
Toward a methodology
for Unified Verification of
HW/SW Co-designs
Building a bridge between two worlds

Florian Lugou <florian.lugou@telecom-paristech.fr>

Ludovic Apvrille <ludovic.apvrille@telecom-paristech.fr>

Aurélien Francillon <aurelien.francillon@eurecom.fr>

mailto:florian.lugou@telecom-paristech.fr
mailto:ludovic.apvrille@telecom-paristech.fr
mailto:aurelien.francillon@eurecom.fr


2 3/10/2015 Institut Mines-Télécom PROOFS 2015

Contents
Why?

SMART
Why Hardware/Software co-designs?
Why unified verification?

Don’t we already do that?
Successive verification of HW & SW
Unified verification

SMASHUP
What is it?
Using ProVerif
Limitations and discussion

Demo



3 3/10/2015 Institut Mines-Télécom PROOFS 2015

Contents
Why?

SMART
Why Hardware/Software co-designs?
Why unified verification?

Don’t we already do that?
Successive verification of HW & SW
Unified verification

SMASHUP
What is it?
Using ProVerif
Limitations and discussion

Demo



4 3/10/2015 Institut Mines-Télécom PROOFS 2015

SMART
remote attestation

Secure and Minimal Architecture for (Establishing a Dynamic) Root of
Trust

Verifier Prover

Generate challenge

Compute fingerprint

Accept or Reject

challenge

fingerprint



5 3/10/2015 Institut Mines-Télécom PROOFS 2015

SMART
a HW/SW co-design
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SMART
Bringing formal guarantees

We are here interested in SW-level attacks (no side channel attack,
etc.).

Formal verification of SMART raises challenges:
Security of the scheme depends on secrecy of K.
Vulnerabilities in SW (ROM) could endanger secrecy.
Custom HW must be taken into account.
Security depends on HW features such as interrupt masking.
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Growing Interest in HW/SW Co-designs

HW modification is costly but:
Mass production makes HW customization affordable.
Some HW modifications are cheaper than others.
In some cases, strong security guarantees can’t be achieved in
pure SW.

It’s because HW modification is costly that formally verifying it is
essential.
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Verifying both Hardware and Software
Different models and methods
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Different methods of verification.
SW: symbolic execution, taint propagation, model checking, . . .
HW: model checking, equivalence checking, . . .
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Verifying both Hardware and Software
But close interactions

However, HW and SW may have close interactions:
SW and HW parts involved in a protocol;
HW impacts the way SW is executed.

This is particularly true for security designs.
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Successive verification of HW & SW
The idea

Independant Verification
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Successive verification of HW & SW
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Successive verification of HW & SW
The idea

Manual expression of a formal model that:
enables HW to be proved correct against this model,
enables the verifier to express properties in this formal
environment,
and formalizes the effects of SW instructions on the model.

The presence of the verifier is needed to bridge the semantic gap
between HW and SW
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Successive verification of HW & SW
Feasibility and drawbacks

Is it feasible?
Finding such model is tedious and involves a lot of manual effort.
Feasible when SW & HW are disjoint enough to find a simple
formal interface.

How could we automate this?
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Unified verification
The idea

Successive Verification
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Unified verification
The idea

Unified Verification
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Unified verification
The idea

Use a formal representation of the HDL.
Express the effect of each HDL statement,
so that the composition of these is a formal representation of
the whole.
May restrict the scope of designs.
Create an interface to integrate software.
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Unified verification
ex: loosely coupled designs

E.g: HW and SW parts using a protocol to communicate 1

2 agents communicate through a clear interface
HW and SW describe the behaviour of each agent
doesn’t really matter whether it’s HW or SW

Use a common language (as SystemC) and SW analysis tools

1. D. Kroening et al., Formal Verification of SystemC by Automatic Hard-
ware/Software Partitioning
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Unified verification
ex: tightly coupled designs

E.g.: Customizing core processor logic
HW customizes the way SW must be modelled
would require low level representation of HW
automated extraction of SW concepts (program counter, stack
frames, etc.) is nowaday mostly unfeasible
SW representation that could be linked to a low level
representation of HW: binary format

Find a compromise between exhaustivity of HW description and
scalability of the proof?
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SMASHUP: What is it?

Simple Modelling and Attestation of Software and Hardware Using
Proverif.

A python compiler from HW + SW to ProVerif specification.
SW is provided as assembly language (MSP430).
HW is described as a list of standard modules.
Properties are expressed as secrecy properties.

The specification produced can be checked with ProVerif.
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SMASHUP: What is it?
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SMASHUP: What is it?
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Using ProVerif
Introduction

“ProVerif is a tool for automatically analyzing the security of
cryptographic protocols.”

automatically : simple reasoning with Horn clauses
• ∧

i
pi or

∧
i

pi → q

security : naturally handles secrecy and authenticity properties
protocols: multiple processes sending and receiving messages

Motivations: simple logic and security orientation
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Using ProVerif
Reasoning with Horn clauses

Works on predicates. E.g: attacker(var) means the attacker knows
value of var.

Horn clauses as logic bases. For instance:

mess(ch,m) ∧ attacker(ch) → attacker(m)
and attacker(ch) ∧ attacker(m) → mess(ch,m).

Verification is based on unification of clauses:
attacker(m) → attacker(f (m))

and attacker(f (g(m))) → attacker(m),
results in attacker(g(m)) → attacker(m).
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Using ProVerif
Application to verification of low-level SW

new predicate: state(pc, s) means “a state where PC equals pc and
system is in state s is reachable”

effect of an instruction:

state(pc, s)→ state(pc′, s′)

Memory is modelled as an array of variables.

Example of HW modification (adding interrupts):

state(pc, s,1) → attacker(s)
and attacker(s′) ∧ state(pc, s,1) → state(pc + 1, s′,1).
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Limitations and discussion

Working with concrete types:
No representation of numbers in ProVerif.
Simple arithmetic operations increase complexity (ProVerif only
allows constructors or reductions).
Idea: interface ProVerif with theory solvers (bit vector, etc.).

Working at binary level (shellcodes, ROP, etc.).

Re-work the HW Description Language to enable finer-grained
description of HW designs.
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Conclusion

Summing it up:
growing interest for HW/SW Co-design
need for a method of unified verification
a first step: SMASHUP

Thank you !
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Questions?

Any Questions?
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