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a HW/SW co-design
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Bringing formal guarantees

We are here interested in SW-level attacks (no side channel attack,
etc.).

Formal verification of SMART raises challenges:
m Security of the scheme depends on secrecy of K.
B Vulnerabilities in SW (ROM) could endanger secrecy.
B Custom HW must be taken into account.
B Security depends on HW features such as interrupt masking.
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N Growing Interest in HW/SW Co-designs

HW modification is costly but:
B Mass production makes HW customization affordable.
® Some HW modifications are cheaper than others.

B |In some cases, strong security guarantees can’t be achieved in
pure SW.

It's because HW modification is costly that formally verifying it is
essential.




N Verifying both Hardware and Software

Different models and methods
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Different methods of verification.
® SW: symbolic execution, taint propagation, model checking,
B HW: model checking, equivalence checking, ...
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N Verifying both Hardware and Software

But close interactions

However, HW and SW may have close interactions:
® SW and HW parts involved in a protocol;
B HW impacts the way SW is executed.

This is particularly true for security designs.
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Successive verification of HW & SW
_ The idea

Independant Verification
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Successive verification of HW & SW
_ The idea

Successive Verification
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Successive verification of HW & SW
_ The idea

Manual expression of a formal model that:
B enables HW to be proved correct against this model,

B enables the verifier to express properties in this formal
environment,

B and formalizes the effects of SW instructions on the model.

The presence of the verifier is needed to bridge the semantic gap
between HW and SW




N B Successive verification of HW & SW

Feasibility and drawbacks

Is it feasible?
® Finding such model is tedious and involves a lot of manual effort.

B Feasible when SW & HW are disjoint enough to find a simple
formal interface.

How could we automate this?




_ Unified verification
The idea
Successive Verification
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_ Unified verification
The idea

Unified Verification
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N B Unified verification

The idea

Use a formal representation of the HDL.
®m Express the effect of each HDL statement,

B so that the composition of these is a formal representation of
the whole.

B May restrict the scope of designs.
® Create an interface to integrate software.

o
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N B Unified verification

ex: loosely coupled designs

E.g: HW and SW parts using a protocol to communicate '
B 2 agents communicate through a clear interface
® HW and SW describe the behaviour of each agent
® doesn’t really matter whether it's HW or SW

Use a common language (as SystemC) and SW analysis tools

1. D. Kroening et al.,, Formal Verification of SystemC by Automatic Hard-
ware/Software Partitioning
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N B Unified verification
ex: tightly coupled designs
E.g.: Customizing core processor logic
® HW customizes the way SW must be modelled
® would require low level representation of HW
® automated extraction of SW concepts (program counter, stack
frames, etc.) is nowaday mostly unfeasible

B SW representation that could be linked to a low level
representation of HW: binary format

Find a compromise between exhaustivity of HW description and
scalability of the proof?
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I s\iASHUP: What is it?

Simple Modelling and Attestation of Software and Hardware Using
Proverif.

® A python compiler from HW + SW to ProVerif specification.
B SW is provided as assembly language (MSP430).

® HW is described as a list of standard modules.

B Properties are expressed as secrecy properties.

The specification produced can be checked with ProVerif.
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I s\iASHUP: What is it?
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I s\iASHUP: What is it?
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N B Using ProVerif

Introduction

“ProVerif is a tool for automatically analyzing the security of
cryptographic protocols.”
B qutomatically: simple reasoning with Horn clauses
. /i\p,- or /i\p/ —q
B security: naturally handles secrecy and authenticity properties
B protocols: multiple processes sending and receiving messages

Motivations: simple logic and security orientation
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N B Using ProVerif

Reasoning with Horn clauses

Works on predicates. E.g: attacker(var) means the attacker knows
value of var.

Horn clauses as logic bases. For instance:

mess(ch, m) A attacker(ch) —  attacker(m)
and attacker(ch) A attacker(m) —  mess(ch, m).

Verification is based on unification of clauses:

attacker(m) —  attacker(f(m))
and attacker(f(g(m))) —  attacker(m),
results in attacker(g(m)) —  attacker(m)

]
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N B Using ProVerif

Application to verification of low-level SW

new predicate: state(pc, s) means “a state where PC equals pc and
system is in state s is reachable”

effect of an instruction:
state(pc, s) — state(pc’, s')
Memory is modelled as an array of variables.

Example of HW modification (adding interrupts):

state(pc,s,1) —  attacker(s)
and attacker(s') A state(pc,s,1) — state(pc+1,5',1).




_ Limitations and discussion

Working with concrete types:
® No representation of numbers in ProVerif.
® Simple arithmetic operations increase complexity (ProVerif only
allows constructors or reductions).
B /dea: interface ProVerif with theory solvers (bit vector, etc.).

Working at binary level (shellcodes, ROP, etc.).

Re-work the HW Description Language to enable finer-grained
description of HW designs.

s
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_ Conclusion

Summing it up:
B growing interest for HW/SW Co-design
B need for a method of unified verification
B g first step: SMASHUP

Thank you !
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_ Questions?

Any Questions?
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