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Silicon “Biometric” 

Technology

Each of us is unique and different �                � and so are silicon chips.

PUFs = Physically Unclonable Functions



Technische Universität Berlin

4

Formal Definition by „Strong PUFs and their pyhsical …“ @ ACM WESS 2013

PFS = Physical Function System
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Formal Definition by „Strong PUFs and their pyhsical …“ @ ACM WESS 2013
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Our Definition
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Arbiter PUF

from G. Edward Suh, Srinivas Devadas: Physical Unclonable Functions for Device 
Authentication and Secret Key Generation. DAC 2007: 9-14.

Verayo from US
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Arbiter PUF

from G. Edward Suh, Srinivas Devadas: Physical Unclonable Functions for Device 
Authentication and Secret Key Generation. DAC 2007: 9-14.

Verayo from US

D1
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D1
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PAC learning

• Probably approximately correct learning (PAC learning) is 

a framework for mathematical analysis of machine 

learning.

• The learner receives samples and selects a generalization 

function (called the hypothesis) from a certain class of 

possible functions. 

• The goal is that, with high probability (the "probably" 

part), the selected function will have low generalization 

error (the "approximately correct" part).

• The learner must be able to learn the concept given any 

arbitrary approximation ratio, probability of success, or 

distribution of the samples.

PAC learning
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PAC learning PAC learning

• Alg. is given samples S = {…, (x, y), …} presumed to 

be drawn from some distribution D over instance 

space X = {0, 1}n, labeled by some target function f.

• Alg. does optimization over S to produce some 

hypothesis h.

• Goal is for h to be close to f over D.

• Allow failure with small prob. δδδδ (to allow for 

chance that S is not representative).
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• A concept class is a set of functions, together with a 

representation of them.

• Alg. A PAC-learns concept class C by hypothesis class H

if for any target f in C, any dist. D over X, any εεεε, δδδδ > 0, 

• A uses at most poly(n, 1/ε, 1/δ, size(f)) examples 

and running time.

• With probability 1-δ, A produces h in H of error at 

most ε.

accuracy confidence

PAC learning
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Heuristic Results!

Not at all a proper 
mathematical 
proof of 
Learnability.
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PAC learning of concept class arbiter PUFs Main Theorem

For the class of arbiter PUFs of length n and some (PUF inherent) 

value M we will prove the existence of a PAC learner LLLL with:

Learning 

algorithm

εδ

Oracle EX
h

�� ∈ �
0 � � � �	
�

��� , � �� �

n M

Theorem 1. Let � ≔ �	 ��� that represents the number f live states, then L returns a 

hypothesis h after at most ��� � ������ log �
� � ���� calls to EX, and with probability 

at least  �1 �  
��, h is an ε/2-approximation of !�

A labeled example is the pair �, � � and the set of positive examples (i.e., � � " 1) 

is denoted by !�, whereas the set of negative examples is !#.
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DFAs

A deterministic finite automaton M is a 5-tuple, (Q, Σ, δ, q0, F), 

consisting of

•a finite set of states (Q)

•a finite set of input symbols called the alphabet (Σ)

•a transition function (δ : Q × Σ → Q)

•a start state (q0 ∈∈∈∈ Q)

•a set of accept states (F ⊆⊆⊆⊆ Q)

Let w = a1a2 ... an be a string over the alphabet Σ. The automaton 

M accepts the string w if a sequence of states, r0,r1, ..., rn, exists in 

Q with the following conditions:

1.r0 = q0

2.ri+1 = δ(ri, ai+1), for i = 0, ..., n−1

3.rn ∈∈∈∈ F.

Deterministic Finite Automata
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Discretization of the delay of an arbiter PUF

en

c[1] = 0 c[2] = 1 c[i] = 0 c[n] = 1
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• AAAAn corresponds to the total propagation delay at the last stage 

and will have the mean n µµµµ and the standard deviation            .

• Thus, all statistically relevant delay values lie whp. in a limited 

interval, whose length is               (i.e. within three standard 

deviation away from the mean value n µµµµ ).

• Now, the arbiter at the end of the chain has a limited precision 

γγγγ for comparing the total propagation delays of two paths. 

Hence, it can only compare two signals with a delay above the 

threshold γγγγ. 

Discretization of the delays of an arbiter PUF

ω -

.ω -
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• Definition of a mapping /: 	1 → 3:	

• As a result, all real delay values lying within three 

standard deviation away from the mean value nμ

are mapped to integer values, ranging from 0 to

• The number of delay values, which can be observed 

and compared by the arbiter is limited to M+1

4 "	 .ω -
γγγγ

Discretization of the delays of an arbiter PUF

∀α7 ∈ -μ � 8ω -, -μ � 8ω - : 	/ α7 " α7 � �-μ � 8ω -�	
γ
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• Mapping of real-valued        to integer values 

(:�,;) lying between 0 and M

•corresponding to the minimum and maximum 
real values

• Response of the arbiter

• “1” if α<,� � α<,� = 1
• “0” if α<,� � α<,� = 1
•metastable condition, if α<,� �  α<,� " 0.

,i jα

, ,, [0, ]i j i jZ Mα α∈ ∈

Discretization of the delays of an arbiter PUF
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Building a DFA out of an arbiter PUF

• challenge-response functionality of a PUF [1]

• the mapping >?@A: C→	Y
• >?@A � " B	,	C is the set of challenges, and Y is the set of 

responses, C" C0,1D<and Y " 0,1 .	

• For an arbiter PUF:

• C" C0,1D<and Y " 0,1 .	Let us F?@A ≔ � ∈ G|>?@A � " 1
• F?@A ⊆ C0,1D< ⊆ Σ∗ , where Σ={0,1}

• F?@A : the accepted language of a certain automaton that 

accepts those strings � ∈ G, whose length is n and 

>?@A � " 1
[1] Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State of the Art and 
Future Research Directions. In: Towards Hardware-Intrinsic Security, pp. 3{37. Springer (2010)



Technische Universität Berlin

28

Building a DFA out of an arbiter PUF
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Shrinking the DFA of exponential size Collisions

• Size of the DFA based upon :�,; : exponential in n

•This representation of an arbiter PUF cannot be learned 
in polynomial time at all! BUT…

• The number of possible values of :�,; 	�1 � � � �	, 1 �
K � 2� : 4� M
•The number of nodes in each level: �4 � M�N
•Total number of distinguishable states is limited by

O�- 4� M N�

The total delay values can be 

mapped to [0,M]
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Shrunk DFA representing an arbiter PUF
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• For the polynomial-size DFA we can now describe a 

PAC-learning algorithm to efficiently learn the 

challenge-response behavior of a given arbiter PUF.

• A PAC learner for DFAs is given by Dana Angluin

• A given PUF provides the learner with access to the 

Oracle EX := fPUF .

Learning an unknown regular language from EX
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Value M

• The maximum delay deviation of each inverter 

used in the PUF chain: 9 ps [1]

• For both cases, i.e., direct and crossed paths on 
average for a Xilinx Virtex-5 FPGA

• For XC5VLX110 chips (Xilinx Virtex-5 family) Delay 
deviation: smaller than 10 ps [2]

• Let 6ω " 10	QR, n " 128, ɣ " 2.5	QR	then 

4 "	 .W -
γγγγ

=46 XYZ[	 \ " N]N, ^_N	 ≪ O�NMN]�

[1] Mahmoud, A., Rührmair, U., Majzoobi, M., Koushanfar, F.: Combined Modeling and Side Channel Attacks
on Strong PUFs. Tech. rep., Cryptology ePrint Archive: Report 2013/632, 2013, https://eprint. iacr.
org/2013/632 (2013).
[2] Majzoobi, M., Koushanfar, F., Devadas, S.: FPGA PUF Using Programmable Delay lines. In: Information
Forensics and Security (WIFS), 2010 IEEE International Workshop on. pp. 1{6. IEEE (2010).
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Conclusion

For the class of arbiter PUFs of length n and some (PUF inherent) 

value M the following holds:

Theorem 1. Let � ≔ �	 ��� that represents the number f live states, then L returns a 

hypothesis h after at most ��� � ������ log �
� � ���� calls to EX, and with probability 

at least  �1 �  
��, h is an ε/2-approximation of !�

Learning 

algorithm

εδ

Oracle EX
h

�� ∈ �
0 � � � �	
�

��� , � �� �

n M
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Thank you for your attention!

Questions?


