Toward a methodology
for Unified Verification of
HW/SW Co-designs

Florian Lugou <florian.lugou@telecom-paristech.fr>
Ludovic Apvri lle <ludovic.apvrille@telecom-paristech.fr>
Aurélien Francillon <aurelien.francillon@eurecom.fr>

mailto:florian.lugou@telecom-paristech.fr
mailto:ludovic.apvrille@telecom-paristech.fr
mailto:aurelien.francillon@eurecom.fr

_ Contents

Why?
SMART
Why Hardware/Software co-designs?
Why unified verification?
Don’t we already do that?
Successive verification of HW & SW
Unified verification
SMASHUP
What is it?
Using ProVerif
Limitations and discussion
Demo

Recow
Institut Mines-Télécom PROOFS 2015

_ Contents

Why?
SMART
Why Hardware/Software co-designs?
Why unified verification?

-

EurEGom
Institut Mines-Télécom PROOFS 2015 pcn\#/

m

remote attestation

Secure and Minimal Architecture for (Establishing a Dynamic) Root of
Trust

Generate challenge \

challenge

\
—

fingerprint

Accept or Reject /

Compute fingerprint

EI

Institut Mines-Télécom PROOFS 2015 uc

SMART
a HW/SW co-design

r

Data

Program

P

m

Bringing formal guarantees

We are here interested in SW-level attacks (no side channel attack,
etc.).

Formal verification of SMART raises challenges:
m Security of the scheme depends on secrecy of K.
B Vulnerabilities in SW (ROM) could endanger secrecy.
B Custom HW must be taken into account.
B Security depends on HW features such as interrupt masking.

Institut Mines-Télécom PROOFS 2015

N Growing Interest in HW/SW Co-designs

HW modification is costly but:
B Mass production makes HW customization affordable.
® Some HW modifications are cheaper than others.

B |In some cases, strong security guarantees can’t be achieved in
pure SW.

It's because HW modification is costly that formally verifying it is
essential.

N Verifying both Hardware and Software

Different models and methods

SwW SW prop
spec — - _
ZS RN N
~
source ~ -~ _ _ "~ oW
- e EE integration — SW model — —— SW proof
assembly — - — — -
ES Phe
binary - -~
A
HW impl assumed HW model
82
netlist ~
\
b : HW
HEL B 7>4} modelisation HW model HW proof
/
spec -~
HW HW prop

Different methods of verification.
® SW: symbolic execution, taint propagation, model checking,
B HW: model checking, equivalence checking, ...

Institut Mines-Télécom PROOFS 2015

N Verifying both Hardware and Software

But close interactions

However, HW and SW may have close interactions:
® SW and HW parts involved in a protocol;
B HW impacts the way SW is executed.

This is particularly true for security designs.

FED

Institut Mines-Télécom PROOFS 2015 uc

_ Contents

Don’t we already do that?
Successive verification of HW & SW
Unified verification

WA

eunecom
10 3102015 Institut Mines-Télécom PROOFS 2015 pcnq?

Successive verification of HW & SW
_ The idea

Independant Verification

SW SW prop
spec -~ _ _ J'
A SN N
source ~—_;;:\\ oW
ES - ,/:,ﬁ;—'4> integration — SW model — —— SW proof
assembly — - — — .
ES Phd
binary - -~ - /\
AN
HW impl assumed HW model
82
netlist ~
\
pe \
HDL -~ ->— HW —— HW model —— —— HW proof
. / modelisation
spec ! 1

HW prop

L
PROOFS 2015 [N

HW
Institut Mines-Télécom

Successive verification of HW & SW
_ The idea

Successive Verification

sSwW prop

spec — _

PS ~

source - — _ _ O~
T SW ot ot N

=S ZZ=- > proof

B teoral wirote-moctet >
assembly — - — — - g
A e 2
binary - -~ -

S

HW impl HW model

82

netlist ~
= \

\ .

HDL ~ - A > regurr;r?em
¥ // 1

spec

HW

PROOFS 2015

11 3/10/2015 Institut Mines-Télécom

Successive verification of HW & SW
_ The idea

Manual expression of a formal model that:
B enables HW to be proved correct against this model,

B enables the verifier to express properties in this formal
environment,

B and formalizes the effects of SW instructions on the model.

The presence of the verifier is needed to bridge the semantic gap
between HW and SW

N B Successive verification of HW & SW

Feasibility and drawbacks

Is it feasible?
® Finding such model is tedious and involves a lot of manual effort.

B Feasible when SW & HW are disjoint enough to find a simple
formal interface.

How could we automate this?

_ Unified verification
The idea
Successive Verification

sSw prop

spec — — _
N ~

source ~ — — _ sw
ES integration — whole model — —— proof
assembly — - — —
ZS
binary - -~ /\
A
HW impl HW model

" /
netlist ~

\

82 \

refinement
HoL *7H " proot
82

/
spec -~

HW

evnecom
14 3/10/2015 Institut Mines-Télécom PROOFS 2| pcnq?

_ Unified verification
The idea

Unified Verification

SW prop
spec -~ — _
. ~
source -~ — — _ /\
ES SW = T e Treteh u > proof
assembly — - - —
A
binary - -~
AN
HW impl
82
netlist ~
- \
\
| _ HW language
AL ,> model
82
/
spec -~
HW

Institut Mines-Télécom PROOFS 2 pcnq?

N B Unified verification

The idea

Use a formal representation of the HDL.
®m Express the effect of each HDL statement,

B so that the composition of these is a formal representation of
the whole.

B May restrict the scope of designs.
® Create an interface to integrate software.

o
15 30015 Institut Mines-Télécom PROOFS 2015

N B Unified verification

ex: loosely coupled designs

E.g: HW and SW parts using a protocol to communicate '
B 2 agents communicate through a clear interface
® HW and SW describe the behaviour of each agent
® doesn’t really matter whether it's HW or SW

Use a common language (as SystemC) and SW analysis tools

1. D. Kroening et al.,, Formal Verification of SystemC by Automatic Hard-
ware/Software Partitioning

EuREGOM
16 3/10/2015 Institut Mines-Télécom PROOFS 2015 ucnq‘»

N B Unified verification
ex: tightly coupled designs
E.g.: Customizing core processor logic
® HW customizes the way SW must be modelled
® would require low level representation of HW
® automated extraction of SW concepts (program counter, stack
frames, etc.) is nowaday mostly unfeasible

B SW representation that could be linked to a low level
representation of HW: binary format

Find a compromise between exhaustivity of HW description and
scalability of the proof?

s
=
17 3i102015 Institut Mines-Télécom PROOFS 2015

_ Contents

SMASHUP
What is it?
Using ProVerif
Limitations and discussion

WA

eunecom
18 31012015 Institut Mines-Télécom PROOFS 2015 pcnq?

I s\iASHUP: What is it?

Simple Modelling and Attestation of Software and Hardware Using
Proverif.

® A python compiler from HW + SW to ProVerif specification.
B SW is provided as assembly language (MSP430).

® HW is described as a list of standard modules.

B Properties are expressed as secrecy properties.

The specification produced can be checked with ProVerif.

19 snoeo1s Institut Mines-Télécom PROOFS 2015

I s\iASHUP: What is it?

Sw prop

spec -~ — _
ES SO
~

source ~ - - _ _ "~
> - integration — whole model — — proof
assembly — - -~ -7
ES e
binary - -~ -
A
HW impl HW model
; /
netlist ~
\
. N HW HW |
L _ anguage
HEL ,yi} modelisation — model
spec -
HW

/2015 Institut Mines-Télécom PROOFS 20

I s\iASHUP: What is it?

SW

spec
~
source

~

assembly — - — — 7

~
binary
-

Institut Mines-Télécom PROOFS 20

HW impl
~
netlist
~
HDL
v
spec

HW

sSw

integration — whole mog

;

HW model

/

python modules

HW
modelisation

HW language
model

SMASHUP

e

prop

—— proof

ProVerif

N B Using ProVerif

Introduction

“ProVerif is a tool for automatically analyzing the security of
cryptographic protocols.”
B qutomatically: simple reasoning with Horn clauses
. /i\p,- or /i\p/ —q
B security: naturally handles secrecy and authenticity properties
B protocols: multiple processes sending and receiving messages

Motivations: simple logic and security orientation

EuREGOM
21 3/10/2015 Institut Mines-Télécom PROOFS 2015 ucnq‘»

N B Using ProVerif

Reasoning with Horn clauses

Works on predicates. E.g: attacker(var) means the attacker knows
value of var.

Horn clauses as logic bases. For instance:

mess(ch, m) A attacker(ch) — attacker(m)
and attacker(ch) A attacker(m) — mess(ch, m).

Verification is based on unification of clauses:

attacker(m) — attacker(f(m))
and attacker(f(g(m))) — attacker(m),
results in attacker(g(m)) — attacker(m)

]
22 3102015 Institut Mines-Télécom PROOFS 2015

N B Using ProVerif

Application to verification of low-level SW

new predicate: state(pc, s) means “a state where PC equals pc and
system is in state s is reachable”

effect of an instruction:
state(pc, s) — state(pc’, s')
Memory is modelled as an array of variables.

Example of HW modification (adding interrupts):

state(pc,s,1) — attacker(s)
and attacker(s') A state(pc,s,1) — state(pc+1,5',1).

_ Limitations and discussion

Working with concrete types:
® No representation of numbers in ProVerif.
® Simple arithmetic operations increase complexity (ProVerif only
allows constructors or reductions).
B /dea: interface ProVerif with theory solvers (bit vector, etc.).

Working at binary level (shellcodes, ROP, etc.).

Re-work the HW Description Language to enable finer-grained
description of HW designs.

s
24 302015 Institut Mines-Télécom PROOFS 2015

_ Contents

Demo

25 3/10/2015 Institut Mines-Télécom PROOFS 2015 ucN

_ Conclusion

Summing it up:
B growing interest for HW/SW Co-design
B need for a method of unified verification
B g first step: SMASHUP

Thank you !

=
26 3102015 Institut Mines-Télécom PROOFS 2015

_ Questions?

Any Questions?

astel =
EurEGom
Institut Mines-Télécom PROOFS 2015 uqnq./

	Why?
	SMART
	Why Hardware/Software co-designs?
	Why unified verification?

	Don't we already do that?
	Successive verification of HW & SW
	Unified verification

	SMASHUP
	What is it?
	Using ProVerif
	Limitations and discussion

	Demo

