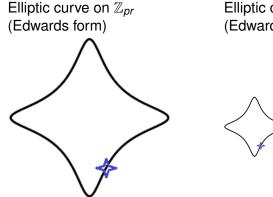


Elliptic curve on \mathbb{F}_r (Edwards form)

17/24

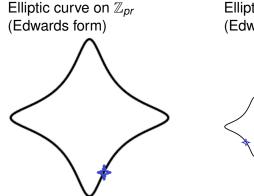
Margaux Dugardin

Correct BOS countermeasure



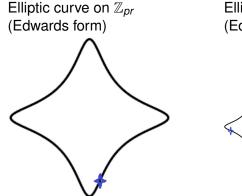
Elliptic curve on \mathbb{F}_r (Edwards form)

17/24



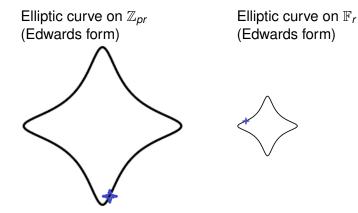
Elliptic curve on \mathbb{F}_r (Edwards form)

THALES

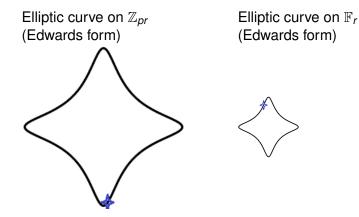


Elliptic curve on \mathbb{F}_r (Edwards form)

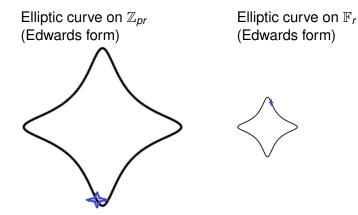
THALES

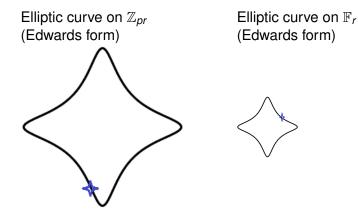


THALES



THALES

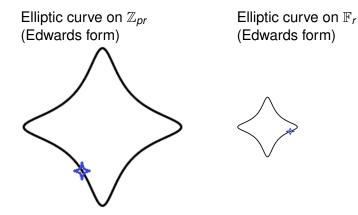


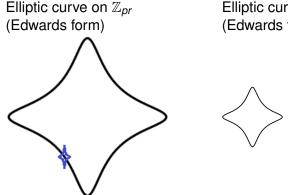


THALES

PROOFS 2016

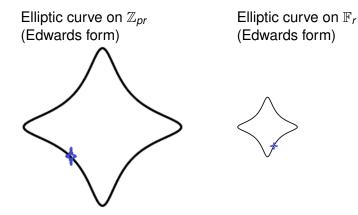
17/24



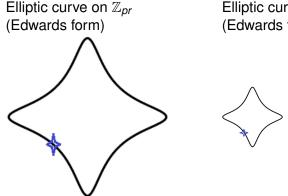


Elliptic curve on \mathbb{F}_r (Edwards form)

THALES



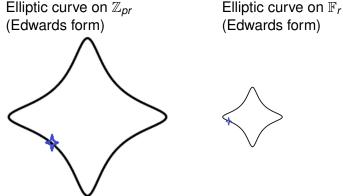
THALES

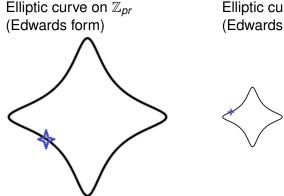


Elliptic curve on \mathbb{F}_r (Edwards form)

Margaux Dugardin

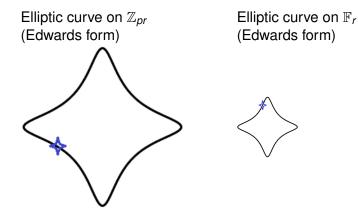
THALES





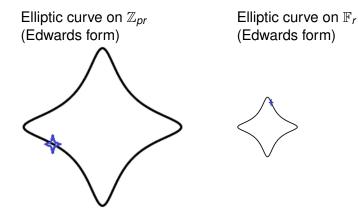
Elliptic curve on \mathbb{F}_r (Edwards form)

17/24

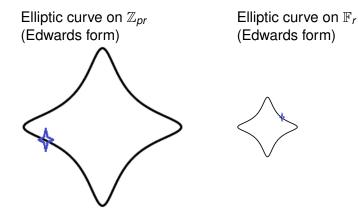


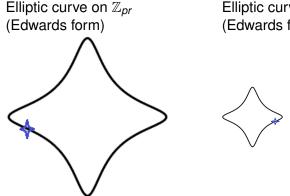
PROOFS 2016

THALES



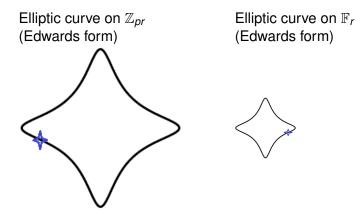
THALES





Elliptic curve on \mathbb{F}_r (Edwards form)

THALES



No problem with the point at infinity

THALES

Twisted Edwards curves are a generalization of Edwards curves.

Definition 5: Twisted Edwards curves

Let *p* a prime number. On the finite field \mathbb{F}_p , an elliptic curve in twisted Edwards form has parameters *a*, *d* in the finite field \mathbb{F}_p and coordinates (x, y) satisfying the following equation:

$$ax^2 + y^2 = 1 + dx^2y^2, (3)$$

with $ad(a - d) \neq 0$.

Like Edwards curves, the addition formulas are unified and complete.

	Input : $P \in \mathcal{E}(\mathbb{F}_p), k \in \mathbb{Z}$						
	$\mathbf{Output}: Q = [k]P \in \mathcal{E}(\mathbb{F}_p)$						
	Offline phase						
	Twisted Edwards Curves:						
	Edwards Curves:	1	Compute $\lambda = (1 + dx_G^2 y_G^2 - ax_G^2 + y_G^2) \div p$				
1	Compute $\lambda p = x_G^2 + y_G^2 - c^2(1+cx^2y^2)$	2	Find all the factor r smaller than p of λ				
2	repeat	3	for each factor r do				
3	Choose a random prime $r < p$	4	Compute $x'_G = x_G \mod r$				
4	Compute $x'_G = X_G \mod r$	5	Compute $y'_G = y_G \mod r$				
5	Compute $y'_G = y_G \mod r$	6	Compute $a' = a \mod r$				
6	Compute $c' = c^2 + \lambda p \mod r$	7	Compute $d' = d \mod r$				
7	Compute $d' = \frac{dc^2}{c^2 + \lambda r} \mod r$	8	if $x'_G \neq 0$ and $y'_G \neq 0$ and $a'd'(a'-d') \neq 0$				
	until $x'_{C} \neq 0$ and $y'_{C} \neq 0$ and $c'd'(1 - d')$		0 and a' a square and d' a no-square				
	$c'^{4}d' \neq 0$ and c' a square and d' a no-		then				
	square	9	break > r verifies the lemma 2				
	> r verifies the lemma 1		else				
	p r venica die kinina 1	10	r does not work				
11	Determine the small curve $\mathcal{E}(\mathbb{F}_{r})$ with param	neter	c' (or a') and d' , and a point $P'(x'_G, y'_G)$ is on				
	that curve.		e (or a) and a journ a point r (aGi3G) is on				
12	2 Determine the combined curve $\mathcal{E}(\mathbb{Z}_{pr})$ with parameter $C = CRT(c, c')$ (or $A = CRT(a, a')$) and						
	D = CRT(d, d') busing properties 1 and 2.						
	Online phase						
	$ (X_{pr}: Y_{pr}: Z_{pr}) = \mathrm{ECSM}(P, k, \mathcal{E}(\mathbb{Z}_{pr})) $ $ (X_r: Y_r: Z_r) = \mathrm{ECSM}(P', k, \mathcal{E}(\mathbb{F}_r)) $		without test on the point and on the scalar value				
I .			without test on the point and on the scalar value				
15	5 if $(X_{pr} \mod r : Y_{pr} \mod r : Z_{pr} \mod r) = (X_r : Y_r : Z_r)$ then						
16	$\mathbf{return} \ (X_{pr} \bmod p : Y_{pr} \bmod p : Z_{pr} \bmod p)$						
	else						
17	return error						

THALES

Edwards Curve example

We generate a Edwards curve on the finite field $\mathbb{F}_{2^{255}-19}$ defined by $x^2 + y^2 = 1 - 6x^2y^2 \mod 2^{255} - 19$. The number of elements defined on the curve computed by MAGMA tool is:

 $\# \mathcal{E}(2^{255} - 19) = 2^{255} + 138694172605265013181071149003381840660.$

We find a generator point (x_G, y_G) on the Edwards curve with:

$$\begin{split} x_G =& 53746514586250388770967951861766021561817370662802863797712166095360241234126, \\ y_G =& 19570081233560550597987439135529516381390903225319934175948181057081969418594. \end{split}$$

For the small curve $\mathcal{E}(\mathbb{F}_r)$, we can choose r = 2147499037; hence we have c' = 1800340494, d' = 1430405543, $x'_G = 28751952$ and $y'_G = 1290929995$. Remark: The probability that a random prime r meets the requirement of lemma 1 is closed to 1/4.

Twisted Edwards Curve example

The twisted Edwards Curves Ed25519 defined by equation $-x^2 + y^2 = 1 - \frac{121665}{121666}x^2y^2$ on $\mathbb{F}_{2^{255}-19}$, with:

$$\begin{split} x_G = & 247274132351065410025545745716755888346227681673976384567264236825212336082063, \\ y_G = & 15549675580280190176352668710449542251549572066445060580507079593062643049417. \end{split}$$

The prime factor smaller than p of λ is :

Prime factors r	2	3	17	47	78857	843229	159962189299
Length in bit of r	2	2	5	7	16	19	40
r verifies the lemma 2	False	False	False	False	True	True	False

Important remark: we notice that the small verification field \mathbb{F}_r cannot be chosen at random.

Performance

- Projective unified addition version takes $10\mathcal{M} + 1\mathcal{S} + 1\mathcal{C} + 1\mathcal{D} + 7\mathcal{A}$
- The bitwidth of the modulus is denoted by n (e.g., n = 256 for Ed25519).
- We denote by n' the number of CPU words of the modulus

	ECADD-complete	ECADD-complete	ECADD-complete	Total cost of the
Curves type	on \mathbb{F}_p	on \mathbb{Z}_{pr}	on \mathbb{F}_r	countermeasure
Edwards	$11.8n'^2 + 7n'$	$11.8n'^2 + 30.6n' + 18.8$	19.8	$11.8n'^2 + 30.6n' + 38.6$
Twisted Edwards	11.8 <i>n</i> ′ ² + 7 <i>n</i> ′	12.8 <i>n</i> ′ ² + 32.6 <i>n</i> ′ + 29.8	19.8	$12.8n'^2 + 32.6n' + 49.6$

Curves type	Computational overhead with:		
	n′ = 8	<i>n'</i> = 16	
Edwards	pprox +28%	pprox +13%	
Twisted Edwards	pprox +39%	pprox +21%	

- Using complete and unified elliptic curve formula is recommended to implemente the BOS countermeasure
- Choose a small curve is not trivial ! (<u>Other work:</u> Neves and Tibouchi, PKC 2016)
- Another advantage of (Twisted) Edwards curve is the Simple Side Channel Analysis resistance of unified formulas (no difference between a doubling and adding)
- The ECSM computation on the small curve can be reduced by the modulo of the order of the small curve

THALES

