

Method Taking into Account Process Dispersion to Detect Hardware Trojan Horse by Side-Channel

X. Ngo, Z. Najm, S. Guilley, S. Bhasin, J.-L.Danger

PROOFS'14, Busan, South Korea

Presentation Outline

Introduction to HTH and its detection

Proposed HTH Detection model

Setup and experimental results

Proposed HTH Detection model Setup and experimental results

Hardware Trojan Introduction

Hardware Trojan Horse (HTH) Definition

- Malicious modifications in Integrated Circuits (ICs).
- To extract a secret, alter the behaviour, ...
- HTH was born because of outsourcing design and fabrication process.

Hardware Trojan Structure

Any HTH is composed of two main components

- Trigger: is the part of HTH used to activate the malicious activity.
- Payload: is the part of HTH used to realize / execute the malicious activity.

Proposed HTH Detection model Setup and experimental results

Hardware Trojan Taxonomy

- Classify all type of HTH ^a
- Help to develop suitable detection techniques for each HTH type

^aTehranipoor et al. [KRRT10]

TELECOI ParisTec

Proposed HTH Detection model Setup and experimental results

Trust in the design

HTH insertion in the fabrication flow of an ASIC.^a

^aChakraborthy et al. [CNB09]

Proposed HTH Detection model Setup and experimental results

Hardware Trojan Detection

Classification of HTH Detection techniques

- Destructive reverse engineering: try to reconstruct netlist and layout of ICs.
- Invasive methods: try to (prophylactically) modify the design of IC to prevent the HTH or to assist another detection technique.
- Non-Invasive methods: are done by comparing the performance characteristics of an IC, possibly with a known good copy also known as the "golden circuit".

Proposed HTH Detection model Setup and experimental results

Examples

- To extend the state space
 - in two operating modes: Normal and Transparent mode.^a
 - To consider either Q or QN of D flip-flops.^b
- To insert dummy flip-flops into IC logic.^c
- To add logic that will make the detection easier by using side-channel analysis.^d

^aChakraborty et al. [CB09] ^bBanga et al. [BH11] ^cSalmani et al. [STP09] ^dLin et al. [LKG⁺09]

Proposed HTH Detection model Setup and experimental results

Non-Invasive Methods

Non-Invasive methods can be done either at **runtime** or during the **test phase**.

Non-invasive methods at runtime

- Use of OS features (Software approach).^a
- Real-time security monitors: (DEFENSE.^b)

^aBloom et al. [BNS09] ^bAbramovivi et al. [AB09]

Proposed HTH Detection model Setup and experimental results

Non-Invasive Methods

Non-invasive methods at test phase

Logic Testing:

- Compare the functionality of the design of the circuit with the implemented circuit.
- To test rare occurrences rather than correctness.^a

Side Channel analysis Examples:

- To use power supply transient signal analysis.^b
- ► To magnify the side-channel "sustained vector technique".^c

^aChakraborthy et al [CWP⁺09] ^bRad et al [RPT08] ^cBanga et al [BH09]

Rationale

Side-Channel Detection Method Advantages

- Non-invasive method.
- Can detect almost HTH types, even untriggered.

Motivation

- Many Side-channel methods are based on power measurement or simulation results.
- Previous work did not take into account process variation and HTH placement.

Proposed detection Model

To take advantage of extra "load" due to HTH intrusion

- The HTH impact is an increase of current
- This effect comes from greater mean gate load,
- Which is mainly due to due to the complexity of the Trigger block
- Use of EM observation (spatial accuracy)
- $T^{\circ}C$ and V_{dd} should remain constant

Proposed detection Metrics

The metrics is a false negative and false positive probability, whose equation is:

$$P_{\text{false negative}} = P_{\text{false positive}} = \int_{-\infty}^{0} \frac{1}{\sqrt{2\pi\sigma^2}} \cdot \exp{-\frac{(x-\frac{\mu}{2})^2}{2\sigma^2}} \,\mathrm{d}x$$

Model flaws

The model is impacted by side effects

- $T^{\circ}C$ and V_{dd}
- Process variation
- HTH size and placement

 \Rightarrow we proposed to study theses potential flaws on the model, except the $T^{\circ}C$ and V_{dd} which are kept constant.

Setup description

HTH structure

- Trigger part: 8th computation round and N least significant bits (LSB) of 128 bits at the output of AddRoundKey are at "1".
- Payload part:an XOR gate that will inject a fault in the inner eighth round when HT is activated.

HTH with Different Sizes

- Trojan 1: HTH with the parameter N = 32, around 0.5 % of the original circuit.
- Trojan 2: HTH with the parameter N = 64, around 1 % of the original circuit.
- **Trojan 3**: HTH with the parameter **N = 128**, around **1.7** % of the original circuit.

HTH with different Placement

- **Placement 1**: Trojan 3 placed **within** the boundary of AES crypto-processor.
- Placement 2: Trojan 3 placed outside the boundary of AES crypto-processor in a far-off corner of the FPGA.
- Placement 3: Trojan 3 placed outside the boundary of AES crypto-processor and dispersed over the FPGA.

Experimental Setup

Test platform setup

- 10 FPGA Virtex5LX30 for process variation evaluation.
- FF324 Virtex 5 board used to change the device under test.
- Frequency: 24 Mhz.
- ► EM measurement using Langer RFU-5-2 probe.
- Traces averaged 1000 times using Agilent 54853A.

HTH insertion

HTHs are inserted after the original circuit was placed and routed to minimize its impact on original circuit.

Figure : P/R for (a) AES 128 bit without HTH and (b) with HTH 1.7%

EM Leakage Trace

Impact of Process Variation on EM Measurement

- Calculate the golden mean trace over 10 FPGAs.
- In green: the difference between the golden circuit traces with the mean trace.
- In red: the difference between the HTH test circuit traces with the mean trace.

HTH Detection Using Sum of Absolute Differences

- Calculate the EM absolute differences.
- Calculate the sum of these differences.

	HTH 1 (0.5%)	HTH 2 (1%)	HTH 3 (1.7%)
1st Approach	43%	34%	9%

Table : False negative detection probability.

HTH Detection Using Threshold Technique

- Keep only the interesting points of EM differences.
- Re-calculate the sum of absolute differences of the interesting points.

	HT 1 (0.5%)	HT 2 (1%)	HT 3 (1.7%)
2nd approach	24%	0.017%	0.011%

Table : False negative detection probability with the Threshold technique.

Impact of HTH Placement

- The probe position affects directly to the result.
- The most distant HTH is more detectable (more buffers and lines) but has limited impact

Conclusion

Conclusion

- Proof of concept study for HTHs detection by EM measurement.
- Model based on the mean of EM activity
- HTH of different sizes: HTH greater than 1% can be detected with a false negative rate of 0.017%.
- Detection taking into account the process variation
- HTH placement has a little impact on HTH detection.

Références

[AB09]	Miron Abramovici and Paul Bradley. Integrated circuit security: new threats and solutions. In Frederick T. Sheldon, Greg Peterson, Axel W. Krings, Robert K. Abercrombie, and Ali Mili, editors, <i>CSIIRW</i> , page 55. ACM, 2009.
[BH09]	Mainak Banga and Michael S. Hsiao. A Novel Sustained Vector Technique for the Detection of Hardware Trojans. In Proceedings of the 2009 22nd International Conference on VLSI Design, VLSID '09, pages 327–332, Washington, DC, USA, 2009. IEEE Computer Society.
[BH11]	M. Banga and M. S. Hsiao. ODETTE : A Non-Scan Design-for-Test Methodology for Trojan Detection in ICs. In International Workshop on Hardware-Oriented Security and Trust (HOST), IEEE, pages 18–23, 2011.
[BNS09]	Gedare Bloom, Bhagirath Narahari, and Rahul Simha. OS Support for Detecting Trojan Circuit Attacks. In Mohammad Tehranipoor and Jim Plusquellic, editors, <i>HOST</i> , pages 100–103. IEEE Computer Society, 2009.
[CB09]	R. S. Chakraborty and S. Bhunia. Security against hardware trojan through a novel application of design obfuscation. In International Conference on Computer-Aided Design Digest of Technical Papers (ICCAD), IEEE, pages 113–116, 2009.
[CNB09]	Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia. Hardware trojan: Threats and emerging solutions. In IEEE International High Level Design Validation and Test Workshop, HLDVT 2009, San Francisco, CA, USA, 4-6 November 2009, pages 166–171. IEEE, 2009.

[CWP⁺09] R. S. Chakraborty, F. G. Wolff, S. Paul, C. A. Papachristou, and S. Bhunia. MERO: A Statistical Approach for Hardware Trojan Detection. In Workshop on Cryptographic Hardware and Embedded Systems (CHES). LNCS. volume 5747. pages 396-410, 2009. [KRRT10] Ramesh Karri, Jeyavijayan Rajendran, Kurt Rosenfeld, and Mohammad Tehranipoor. Trustworthy Hardware: Identifying and Classifying Hardware Trojans. IEEE Computer, 43(10):39-46, 2010. [LKG⁺09] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Trojan Side-Channels: Lightweight Hardware Trojans through Side-Channel Engineering. In CHES, volume 5747 of Lecture Notes in Computer Science, pages 382-395, Springer, September 6-9 2009. Lausanne, Switzerland. [RPT08] R. Rad, J. Plusquellic, and M. Tehranipoor. Sensitivity analysis to hardware trojans using power supply transient signals. In International Workshop on Hardware-Oriented Security and Trust (HOST), IEEE, pages 3-7, 2008. [STP09] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusguellic. New design strategy for improving hardware Trojan detection and reducing Trojan activation time. In Hardware-Oriented Security and Trust, 2009, HOST '09, IEEE International Workshop on, pages 66-73, 2009.

