Error-Correcting Codes for Cryptography

Jon-Lark Kim

The CODING-A Lab
Department of Mathematics
Sogang University, Seoul, Korea

http://maths.sogang.ac.kr/jlkim
Email: jlkim@sogang.ac.kr

PROOFS, Busan Korea
September 27, 2014
Outline

- Introduction to Coding Theory
- Complementary Information Set (CIS) Codes
- General Constructions Including SRG and DRT.
- Classification of CIS Codes of Lengths ≤ 12
- Optimal CIS Codes of Lengths ≤ 130
- Long CIS Codes
- Higher-Order CIS Codes
- Conclusion and Open Problems
Overview

Information Theory Basic

Coding Theory
 - Linear Algebra
 - Combinatorics
 - Algebra

Cryptography
 - Number Theory
 - Probability
 - Complexity
Father of Information Theory

Figure: Claude Shannon (1916-2001)

Shannon’s two foundational papers from Bell System Technical Journal:
“A Mathematical Theory of Communication” on Information Theory (1948)
“Communication Theory of Secrecy Systems” on Cryptography (1949)
What is a code?

- Let A be a finite alphabet. Usually $A = \mathbb{Z}_2, \mathbb{Z}_p$ (in general $\mathbb{F}_q, \mathbb{Z}_m$, chain rings, Galois rings, or Frobenius rings).

- $A^n := \{(x_1, \cdots, x_n) | x_i \in A\}$.

- An (error-correcting) code C over A is a subset of A^n (with at least two elements).

- Elements of C are called codewords.

- A code over \mathbb{Z}_2 is called a binary code.

- The weight of $x = (x_1, \cdots, x_n)$ is the number of nonzero coordinates, denoted by $wt(x)$. For example, $wt(0, 1, 2, 1, 0) = 3$.

- The Hamming distance $d(x, y)$ between $x, y \in A^n$ is $wt(x - y)$. For example, if $x = (1, 0, 0, 1, 0)$ and $y = (0, 0, 1, 0, 0)$, then their Hamming distance is 3.
Linear codes: most useful codes

- A linear code C of length n and dimension k over \mathbb{Z}_p is a k-dimensional subspace of \mathbb{Z}_p^n.
- We denote C by an $[n, k]$ linear code over \mathbb{Z}_p.
- The minimum distance (weight) d of a linear code C is the minimum of $\text{wt}(x)$, $x \neq 0 \in C$.
- We denote it by an $[n, k, d]$ code. Given n and k, d can be at most $n - k + 1$ (Singleton’ bound).
- A set of k columns of an $[n, k, d]$ code is called an information set if it is linearly independent.
How many errors can correct?

Theorem

Any \([n, k, d]\) linear code can correct up to \(t = \left\lfloor \frac{d-1}{2} \right\rfloor\) errors (by the nearest neighbor decoding).
Let C be a linear $[n, k, d]$ code over finite field $GF(q)$ of length n, dimension k and minimum distance d.

The Euclidean inner product of $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in $GF(q)^n$ is $x \cdot y = \sum_{i=1}^{n} x_i y_i$.

The dual of C, denoted by C^\perp is the set of vectors orthogonal to every codeword of C under the Euclidean inner product.

If $C = C^\perp$, C is called self-dual (sd), and if $C \subset C^\perp$, self-orthogonal.
• The weight enumerator of C is the polynomial $W_C(X, Y) = \sum_{i=0}^{n} A_i X^{n-i} Y^i$, where A_i is the number of codewords of weight i.

• A code C is called formally self-dual (f.s.d.) if $W_{C^\perp}(x, y) = W_C(x, y)$.

• Of course any self-dual code is an f.s.d. code but an f.s.d. code is not necessarily self-dual.

• A code C is divisible by δ provided all codewords have weights divisible by an integer δ, called a divisor of C.

- Let C have generator matrix

$$G = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{bmatrix}$$

- C is the famous extended Hamming $[8, 4]$ code with minimum distance $d = 4$.
- C is self-dual.
- Weight Distribution: $A_0 = 1$, $A_4 = 14$, $A_8 = 1$.
- Divisor $\delta = 4$.
Why Self-dual codes?

- One of the most interesting classes of linear codes
- Connections with group theory, design theory, Euclidean lattices, modular forms, quantum codes
- Many optimal linear codes are often self-orthogonal/self-dual.
- They are also asymptotically good.
Why Self-dual codes?

- One of the most interesting classes of linear codes
- Connections with group theory, design theory, Euclidean lattices, modular forms, quantum codes
- Many optimal linear codes are often self-orthogonal/self-dual.
- They are also asymptotically good.

Question: Is there an interesting superclass of self-dual codes?
Complementary Information Set Codes

- A binary linear code of length $2n$ and dimension n is called Complementary Information Set (CIS) with a partition L, R if there is an information set L whose complement R is also an information set.

- We call the partition $[1..n], ..., [n + 1..2n]$ the systematic partition.
- Systematic self-dual codes are CIS with the systematic partition.
- It is also clear that the dual of a CIS code is CIS.
- Hence CIS codes are a natural generalization of self-dual codes.
Walsh Hadamard transform

- An vectorial Boolean function F is any map from $\mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$.
- Its Walsh Hadamard transform of F at (a, b) is defined as
 \[W_F(a, b) = \sum_{x \in \mathbb{F}_2^n} (-1)^{a \cdot x + b \cdot F(x)}, \]
 where $a \cdot x$ denotes the scalar product of vectors a and x.
- If f is a Boolean function with domain \mathbb{F}_2^k and range \mathbb{F}_2, then the Fourier transform \hat{f} of f at a is defined by
 \[\hat{f}(a) = \sum_{x \in \mathbb{F}_2^k} f(x)(-1)^{a \cdot x} = \sum_{x \in \text{supp}(f)} (-1)^{a \cdot x}, \]
 where $\text{supp}(f)$ is the support of function f.
- We note that for $a \neq 0$,
 \[W_{F_1}(a, b) = 0 \text{ if and only if } \hat{b} \cdot F_1(a) = 0. \]
Motivations

CIS codes have an application in cryptography, in the framework of counter-measures to side channel attacks on smartcards.
Motivations

• Assuming a systematic unrestricted code C of length $2n$ of the form

$$C = \{(x, F(x)) | x \in \mathbb{F}_2^n\},$$

the vectorial Boolean function is constructed as the map $x \mapsto F(x)$.

• In that setting C is CIS by definition iff F is a bijection.

• When C is a linear code, we can also consider a systematic generator matrix (I, A) of the code, where I is the identity matrix of order n and A is a square matrix of order n. Then $F(x) = xA$, and the CIS condition reduces to the fact that A is nonsingular.
Motivations-continued

The physical implementation of cryptosystems on devices such as smart cards leaks information.
Motivations-continued

- This information can be used in differential power analysis or in other kinds of side channel attacks.
- These attacks can be disastrous if proper counter-measures are not included in the implementation.
- Until recently, it was believed that for increasing the resistance to attacks, new masks have to be added, thereby increasing the order of the countermeasure.

- Change the variable representation (say \(x \)) into randomized shares \(m_1, m_2, \ldots, m_{t+1} \) called masks such that \(x = m_1 + m_2 + \cdots + m_{t+1} \) where + is a group operation - in practice, the XOR.

- At the order \(t = 1 \), the masks are given by \((m_1, m_2) = (m_1, x + m_1)\). If both \(m_1 \) and \(x + m_1 \) are known, then \(x \) is obtained, hence not secure.
Motivations-continued

- It is shown that another option consists in encoding the some of masks, which is much less costly than adding fresh masks.

- For example, at the order $t = 1$, using a vectorial Boolean function F, we consider the ordered pair $(F(m_1), x + m_1)$.

- Notably, it is demonstrated that the same effect as adding several masks can be obtained by the encoding of one single mask.

Graph Correlation Immune Functions

- This method, called leakage squeezing, uses vectorial Boolean functions - more precisely, permutations $F : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n$, such that, given some integer d as large as possible, for every pair of vectors $a, b \in \mathbb{F}_2^n$ such that (a, b) is nonzero and has Hamming weight $< d$, the value of the Walsh Hadamard transform of F at (a, b), is null.

- We call such functions d-GCI, for Graph Correlation Immune.

- Thus a d-GCI function is a protection against an attack of order d.

Proposition (Maghebi, et. al, 2011)
The existence of a linear d-GCI function of n variables is equivalent to the existence of a CIS code of parameters $[2n, n, \geq d]$ with the systematic partition.
General construction

Lemma
If a \([2n, n]\) code \(C\) has generator matrix \((I, A)\) with \(A\) invertible then \(C\) is CIS with the systematic partition. Conversely, every CIS code is equivalent to a code with a generator matrix in that form.

In particular this lemma applies to systematic self dual codes whose generator matrix \((I, A)\) satisfies \(AA^T = I\).

Lemma
Let \(f(x)\) be a polynomial over \(\mathbb{F}_2\) of degree less than \(n\). Then, \(\gcd(f(x), x^n - 1) = 1\) if and only if the circulant matrix generated by \(f(x)\) has \(\mathbb{F}_2\)-rank \(n\).
Proposition

The double circulant code whose generator matrix is represented by \((1, f(x))\) satisfying Lemma is a CIS code.

Proposition

If a \([2n, n]\) code \(C\) has generator matrix \((I, A)\) with \(rk(A) < n/2\) then \(C\) is not CIS.
Rank criterion for linear codes

Theorem
Let Σ denote the set of columns of the generator matrix of a $[2n, n]$ linear code C.
C is CIS iff $\forall B \subseteq \Sigma$, $rk(B) \geq |B|/2$.

The proof uses matroid theory and Edmonds’ matroid base packing theorem: A matroid on a set S contain k disjoint bases iff

$$\forall U \subseteq S, k(rk(S) - rk(U)) \leq |S \setminus U|.$$

Apply to the matroid of the columns of the generator matrix under linear dependence, with

$$S = \Sigma, k = 2, rk(\Sigma) = n, |\Sigma| = 2n.$$
SRG and DRT

- Let A be an integral matrix with $0, 1$ valued entries.
- We say that A is the adjacency matrix of a strongly regular graph (SRG) of parameters $(n, \kappa, \lambda, \mu)$ if A is symmetric, of order n, verifies $AJ = JA = \kappa J$ and satisfies
 \[A^2 = \kappa I + \lambda A + \mu(J - I - A) \]
- We say that A is the adjacency matrix of a doubly regular tournament (DRT) of parameters $(n, \kappa, \lambda, \mu)$ if A is skew-symmetric, of order n, verifies $AJ = JA = \kappa J$ and satisfies
 \[A^2 = \lambda A + \mu(J - I - A) \]
where I, J are the identity and all-one matrices of order n.
CIS codes from SRG and DRT

In the next result we identify A with its reduction mod 2.

Proposition
Let C be the linear binary code of length $2n$ spanned by the rows of (I, M). With the above notation, C is CIS if A is the adjacency matrix of a

- SRG of odd order with κ, λ both even and μ odd and if $M = A + I$
- DRT of odd order with κ, μ odd and λ even and if $M = A$
- SRG of odd order with κ even and λ, μ both odd and if $M = A + J$
- DRT of odd order with κ even and λ, μ both odd and if $M = A + J$
Quadratic Double Circulant Codes

Let q be an odd prime power. Let Q be the q by q matrix with zero diagonal and $q_{ij} = 1$ if $j - i$ is a square in $GF(q)$ and zero otherwise. (This Q is a modified Jacobsthal matrix.)

Corollary

If $q = 8j + 5$ then the span of $(I, Q + I)$ is CIS. If $q = 8j + 3$ then the span of (I, Q) is CIS.

Proof

It is well-known that if $q = 4k + 1$ then Q is the adjacency matrix of a SRG with parameters $(q, \frac{q-1}{2}, \frac{q-5}{4}, \frac{q-1}{4})$. If $q = 4k + 3$ then Q is the adjacency matrix of a DRT with parameters $(q, \frac{q-1}{2}, \frac{q-3}{4}, \frac{q+1}{4})$. The result follows by the previous proposition.

The codes obtained in that way are Quadratic Double Circulant codes (Gaborit, 2002).
Existence of an optimal code that is not CIS

Proposition
If C is a $[2n, n]$ code whose dual has minimum weight 1 then C is not CIS.

Proposition
There exists at least one optimal binary code that is not CIS.

Proof:
The $[34, 17, 8]$ code described in the Magma package $BKLC(GF(2), 34, 17))$ (best known linear code of length 34 and dimension 17) is an optimal code (minimum weight 8 is the best possible minimum distance for such a code) which dual has minimum distance 1, and therefore is not CIS.
Classification of CIS codes of lengths \(\leq 12 \)

- Let \(n \geq 2 \) be an integer and \(g_n \) denote the cardinal of \(GL(n,2) \) the general linear group of dimension \(n \) over \(GF(2) \).
- It is well-known (see MacWilliams-Sloane’s book), that
 \[
 g_n = \prod_{j=0}^{n-1} (2^n - 2^j) .
 \]

Proposition

The number \(e_n \) of equivalence classes of CIS codes of dimension \(n \geq 2 \) is at most \(g_n/n! \).

Proof:

Every CIS code of dimension \(n \) is equivalent to the linear span of \((I, A)\) for some \(A \in GL(n,2) \). But the columns of such an \(A \) are pairwise linearly independent, hence pairwise distinct. Permuting the columns of \(A \) lead to equivalent codes.
Examples

• There is a unique CIS code in length 2 namely R_2 the repetition code of length 2.

• For $n = 2$, the $g_2 = 6$ invertible matrices reduce to three under column permutation: the identity matrix I and the two triangular matrices $T_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, and $T_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

• The generator matrix (I, I) spans the direct sum $R_2 \oplus R_2$, while the two codes spanned by (I, T_1) and (I, T_2) are equivalent to a code C_3, an isodual code which is not self dual. Thus $e_2 = 2 < \frac{g_2}{2!} = 3$.
Shortening

The building up construction is known for binary self-dual codes. In this section, we extend it to CIS codes. We show that every CIS code can be constructed in this way.

Lemma
Given a $[2n, n]$ CIS code C with generator matrix $(I_n|A)$ where A is an invertible square matrix of order n, we can obtain a $[2(n - 1), n - 1]$ CIS code C' with generator matrix $(I_{n-1}|A')$, where A' is an invertible square matrix of order $n - 1$.
Building up construction

Suppose that C is a $[2n, n]$ CIS code C with generator matrix $(I_n|A)$, where A is an invertible matrix with n rows r_1, \ldots, r_n. Then for any two vectors $x = (x_1, \cdots, x_n)$ and $y = (y_1, \cdots, y_n)^T$ the following matrix G_1 generates a $[2(n + 1), n + 1]$ CIS code C_1 with the systematic partition:

$$ G_1 = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & z_1 & x \\ 0 & 1 & 0 & \cdots & 0 & y_1 & r_1 \\ 0 & 0 & 1 & \cdots & 0 & y_2 & r_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & y_n & r_n \end{pmatrix}, \quad (2) $$

where c_i’s satisfy $x = \sum_{i=1}^{n} c_i r_i$ and $z_1 = 1 + \sum_{i=1}^{n} c_i y_i$.

Building up construction
Example

- Let us consider a [6, 3, 3] CIS code C whose generator matrix is given below.

$$G = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{pmatrix}.$$

- In order to apply the building-up construction, we take for example $x = (1, 1, 0)$ and $y = (1, 1, 0)^T$. Then $c_1 = c_2 = 1$, $c_3 = 0$. Hence $z = 1$.

- In fact, we get the extended Hamming [8, 4, 4] code whose generator matrix is given below.

$$G_1 = \begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 1 & 1
\end{pmatrix}.$$
Converse of the building up construction

Proposition
Any $[2n, n]$ CIS code C is equivalent to a $[2n, n]$ CIS code with the systematic partition which is constructed from a $[2(n - 1), n - 1]$ CIS code by using the building up construction.
Proposition

Let $n \geq 2$. Let \mathbf{C} be the set of all $[2n, n]$ CIS codes and let S_{2n} act on \mathbf{C} as column permutations of the codes in \mathbf{C}. Let C_1, \ldots, C_s be representatives from every equivalence class of \mathbf{C} under the action of S_{2n}. Let \mathbf{C}_{sys} be the set of all $[2n, n]$ CIS codes with generator matrix $(I_n|A)$ with A invertible. Suppose that each $C_i \in \mathbf{C}_{sys}$ ($1 \leq i \leq s$). Then we have

$$g_n = \sum_{j=1}^{s} |\text{Orb}_{S_{2n}}(C_j) \cap \mathbf{C}_{sys}|,$$

where $\text{Orb}_{S_{2n}}(C_j)$ denotes the orbit of C_j under S_{2n}.

Counting formula similar to mass formula
Classification of CIS codes of lengths 2, 4

We classify all CIS codes of lengths up to 12 up to equivalence using the building up method. It is easy to see that any CIS code has minimum distance ≥ 2.

- $2n = 2$. It is clear that there is a unique CIS code of length 2, whose generator matrix is $[11]$.

- $2n = 4$. Applying Proposition (building-up) to the repetition code of generator matrix $[11]$, we show that there are exactly two CIS codes of length 4. Their generator matrices are ($I|A_{2,1}$) and ($I|A_{2,2}$), where

\[
A_{2,1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad A_{2,2} = T_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}
\]
Proposition

There are exactly six CIS codes of length 6. Only one code has $d = 3$ and the rest have $d = 2$.

$(l|A)$, where A is one of the following.

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
\end{pmatrix}
\]
Summary: Classification of all CIS codes of lengths up to 12 in the order of sd, non-sd fsd, and none of them

<table>
<thead>
<tr>
<th>2n</th>
<th>$d = 2$</th>
<th>$d = 3$</th>
<th>$d = 4$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 (1+0+0)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2 (1+1+0)</td>
<td>1 (0+1+0)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5 (1+2+2)</td>
<td>4 (0+2+2)</td>
<td>1 (1+0+0)</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>22 (1+9+12)</td>
<td>35 (0+9+26)</td>
<td>4 (0+2+2)</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>156 (2+40+114)</td>
<td>565 (0+87+478)</td>
<td>41 (1+7+33)</td>
<td>195</td>
</tr>
<tr>
<td>12</td>
<td>2099 (2+318+1779)</td>
<td></td>
<td></td>
<td>2705</td>
</tr>
</tbody>
</table>

Recently, Finley Freibert (Ohio Dominican University) in his thesis has classified all CIS codes of length 14 and all CIS codes of length 16 and $d = 4$.
CIS codes of lengths ≤ 130 with record distances

Theorem
There exist optimal or best-known CIS codes of lengths $2n \leq 130$.

<table>
<thead>
<tr>
<th>$2n$</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>2*</td>
<td>2*</td>
<td>3*</td>
<td>4*</td>
<td>4*</td>
<td>4*</td>
<td>4*</td>
<td>5*</td>
<td>6*</td>
<td>6*</td>
<td>7*</td>
</tr>
<tr>
<td>code</td>
<td>dc</td>
<td>dc</td>
<td>~dc</td>
<td>sd</td>
<td>dc</td>
<td>sd</td>
<td>sd</td>
<td>~dc</td>
<td>~dc</td>
<td>nfsd</td>
<td>id</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$2n$</th>
<th>102</th>
<th>104</th>
<th>106</th>
<th>108</th>
<th>110</th>
<th>112</th>
<th>114</th>
<th>116</th>
<th>118</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>code</td>
<td>bk</td>
<td>bk</td>
<td>qdc</td>
<td>bk</td>
<td>bk</td>
<td>bk</td>
<td>bk</td>
<td>sc</td>
<td>sc</td>
<td>sd</td>
</tr>
</tbody>
</table>
Long CIS codes

We begin by a well-known fact from MacWilliams-Sloane.

Lemma
The number of invertible n by n matrices is $\sim c2^{n^2}$, with $c \approx 0.29$.

Denote by $B(n, d)$ the number of matrices A such that d columns or less of (I, A) are linearly dependent. A crude upper bound on this function can be derived as follows.

Lemma
The quantity $B(n, d)$ is $\leq M(n, d)$ where

$$M(n, d) = \sum_{j=2}^{d} \sum_{t=1}^{j-1} \binom{n}{j-t} \binom{n}{t} t2^{n(n-1)}.$$
CIS codes are asymptotically good

Denote by $H(x) = -x \log_2 x - (1 - x) \log_2 (1 - x)$ the binary entropy function.

Lemma
The quantity $M(n, d)$ is dominated by $2^{n^2 - n} 2^{2nH(\delta)}$ when $d \sim 2\delta n$ with $0 < \delta < 1$.

Proposition
For each δ such that $H(\delta) < 0.5$ there are long CIS codes of relative distance δ.

Proof:
Consider (I, A) as the parity check matrix of the CIS code and combine the above lemmas to ensure that, asymptotically, $|GL(n, 2)| >> B(n, d)$ showing the existence of a CIS code of distance $> d$, for n large enough.
Higher-order CIS codes

- The generator matrix of a $[tk, k]$ code is said to be in **systematic form** if these columns are at the first k positions, that is, if it is blocked as $(I_k|A)$ with I_k the identity matrix of order k.

- We call a systematic code of length tk which admits t pairwise disjoint information sets a **t-CIS (unrestricted) code**.

- Therefore, 2-CIS codes mean the above CIS codes.

A pair \((F_1, F_2)\) of permutations of \(\mathbb{F}_2^k\) forms a Correlation Immune Pair (CIP) of strength \(d\) if and only if for every \((a, b, c)\) such that \(a, b, c \in \mathbb{F}_2^k, a \neq 0\), and
\[w_H(a) + w_H(b) + w_H(c) \leq d, \]
we have \(b \cdot F_1(a) = 0\) or \(c \cdot F_2(a) = 0\), equivalently \(W_{F_1}(a, b) = 0\) or \(W_{F_2}(a, c) = 0\).

It expresses the fact that the leakage squeezing with two masks (i.e., \(t = 3\) shares) and two permutations \(F_1\) and \(F_2\) allows to resist high-order attacks of order \(d\).

We here give it the name of CIP of strength \(d\).
Equivalent form of CIP

The definition of a CIP of strength d is equivalent to Condition (8) in the below reference:

$$\forall a \in \mathbb{F}_2^k, a \neq 0, \exists q, r \text{ such that}$$

$w_H(a) + q + r = d - 1,$

$$\forall b \in \mathbb{F}_2^k, w_H(b) \leq q \implies \hat{b} \cdot F_1(a) = 0,$$

$$\forall c \in \mathbb{F}_2^k, w_H(c) \leq r \implies c \cdot F_2(a) = 0.$$

We are now ready for the coding theoretic characterization of CIP.

Theorem
If F_1, F_2 are permutations of \mathbb{F}_2^k then they form a CIP of strength d if and only if the systematic code of length $3k$ and size 2^{2k}

$$C(F_1, F_2) = \{(x + y, F_1(x), F_2(y)) | x, y \in \mathbb{F}_2^k\}$$

(4)

has dual distance at least $d + 1$.
Theorem (Carlet, Danger, Guilley, Maghrebi)
If \(F_1, F_2 \) are linear permutations of \(\mathbb{F}_2^k \), then they form a CIP of strength \(d \) if and only if the \([3k, k]\) linear code
\[
\mathcal{C}(F_1, F_2) = \{(u, G_1(u), G_2(u)) | u \in \mathbb{F}_2^k\}
\]
is 3-CIS and has minimum distance at least \(d + 1 \).
Here \(G_1 = (F_1^*)^{-1}, G_2 = (F_2^*)^{-1} \) where \(F^* \) denotes the adjoint operator of \(F \), that is, the operator whose matrix is the transpose of that of \(F \).

Proof
The code \(\mathcal{C}(F_1, F_2) \) being the set of words \((x + y, F_1(x), F_2(y))\), with \(x, y \in \mathbb{F}_2^k \), its dual \(\mathcal{C}^\perp \) is the set of words \((u, v, w)\) such that
\[
(x + y) \cdot u + F_1(x) \cdot v + F_2(y) \cdot w
= x \cdot (u + F_1^*(v)) + y \cdot (u + F_2^*(w))
= 0 \text{ for every } x, y \in \mathbb{F}_2^k.
\]
Hence \(\mathcal{C}^\perp \) is the set of words \((u, v, w)\) such that \(u = F_1^*(v), u = F_2^*(w) \) so that
\[
v = (F_1^*)^{-1}(u) = G_1(u), w = (F_2^*)^{-1}(v) = G_2(u). \text{ The result follows.}
\]
Correlation Immune t-uple (t-CI) of strength d

More generally we make the following definition for $t \geq 2$. The t-uple F_1, \cdots, F_t of permutations of \mathbb{F}_2^k form a Correlation Immune t-uple (t-CI) of strength d if and only if for every (a_0, \cdots, a_t) such that $a_0 \neq 0$ and $w_H(a_0) + \cdots + w_H(a_t) \leq d$, we have that

$$\prod_{i=1}^{t} \widehat{a_i \cdot F_i(a_0)} = 0.$$
t-CIS Partition Algorithm:

An algorithm to determine if a given linear code is t-CIS.

Input: Begin with a binary \([tk, k]\) code \(C\).

Output: An answer of “Yes” if \(C\) is t-CIS (along with a column partition) and an answer of “No” if not.

1. Let \(\{l_1, \ldots, l_t\}\) be a set of labeled disjoint independent subsets of \(M\). (Note that each \(l_i\) \((1 \leq i \leq t)\) can be randomly assigned to each have order 1, or one may be given the first \(k\) indices of a standard form matrix \(G\).)

2. Select \(x \in M \setminus \bigcup_{1 \leq i \leq t} l_i\).

3. While \(\bigcup_{1 \leq i \leq t} l_i \subsetneq M\) do:
 3.1 Initialize \(S_0 := M\). For \(j > 0\), recursively define \(S_j := \text{span}(l_{j'} \cap S_{j-1})\), where \(j' = ((j - 1) \mod t) + 1\). Initialize \(j := 0\).
 3.2 For the current value of \(j\) check that \(|S_j| \leq t \cdot \text{rank}(S_j)\). If the inequality is false (it is immediately clear that Edmonds’ Theorem is violated), then exit the while loop and output the set \(S_j\) with an answer of “No.”
 3.3 If \(x \in S_j\), then set \(j := j + 1\) and go back to b).
 3.4 If \(x \notin S_j\), then check if \(l_{j'} \cup \{x\}\) is independent. If so then replace \(l_{j'}\) with the larger independent set and repeat the while loop with a new \(x \in M \setminus \bigcup_{1 \leq i \leq t} l_i\).
 3.5 If \(l_{j'} \cup \{x\}\) is dependent, then find the unique minimal dependent set \(C \subset l_{j'} \cup \{x\}\) (accomplished by solving the matrix equation associated with finding the linear combination of columns in \(l_{j'}\) that sum to \(x\)).
 3.6 Select any \(x' \in C \setminus S_{j-1}\) and replace \(l_{j'}\) with \(l_{j'} \cup \{x\} \setminus \{x'\}\), then set \(x := x'\) and repeat the while loop.

4. End while loop. If the while loop was not exited early, then output the partition \(\{l_1, \ldots, l_t\}\) of \(M\) and answer “Yes.”
The table captions are as follows.

- $bk =$ obtained by the command $BKLC(GF(2), n, k)$ from Magma.
- $bk^* =$ same as bk with successive zero columns of the generator matrix replaced in order by successive columns of the identity matrix of order k. Trivially the generator matrix of bk has $< k$ zero columns.
- $qc =$ quasi-cyclic.

The following tables show that all 3-CIS codes of dimension 3 to 85 have the best known minimum distance among all linear $[n, k]$ codes, and in fact the best possible minimum distance for $n \leq 36$.

<table>
<thead>
<tr>
<th>n</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>27</th>
<th>30</th>
<th>33</th>
<th>36</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>d</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>code</td>
<td>qc</td>
<td>qc</td>
<td>bk</td>
<td>bk</td>
<td>bk</td>
<td>bk*</td>
<td>bk*</td>
<td>bk</td>
<td>bk</td>
<td>bk</td>
<td>bk*</td>
<td>bk*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>123</th>
<th>126</th>
<th>129</th>
<th>132</th>
<th>135</th>
<th>138</th>
<th>141</th>
<th>144</th>
<th>147</th>
<th>150</th>
<th>153</th>
<th>156</th>
<th>159</th>
<th>162</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
</tr>
<tr>
<td>d</td>
<td>29</td>
<td>31</td>
<td>32</td>
<td>?</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>code</td>
<td>bk*</td>
<td>bk*</td>
<td>bk*</td>
<td>?</td>
<td>bk*</td>
<td>bk*</td>
<td>bk*</td>
<td>bk</td>
<td>bk</td>
<td>bk*</td>
<td>bk*</td>
<td>bk*</td>
<td>bk*</td>
<td>bk</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>165</th>
<th>168</th>
<th>171</th>
<th>174</th>
<th>177</th>
<th>180</th>
<th>183</th>
<th>186</th>
<th>189</th>
<th>192</th>
<th>195</th>
<th>198</th>
<th>201</th>
<th>204</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>d</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>38</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>code</td>
<td>bk*</td>
<td>bk*</td>
<td>bk*</td>
<td>bk*</td>
<td>bk*</td>
<td>bk</td>
<td>bk*</td>
<td>bk*</td>
<td>bk</td>
<td>bk</td>
<td>bk</td>
<td>bk</td>
<td>bk</td>
<td>bk</td>
</tr>
</tbody>
</table>

We have checked that the best known linear $[132, 44, 32]$ code in the Magma database is not 3-CIS.
Optimal t-CIS codes with $5 \leq t \leq 256$

- For $1 \leq k \leq \lfloor 256/t \rfloor$ except for $k = 37$, we have checked that there are 4-CIS $[tk, k]$ codes that are either bk or bk^*. We have checked that the best known linear $[148, 37, 41]$ code in the Magma database is not 4-CIS.
- For $5 \leq t \leq 256$ and $1 \leq k \leq \lfloor 256/t \rfloor$, all the best known codes in the Magma database have been checked. We conclude that there are t-CIS $[tk, k]$ codes that are either bk or bk^*.
Conclusion

We show the following.

• Introduce a new class of CIS codes.
• In length $2n$ these codes are, when in systematic form, in one to one correspondence with linear bijective vectorial Boolean functions in n variables.
• Classify CIS codes of lengths ≤ 12 and give optimal or best known CIS codes of lengths ≤ 130 and discuss an asymptotic bound.
• Introduce t-CIS codes of rate $1/t$ with t pairwise disjoint information sets and find optimal t-CIS codes.
For the future work,

- More generally, does the CIS property involves an upper bound on the minimum distance?
- Finally, it is worth studying CIS codes over other fields than \mathbb{F}_2, and also over \mathbb{Z}_4.
- More constructions and classifications of t-CIS codes are desired.
- For a connection of multiply constant-weight codes with PUFs, see ref [3].
References

