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PUFs = Physically Unclonable Functions
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S - I i co n {} B i 0 m et ri c” No two silicon chips, even with the same design, technology and fabrication process,
I are created alike. In the manufacturing process, there are unavoidable and

uncontrollable variations at a molecular scale that make each silicon chip unique.

Technology

Each of us is unique and different ... ... and so are silicon chips.



Formal D

A Physical Function System PFS is a probabilistic proce-
dure which takes as mput a challenge € A and generates
an output z € Z

P robustness

challenge x = response y — outputz <—» unclonability

4 unpredictability
physical function system (PFS)

The Physical Func-
tion System is thus defined as PFS(z, h) — (z,h") such that
helper data is an empty string h = € in setup mode, and

. . ‘ 7 .
the mmput helper data is returned unchanged A = h' 1n re-
construction mode. The important properties of the above
Physical Function System are formally defined as follows:

PFS = Physical Function System



| "I-'ﬁbrr'nal Def|n|on by ,,Strong PUFs and their pyhsical ...“ @ ACM WESS 2013

1. Robustness. Robustness of a PFS is represented by

the probability that for a given PUF, the output gen-
erated by reconstruction phase matches the value gen-
erated 1n setup phase using its corresponding helper
data h.

2. Physical Unclonability. Physical Unclonability re-
lates to the probability that an adversary can build (or
find) a PFS” which shows the same behavior as another
PFS. By the same behavior we mean that PFS’ gener-
ates the same output as PFS providing that PFS’ uses
the helper data generated by PFS in setup mode.

3. Unpredictability. Unpredictability is another prop-
erty of a Physical Function System which i1s impor-
tant specially for strong PUFs. Roughly speaking,
unpredictability 1s related to the probability that an
adversary wins a predicting experiment such that he
predicts the output corresponding to a new challenge
from previously observed challenge-output pairs.



‘ "Cur' Definitlo}i

PUFs are physical input to output mappings, which are most often entangled
with the intrinisc silicon properties of a chip. The input and output of a PUF
are called challenge and response, respectively. A PUF can be described by
the function fpyp : C — Y where fpyp(c) = y, C = {0,1}" being the set of
challenges, and Y = {0,1} the set of responses, c.f. [12]. PUFs in general have a
set of crucial properties, c.f. [12].

12. Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State
of the Art and Future Research Directions. In: Towards Hardware-Intrinsic Secu-
rity, pp. 3-37. Springer (2010)
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An arbiter PUF delay circuit. The circuit
creates two delay paths with the same layout length
for each input X, and produces an output Y based
on which path is faster.

from G. Edward Suh, Srinivas Devadas: Physical Unclonable Functions for Device
Authentication and Secret Key Generation. DAC 2007: 9-14.
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from G. Edward Suh, Srinivas Devadas: Physical Unclonable Functions for Device
Authentication and Secret Key Generation. DAC 2007: 9-14.



PAC learning PAC learning

Probably approximately correct learning (PAC learning) is
a framework for mathematical analysis of machine
learning.

 The learner receives samples and selects a generalization
function (called the hypothesis) from a certain class of
possible functions.

* The goal is that, with high probability (the "probably"
part), the selected function will have low generalization
error (the "approximately correct” part).

 The learner must be able to learn the concept given any
arbitrary approximation ratio, probability of success, or
distribution of the samples.
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PAC learning PAC learning

* Alg. is given samples S ={..., (x, y), ...} presumed to
be drawn from some distribution D over instance
space X = {0, 1}", labeled by some target function f.

* Alg. does optimization over S to produce some
hypothesis h.

* Goalis for h to be close to f over D.

 Allow failure with small prob. 6 (to allow for
chance that S is not representative).



PAC learning

* A concept class is a set of functions, together with a
representation of them.

* Alg. A PAC-learns concept class C by hypothesis class H
if for any target fin C, any dist. D over X, any &, 0 > 0,

* A uses at most poly(n, 1/g, 1/, size(f)) examples
and running time.

* With probability 1-0, A produces h in H of error at
most ¢&.




*Why PAC learning of arbiter PUFs?



PUF Modeling Attacks:
An Introduction and Overview
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Steps in a Modeling Attack T

* Adversary collects a subset of all CRPs

* Derivesa simulationalgorithm that predicts or extrapolates
the PUF-behavioron all CRPs

S
‘ >

CRP-Space

CRP-Space

* Weapon of choice: Machine learning (ML) techniques!
— Typical supervised ML problem...

* Usually, certain assumptions about the internal functionality of the
attacked PUF are made to speed up ML

— Some ,internal model” of the PUF is assumed




Arbiter PUFs and Their Internal Model: TUTI
Linear Additive Delay Model (LADM)
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* LADM: Overall delay = sum of internal delays in subcomponents




Linear Additive Delay Model Cont. TUTI

* LADM in mathematical terms:

R(C,) = Func (Dlup-up, asep Dlngw.bw, Cl)

\ )
T

D (with dim(D) =4x128=512)

* MA tries to derive D from known subset of CRPs



Results for Arbiter PUFs on FPGA/ASIC Data

LR oN ArB PUFs OF BITLENGTH 64 YOR FPGA AND ASIC DAra,
COLLECTID UNDER STABRLE TIMPERATURE AND Muority VorinG

TABLE IX

ML CRP Prediction CRPs Training
Method Source Rate Time

. > 05% 650 0.12 sec

LR FPGA > 9% 6500 0.83 sec

" > 95% 650 0.11 sec

LR ASIC > 90% 6500 0.76 sec
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Ruhrmairetal.,
IEEE T-IFS, 2013



PAC Iearnllngdof concept class arbiter PUFs Main Theorem

For the class of arbiter PUFs of length n and some (PUF inherent)
value M we will prove the existence of a PAC learner £ with:

Theorem 1. Let N := 0 (nM?) that represents the number f live states, then L returns a
hypothesis h after at most O(N + (—) (N log( ) + N?)) calls to EX, and with probability

at least (1 — E)’ h is an €/2-approximation of S*

4 )
(ci, p(ci)) : h
Oracle EX > Learemg —
¢c; EC algorithm
0<i<Tma L J

A labeled example is the pair (c, p(c)) and the set of positive examples (i.e., p(c) = 1)
is denoted by S, whereas the set of negative examples is S°.



Representing arbiter PUFs by DFAs



rministic Finite Automata

A deterministic finite automaton M is a 5-tuple, (Q, 2, 6, q,, F),
consisting of

*a finite set of states (Q)

*a finite set of input symbols called the alphabet ()

*a transition function (6 : Q x 2 = Q)

*a start state (g, € Q)

a set of accept states (F € Q)

Let w =a,a, ... a, be a string over the alphabet . The automaton
M accepts the string w if a sequence of states, r,r,, ..., r,, exists in
Q with the following conditions:
1l.ro=q,

2.r;,,;, =98(r,a,,) fori=0,..., n-1

3.r, €F.




eDiscretization of the delays of an arbiter PUF
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Fig.2: The distribution of B; (blue) with the mean p and deviation w. Four ex-
amples of possible realization of B; are (3; 1, 8; 2, 3,3, and (3; 4, which correspond
to four delays at the i'" stage. The distribution of total propagation delay from
the enable point to the outputs of last stage in an arbiter PUF with length n
(red), with mean nu and deviation y/nw.



* »# corresponds to the total propagation delay at the last stage
and will have the mean n 1z and the standard deviation w+/n .

* Thus, all statistically relevant delay values lie whp. in a limited
interval, whose length is 6w+/n (i.e. within three standard
deviation away from the mean value n ).

* Now, the arbiter at the end of the chain has a limited precision
y for comparing the total propagation delays of two paths.
Hence, it can only compare two signals with a delay above the
threshold 7.



‘\\\
n of the delays of an arbiter PUF

* Definition of a mapping f: R — Z:

o — (nu— 3wyn)

Va € [np — 3wvn,np + 3wyvn]: f(a) =

Y

* As aresult, all real delay values lying within three
standard deviation away from the mean value nu
are mapped to integer values, ranging from 0 to

" — [6(»\/5
Y

* The number of delay values, which can be observed
and compared by the arbiter is limited to M+1




Dlscretlzatlonof the delays of an arbiter PUF

 Mapping of real-valued « ; to integer values
(«; ;) lying between 0 and M

e corresponding to the minimum and maximum
real values

o, €Z, a, €[0,M]

 Response of the arbiter
'“1" |f O(n,1 - (xn’z 2 1
.“O’, if (xn’z - (Xn’1 2 1

- metastable condition, if |a,, ; — o, 2| = 0.



*Building a DFA out of an arbiter PUF



Buildmga%DFA out of an arbiter PUF

e challenge-response functionality of a PUF [1]

- the mapping fpyr: € =%
* fpur(c) =y, €is the set of challenges, and 7% is the set of
responses, ¢= {0,1}"*and% = {0,1}.

 For an arbiter PUF;:
¢ é= {O,l}nand% — {0,1} Let us LPUF = {C S lePUF(C) — 1}
*Lpyr € {0,1}* € ¥*, where 2={0,1}

* Lpyr : the accepted language of a certain automaton that
accepts those strings ¢ € C, whose length is n and

frur(c) =1

[1] Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State of the Art and
Future Research Directions. In: Towards Hardware-Intrinsic Security, pp. 3{37. Springer (2010)



Building a DFA out of an arbiter PUF

F = {Qn,k

9, =(a,,,a,,)u,,n) sta, —a,,>1,1<k<2"}
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Shrl‘nklng the DFA of exponential size Collisions

* Size of the DFA based upon ¢; ; : exponential in n

* This representation of an arbiter PUF cannot be learned
in polynomial time at all! BUT...

The total delay values can be
mapped to [0,M]

* The number of possible valuesof ¢; ; (1<i<n,1<
j<2) :M+1
» The number of nodes in each level: (M + 1)
 Total number of distinguishable states is limited by
o(n(M + 1)%)



c=0,1 c=0,1




PAC learning of arbiter PUFs
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Learning an unknown regular language from EX

* For the polynomial-size DFA we can now describe a
PAC-learning algorithm to efficiently learn the
challenge-response behavior of a given arbiter PUF.

A PAC learner for DFAs is given by Dana Angluin

THEOREM 7. If n is the number of states in the minimum dfa for
the unknown regular set U, then LY terminates after O(n+ (1l/e)
(nlog(1/8)+n?)) calls to the EX( ) oracle. Moreover, the probability that
the acceptor output by LY is an e-approximation of U is at least 1 — 0.

INFORMATION AND COMPUTATION 75, 87-106 (1987)
A given PUF provides the learner with access to the
Oracle EX = fp -



Value M

« The maximum delay deviation of each inverter
used in the PUF chain: 9 ps [1]

* For both cases, i.e., direct and crossed paths on
average for a Xilinx Virtex-5 FPGA

« For XC5VLX110 chips (Xilinx Virtex-5 family) Delay
deviation: smaller than 10 ps [2]

* Let 6w =10 ps,n =128,y = 2.5 ps then

M = [6‘*’ﬂ=45 » size (A) = 282,752 « 0(2128)
y

[1] Mahmoud, A., Rihrmair, U., Majzoobi, M., Koushanfar, F.: Combined Modeling and Side Channel Attacks
on Strong PUFs. Tech. rep. Cryptology ePrint Archive: Report 2013/632, 2013, https://eprint. iacr.
org/2013/632 (2013).

[2] Majzoobi, M., Koushanfar, F, Devadas, S.: FPGA PUF Using Programmable Delay lines. In: Information
Forensics and Security (WIFS), 2010 IEEE International Workshop on. pp. 1{6. IEEE (2010).




Conclusion



Conclu5|on

For the class of arbiter PUFs of length n and some (PUF inherent)
value M the following holds:

Theorem 1. Let N := 0 (nM?) that represents the number f live states, then L returns a
hypothesis h after at most O(N + (—) (N log( ) + N?)) calls to EX, and with probability

at least (1 — E)’ h is an €/2-approximation of S*

(¢ P(Ci)l Learning h
c; EC algorithm
0<i<Tmny \U Yy

Oracle EX




Thank you for your attention!

Questions?
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