
Toward a methodology
for Unified Verification of
HW/SW Co-designs
Building a bridge between two worlds

Florian Lugou <florian.lugou@telecom-paristech.fr>

Ludovic Apvrille <ludovic.apvrille@telecom-paristech.fr>

Aurélien Francillon <aurelien.francillon@eurecom.fr>

mailto:florian.lugou@telecom-paristech.fr
mailto:ludovic.apvrille@telecom-paristech.fr
mailto:aurelien.francillon@eurecom.fr


2 3/10/2015 Institut Mines-Télécom PROOFS 2015

Contents
Why?

SMART
Why Hardware/Software co-designs?
Why unified verification?

Don’t we already do that?
Successive verification of HW & SW
Unified verification

SMASHUP
What is it?
Using ProVerif
Limitations and discussion

Demo



3 3/10/2015 Institut Mines-Télécom PROOFS 2015

Contents
Why?

SMART
Why Hardware/Software co-designs?
Why unified verification?

Don’t we already do that?
Successive verification of HW & SW
Unified verification

SMASHUP
What is it?
Using ProVerif
Limitations and discussion

Demo



4 3/10/2015 Institut Mines-Télécom PROOFS 2015

SMART
remote attestation

Secure and Minimal Architecture for (Establishing a Dynamic) Root of
Trust

Verifier Prover

Generate challenge

Compute fingerprint

Accept or Reject

challenge

fingerprint



5 3/10/2015 Institut Mines-Télécom PROOFS 2015

SMART
a HW/SW co-design

Processor
M

em
or

y
B

ac
kb

on
e

Data

Program

Prover

Verifier

ROM

Key K

at
te

st
s

X



6 3/10/2015 Institut Mines-Télécom PROOFS 2015

SMART
Bringing formal guarantees

We are here interested in SW-level attacks (no side channel attack,
etc.).

Formal verification of SMART raises challenges:
Security of the scheme depends on secrecy of K.
Vulnerabilities in SW (ROM) could endanger secrecy.
Custom HW must be taken into account.
Security depends on HW features such as interrupt masking.



7 3/10/2015 Institut Mines-Télécom PROOFS 2015

Growing Interest in HW/SW Co-designs

HW modification is costly but:
Mass production makes HW customization affordable.
Some HW modifications are cheaper than others.
In some cases, strong security guarantees can’t be achieved in
pure SW.

It’s because HW modification is costly that formally verifying it is
essential.



8 3/10/2015 Institut Mines-Télécom PROOFS 2015

Verifying both Hardware and Software
Different models and methods

SW

spec

source

assembly

binary

HW impl

netlist

HDL

spec

HW

HW
modelisation

HW
prover HW proof

HW prop

HW model

SW
integration

assumed HW model

SW
prover SW proof

SW prop

SW model

Different methods of verification.
SW: symbolic execution, taint propagation, model checking, . . .
HW: model checking, equivalence checking, . . .



9 3/10/2015 Institut Mines-Télécom PROOFS 2015

Verifying both Hardware and Software
But close interactions

However, HW and SW may have close interactions:
SW and HW parts involved in a protocol;
HW impacts the way SW is executed.

This is particularly true for security designs.



10 3/10/2015 Institut Mines-Télécom PROOFS 2015

Contents
Why?

SMART
Why Hardware/Software co-designs?
Why unified verification?

Don’t we already do that?
Successive verification of HW & SW
Unified verification

SMASHUP
What is it?
Using ProVerif
Limitations and discussion

Demo



11 3/10/2015 Institut Mines-Télécom PROOFS 2015

Successive verification of HW & SW
The idea

Independant Verification

SW

spec

source

assembly

binary

HW impl

netlist

HDL

spec

HW

SW
integration

HW
modelisation

assumed HW model

SW
prover

HW
prover

SW proof

HW proof

SW prop

HW prop

SW model

HW model



11 3/10/2015 Institut Mines-Télécom PROOFS 2015

Successive verification of HW & SW
The idea

Successive Verification

SW

spec

source

assembly

binary

HW impl

netlist

HDL

spec

HW

SW
integration

HW prover

HW model

prover proof

prop

refinement
proof

whole model

1

2



12 3/10/2015 Institut Mines-Télécom PROOFS 2015

Successive verification of HW & SW
The idea

Manual expression of a formal model that:
enables HW to be proved correct against this model,
enables the verifier to express properties in this formal
environment,
and formalizes the effects of SW instructions on the model.

The presence of the verifier is needed to bridge the semantic gap
between HW and SW



13 3/10/2015 Institut Mines-Télécom PROOFS 2015

Successive verification of HW & SW
Feasibility and drawbacks

Is it feasible?
Finding such model is tedious and involves a lot of manual effort.
Feasible when SW & HW are disjoint enough to find a simple
formal interface.

How could we automate this?



14 3/10/2015 Institut Mines-Télécom PROOFS 2015

Unified verification
The idea

Successive Verification

SW

spec

source

assembly

binary

HW impl

netlist

HDL

spec

HW

SW
integration

HW prover

HW model

prover proof

prop

refinement
proof

whole model



14 3/10/2015 Institut Mines-Télécom PROOFS 2015

Unified verification
The idea

Unified Verification

SW

spec

source

assembly

binary

HW impl

netlist

HDL

spec

HW

SW
integration

HW
modelisation

prover proof

prop

HW language
model

HW model

whole model



15 3/10/2015 Institut Mines-Télécom PROOFS 2015

Unified verification
The idea

Use a formal representation of the HDL.
Express the effect of each HDL statement,
so that the composition of these is a formal representation of
the whole.
May restrict the scope of designs.
Create an interface to integrate software.



16 3/10/2015 Institut Mines-Télécom PROOFS 2015

Unified verification
ex: loosely coupled designs

E.g: HW and SW parts using a protocol to communicate 1

2 agents communicate through a clear interface
HW and SW describe the behaviour of each agent
doesn’t really matter whether it’s HW or SW

Use a common language (as SystemC) and SW analysis tools

1. D. Kroening et al., Formal Verification of SystemC by Automatic Hard-
ware/Software Partitioning



17 3/10/2015 Institut Mines-Télécom PROOFS 2015

Unified verification
ex: tightly coupled designs

E.g.: Customizing core processor logic
HW customizes the way SW must be modelled
would require low level representation of HW
automated extraction of SW concepts (program counter, stack
frames, etc.) is nowaday mostly unfeasible
SW representation that could be linked to a low level
representation of HW: binary format

Find a compromise between exhaustivity of HW description and
scalability of the proof?



18 3/10/2015 Institut Mines-Télécom PROOFS 2015

Contents
Why?

SMART
Why Hardware/Software co-designs?
Why unified verification?

Don’t we already do that?
Successive verification of HW & SW
Unified verification

SMASHUP
What is it?
Using ProVerif
Limitations and discussion

Demo



19 3/10/2015 Institut Mines-Télécom PROOFS 2015

SMASHUP: What is it?

Simple Modelling and Attestation of Software and Hardware Using
Proverif.

A python compiler from HW + SW to ProVerif specification.
SW is provided as assembly language (MSP430).
HW is described as a list of standard modules.
Properties are expressed as secrecy properties.

The specification produced can be checked with ProVerif.



20 3/10/2015 Institut Mines-Télécom PROOFS 2015

SMASHUP: What is it?

SW

spec

source

assembly

binary

HW impl

netlist

HDL

spec

HW

SW
integration

HW
modelisation

prover proof

prop

HW language
model

HW model

whole model



20 3/10/2015 Institut Mines-Télécom PROOFS 2015

SMASHUP: What is it?

SW

spec

source

assembly

binary

HW impl

netlist

HDL

spec

HW

SW
integration

HW
modelisation

prover proof

prop

HW language
model

HW model

whole model

SMASHUP

python modules

ProVerif



21 3/10/2015 Institut Mines-Télécom PROOFS 2015

Using ProVerif
Introduction

“ProVerif is a tool for automatically analyzing the security of
cryptographic protocols.”

automatically : simple reasoning with Horn clauses
• ∧

i
pi or

∧
i

pi → q

security : naturally handles secrecy and authenticity properties
protocols: multiple processes sending and receiving messages

Motivations: simple logic and security orientation



22 3/10/2015 Institut Mines-Télécom PROOFS 2015

Using ProVerif
Reasoning with Horn clauses

Works on predicates. E.g: attacker(var) means the attacker knows
value of var.

Horn clauses as logic bases. For instance:

mess(ch,m) ∧ attacker(ch) → attacker(m)
and attacker(ch) ∧ attacker(m) → mess(ch,m).

Verification is based on unification of clauses:
attacker(m) → attacker(f (m))

and attacker(f (g(m))) → attacker(m),
results in attacker(g(m)) → attacker(m).



23 3/10/2015 Institut Mines-Télécom PROOFS 2015

Using ProVerif
Application to verification of low-level SW

new predicate: state(pc, s) means “a state where PC equals pc and
system is in state s is reachable”

effect of an instruction:

state(pc, s)→ state(pc′, s′)

Memory is modelled as an array of variables.

Example of HW modification (adding interrupts):

state(pc, s,1) → attacker(s)
and attacker(s′) ∧ state(pc, s,1) → state(pc + 1, s′,1).



24 3/10/2015 Institut Mines-Télécom PROOFS 2015

Limitations and discussion

Working with concrete types:
No representation of numbers in ProVerif.
Simple arithmetic operations increase complexity (ProVerif only
allows constructors or reductions).
Idea: interface ProVerif with theory solvers (bit vector, etc.).

Working at binary level (shellcodes, ROP, etc.).

Re-work the HW Description Language to enable finer-grained
description of HW designs.



25 3/10/2015 Institut Mines-Télécom PROOFS 2015

Contents
Why?

SMART
Why Hardware/Software co-designs?
Why unified verification?

Don’t we already do that?
Successive verification of HW & SW
Unified verification

SMASHUP
What is it?
Using ProVerif
Limitations and discussion

Demo



26 3/10/2015 Institut Mines-Télécom PROOFS 2015

Conclusion

Summing it up:
growing interest for HW/SW Co-design
need for a method of unified verification
a first step: SMASHUP

Thank you !



27 3/10/2015 Institut Mines-Télécom PROOFS 2015

Questions?

Any Questions?


	Why?
	SMART
	Why Hardware/Software co-designs?
	Why unified verification?

	Don't we already do that?
	Successive verification of HW & SW
	Unified verification

	SMASHUP
	What is it?
	Using ProVerif
	Limitations and discussion

	Demo

