Implementation and Evaluation of a Leakage-Resilient ElGamal KEM

David Galindo¹,², Johann Großschädl³, Zhe Liu³, Praveen K. Vadnala³, Srinivas Vivek³

¹ CNRS/Loria, France
² SCYTL Secure Electronic Voting, Spain
³ University of Luxembourg

PROOFS 2014
Side-Channel Attacks

Use data leaked due to the physical nature of computation:

- running time
- power consumption
- electromagnetic-radiation leak
- acoustic emanation
- photons emissions
- ground electric potential
- fault attacks
Side-Channel Attacks Countermeasures

Aimed at specific attacks
Concrete implementations
Leakage model meaningful
Reasonably practical
SCA-resistant primitives

SCA Countermeasures flow

input message
\(K^* \)
target computation
\(f(K^*, T) \)
leakage model
\(\varphi \)
noise
\(N \)
actual leakage
\(X \approx \varphi((K^*, T)) \)
distinguisher
\(D \)
attack/non-attack
\(\hat{K} = D(X, T) \)
Side-Channel Attacks Countermeasures

Aimed at specific attacks
Concrete implementations
Leakage model meaningful
Reasonably practical
SCA-resistant primitives

However...

SCA Countermeasures

flow

input message
K^*
target computation
$f(K^*, T)$
leakage model
φ
noise
N
actual leakage
$X \approx N(\varphi((K^*, T)))$
distinguisher
D
attack/non-attack
$\hat{K} = D(X, T)$

David Galindo – SCYTL Secure Electronic Voting
Evaluation of a Leakage-Resilient ElGamal KEM
Side-Channel Attacks Countermeasures

- Aimed at specific attacks
- Concrete implementations
- Leakage model meaningful
- Reasonably practical
- SCA-resistant primitives

A new attack \((\varphi, \mathbf{N}, \mathcal{D})\) might be discovered

- Endless? **cat-and-mouse** game

SCA Countermeasures flow

input message
\[K^* \]

target computation
\[f(K^*, T) \]

leakage model
\[\varphi \]

noise
\[\mathbf{N} \]

actual leakage
\[\mathbf{X} \approx N \varphi((K^*, T)) \]

distinguisher
\[\mathcal{D} \]

security?
\[\hat{K} = \mathcal{D}(\mathbf{X}, T) \]
SCA Countermeasures vs. Leakage-Resilient Cryptography

<table>
<thead>
<tr>
<th>SCA countermeasures</th>
<th>Leakage-Resilient Crypto</th>
</tr>
</thead>
<tbody>
<tr>
<td>😞 Aimed at specific attacks</td>
<td>😊 Aimed at generic attacks</td>
</tr>
<tr>
<td>😊 Concrete implementations</td>
<td>😞 No implementations</td>
</tr>
<tr>
<td>😊 Leakage model meaningful</td>
<td>😞 Leakage model generic</td>
</tr>
<tr>
<td>😊 Reasonably practical SCA-resistant primitives</td>
<td>😞 Not practical</td>
</tr>
<tr>
<td>A new attack ((\varphi, N, D)) might be discovered</td>
<td>😊 Security reduction</td>
</tr>
<tr>
<td>😞 Endless? cat-and-mouse game</td>
<td></td>
</tr>
</tbody>
</table>
In this work we take a step forward towards this goal.

- Aimed at general attacks
- Leakage model meaningful
- Reasonably practical SCA-resistant primitives
- Security reduction
- Concrete implementations
Meaningful Leakage-Resilient Cryptography

- Aimed at general attacks
- Leakage model meaningful
- Reasonably practical SCA-resistant primitives
- Security reduction
- Concrete implementations

In this work we take a step forward towards to this goal
Our contribution

- **A more reasonable** leakage modeling
- We depart from an existing practical ElGamal KEM and modify it using **practical motivations**
- We use the **theory and practice** of SCA to argue that it potentially meets the leakage bound
- We **implement** the scheme on an ARM Cortex M-3 processor
A **stateful** KEM scheme $\Pi = (\text{KeyGen}, \text{Enc}, \text{Dec}_1, \text{Dec}_2)$ consists of efficient algorithms:

- $\text{KeyGen}(\lambda)$ outputs $(pk, (sk_0, sk'_0))$
- $\text{Enc}(pk)$ outputs (K, C)
- $\text{Dec}_1(sk_{i-1}, C)$ updates sk_{i-1} to sk_i and outputs intermediate state w_i
- $\text{Dec}_2(sk'_{i-1}, w_i)$ updates sk'_{i-1} to sk'_i and outputs key K or \perp
ElGamal KEM with Multiplicative Masking

- **KG(κ):** choose $x, t_0 \leftarrow \mathbb{Z}_q$. Set $X = g^x$, $sk_0 = t_0$, $sk'_0 = x/t_0$. Return $(X, (sk_0, sk'_0))$

- **Enc(pk):** choose $r \leftarrow \mathbb{Z}_q$. Compute $C = g^r$ and $K = X^r$; return (C, K)

- **Dec1(sk_{i-1}, C):** pick $t_i \leftarrow \mathbb{Z}_q$, set $sk_i = sk_{i-1} \cdot t_i$, $Y_i = C^{sk_i}$. Return (t_i, Y_i)

- **Dec2(sk'_{i-1}, (t_i, Y_i), C):** set $sk'_i = sk'_{i-1} \cdot t_i^{-1}$, and return $K = Y_i^{sk'_i}$.

We consider chosen-ciphertext and leakage security against lunch-time attacks (CCLA1)

CCLA1 Experiment

\[
\text{KEM-CCLA1}_\text{KEM}(\mathcal{A}, \kappa, \lambda) \\
(pk, (sk_0, sk'_0)) \leftarrow \text{KG}^*(\kappa, \lambda) \\
w \leftarrow \mathcal{A}^{\text{O}^{\text{CCLA1}}}(\cdot)(pk) \\
b \leftarrow \{0, 1\} \\
(C^*, K_0) \leftarrow \text{Enc}^*(pk) \\
K_1 \leftarrow \mathcal{K} \\
b' \leftarrow \mathcal{A}(w, C^*, K_b)
\]

\[
\text{KEM-Leak-Oracle} \quad O^{\text{CCLA1}}(C, f_i, h_i) \\
(sk_i, w_i) \leftarrow \text{Dec}^1*(sk_{i-1}, C) \\
(sk'_i, K) \leftarrow \text{Dec}^2*(sk'_{i-1}, w_i) \\
\Lambda_i := f_i(sk_{i-1}, r_i) \\
\Lambda'_i := h_i(sk'_{i-1}, r'_i, w_i) \\
i := i + 1 \\
\text{Return } (K, \Lambda_i, \Lambda'_i)
\]
We consider chosen-ciphertext and leakage security against lunch-time attacks (CCLA1)

CCLA1 Experiment

\[\mathsf{KEM-CCLA1}_{\mathsf{KEM}}(A, \kappa, \lambda) \]
\[(pk, (sk_0, sk'_0)) \leftarrow \mathsf{KG}^*(\kappa, \lambda) \]
\[w \leftarrow A^{\mathsf{O_{CCLA1}}}(pk) \]
\[b \leftarrow \{0, 1\} \]
\[(C^*, K_0) \leftarrow \mathsf{Enc}^*(pk) \]
\[K_1 \leftarrow \mathcal{K} \]
\[b' \leftarrow A(w, C^*, K_b) \]

\[\mathsf{KEM-Leak-Oracle}^{\mathsf{O_{CCLA1}}}(C, f_i, h_i) \]
\[(sk_i, w_i) \leftarrow \mathsf{Dec}^1(\mathsf{sk}_{i-1}, C) \]
\[(sk'_i, K) \leftarrow \mathsf{Dec}^2(\mathsf{sk}'_{i-1}, w_i) \]
\[\Lambda_i := f_i(\mathsf{sk}_{i-1}, r_i) \]
\[\Lambda'_i := h_i(\mathsf{sk}'_{i-1}, r'_i, w_i) \]
\[i := i + 1 \]
Return \((K, \Lambda_i, \Lambda'_i) \)

Restriction on leakage functions \(f_i, h_i \)

\[\tilde{H}_\infty (t \mid f_i(\sigma_{i-1}, r_i)) \geq H_\infty (t) - \lambda \quad \forall t \in \sigma_{i-1} \cup r_i, \]
\[\tilde{H}_\infty (t \mid h_i(\sigma'_{i-1}, r'_i, w_i)) \geq H_\infty (t) - \lambda \quad \forall t \in \sigma'_{i-1} \cup r'_i \cup w_i. \]
State of the art does not allow to give a security reduction with leakage

If f_i, h_i leak $\lambda \geq 3/8 \log q$ bits of each share of the secret key, then there exists a heuristic attack [Galindo-Vivek, IPL 2014]

Probably due to the fact that any exponentiation algorithm inherently leaks information about the exponent
State of the art does not allow to give a security reduction with leakage

If f_i, h_i leak $\lambda \geq 3/8 \log q$ bits of each share of the secret key, then there exists a heuristic attack [Galindo-Vivek, IPL 2014]

Probably due to the fact that any exponentiation algorithm inherently leaks information about the exponent

Idea! Avoid placing secret data on your exponentiations’ exponents...
Asymmetric Pairings

- Let G_1, G_2, G_T be groups of prime order q
- $G_1 = < g >, G_2 = < G >$
- Pairing $e : G_1 \times G_2 \rightarrow G_T$
 - bilinear: $e(g^a, g^b) = e(g, g)^{ab}, \forall a, b \in \mathbb{Z}$
 - non-degenerate: $G_T = < e(g, G) >$
Pairing-Based Stateful ElGamal KEM (Asiacrypt 2010)

- **KG(κ)**: choose $x, t_0 \xleftarrow{\$} \mathbb{Z}_q$. Set $X = g^x, sk_0 = g^{t_0}, sk'_0 = g^{x-t_0}$, and $X_T = e(X, G)$. Return $(X_T, (sk_0, sk'_0))$

- **Enc(pk)** choose $r \xleftarrow{\$} \mathbb{Z}_q$. Compute $C = G^r$ and $K = X_T^r$; return (C, K)

- **Dec1(C, sk_{i-1})** pick $t_i \xleftarrow{\$} \mathbb{Z}_q$, set $sk_i = sk_{i-1} \cdot G^{t_i}$, $Y_i = e(sk_i, C)$. Return (t_i, Y_i)

- **Dec2(sk'_{i-1}, (t_i, Y_i), C)** set $sk'_i = sk'_{i-1} \cdot G^{-t_i}$, and $Y'_i = e(sk'_i, C)$. Return $K = Y_i \cdot Y'_i \in G_T$
ElGamal KEM with Multiplicative Masking

- **KG(κ):** choose $x, t_0 \leftarrow \mathbb{Z}_q$. Set $X = g^x$, $sk_0 = t_0$, $sk'_0 = x/t_0$. Return $(X, (sk_0, sk'_0))$

- **Enc(pk):** choose $r \leftarrow \mathbb{Z}_q$. Compute $C = g^r$ and $K = X^r$; return (C, K)

- **Dec1(sk_{i-1}, C):** pick $t_i \leftarrow \mathbb{Z}_q$, set $sk_i = sk_{i-1} \cdot t_i$, $Y_i = C^{sk_i}$. Return (t_i, Y_i)

- **Dec2(sk'_{i-1}, (t_i, Y_i), C):** set $sk'_i = sk'_{i-1} \cdot t_i^{-1}$, and return $K = Y_i^{sk'_i}$.

David Galindo – SCYTL Secure Electronic Voting

Evaluation of a Leakage-Resilient ElGamal KEM
Pairing-Based Stateful ElGamal KEM (Asiacrypt 2010)

- **KG(κ):** choose $x, t_0 \leftarrow \mathbb{Z}_q$. Set $X = g^x$, $sk_0 = g^{t_0}$, $sk'_0 = g^{x-t_0}$, and $X_T = e(X, G)$. Return $(X_T, (sk_0, sk'_0))$

- **Enc(pk):** choose $r \leftarrow \mathbb{Z}_q$. Compute $C = G^r$ and $K = X_T^r$; return (C, K)

- **Dec1(C, sk_{i-1}):** pick $t_i \leftarrow \mathbb{Z}_q$, set $sk_i = sk_{i-1} \cdot G^{t_i}$, $Y_i = e(sk_i, C)$. Return (t_i, Y_i)

- **Dec2(sk'_{i-1}, (t_i, Y_i), C):** set $sk'_i = sk'_{i-1} \cdot G^{-t_i}$, and $Y'_i = e(sk'_i, C)$. Return $K = Y_i \cdot Y'_i \in \mathbb{G}_T$

Security reduction in the Generic Bilinear Group Model if the leakage is bounded in size
Pairing-Based Stateful ElGamal KEM (Asiacrypt 2010)

- **KG(κ):** choose \(x, t_0 \leftarrow Z_q \). Set \(X = g^x, sk_0 = g^{t_0}, sk'_0 = g^{x-t_0} \), and \(X_T = e(X, G) \). Return \((X_T, (sk_0, sk'_0)) \)

- **Enc(pk):** choose \(r \leftarrow Z_q \). Compute \(C = G^r \) and \(K = X_T^r \); return \((C, K) \)

- **Dec1(C, sk_{i-1}):** pick \(t_i \leftarrow Z_q \), set \(sk_i = sk_{i-1} \cdot G^{t_i} \), \(Y_i = e(sk_i, C) \). Return \((t_i, Y_i) \)

- **Dec2(sk'_{i-1}, (t_i, Y_i), C):** set \(sk'_i = sk'_{i-1} \cdot G^{-t_i} \), and \(Y'_i = e(sk'_i, C) \). Return \(K = Y_i \cdot Y'_i \in G_T \)

Security reduction in the Generic Bilinear Group Model if the leakage is **bounded in size**

Non-meaningful leakage model...
Pairing-Based Stateful ElGamal KEM (Asiacrypt 2010)

- **KG(κ):** choose \(x, t_0 \leftarrow Z_q \). Set \(X = g^x \), \(sk_0 = g^{t_0} \), \(sk'_0 = g^{x-t_0} \), and \(X_T = e(X, G) \). Return \((X_T, (sk_0, sk'_0))\)

- **Enc(pk):** choose \(r \leftarrow Z_q \). Compute \(C = G^r \) and \(K = X_T^r \); return \((C, K)\)

- **Dec1(C, sk_{i-1}):** pick \(t_i \leftarrow Z_q \), set \(sk_i = sk_{i-1} \cdot G^{t_i} \), \(Y_i = e(sk_i, C) \). Return \((t_i, Y_i)\)

- **Dec2(sk'_{i-1}, (t_i, Y_i), C):** set \(sk'_i = sk'_{i-1} \cdot G^{-t_i} \), and \(Y'_i = e(sk'_i, C) \). Return \(K = Y_i \cdot Y'_i \in \mathbb{G}_T\)

We did not get rid of exponentiations that place secret data on the exponent...
KG(κ): choose $x, t_0 \leftarrow \mathbb{Z}_q$. Set $X = g^x$, $sk_0 = g^{t_0}$, $sk'_0 = g^{x-t_0}$, and $X_T = e(X, G)$. Return $(X_T, (sk_0, sk'_0))$

Enc(pk) choose $r \leftarrow \mathbb{Z}_q$. Compute $C = G^r$ and $K = X_T^r$; return (C, K)

Dec1(C, sk_{i-1}) pick $U_i \leftarrow \mathbb{G}_1$, set $sk_i = sk_{i-1} \cdot U_i$, $Y_i = e(sk_i, C)$. Return (U_i, Y_i)

Dec2($sk'_{i-1}, (U_i, Y_i), C$) set $sk'_i = sk'_{i-1} \cdot U^{-1}$, and $Y'_i = e(sk'_i, C)$. Return $K = Y_i \cdot Y'_i \in \mathbb{G}_T$

Look, there is no need to exponentiate...
Computing random \(u_i = g^{t_i} \) for \(t_i \in \mathbb{F}_q \) leaks information on the fresh randomness used for decryption.

We do not know any exponentiation algorithm susceptible to meet the leakage bound.

We do not need knowledge of \(t_i = \log_g u_i \).

We use an encoding \(f : \mathbb{F}_p \mapsto E(\mathbb{F}_p) \) with good randomness preserving properties.

This encoding is naturally almost leakage-free.
BEG-KEM+

KG$^+_\text{BEG}(\kappa)$ choose $x, t_0 \leftarrow \mathbb{Z}_q$. Set $X = g^x, sk_0 = g^{t_0}, sk'_0 = g^{x-t_0}$, and $X_T = e(X, G)^x$. Return $(X_T, (sk_0, sk'_0))$

Enc$^+_\text{BEG}(pk)$ choose $r \leftarrow \mathbb{Z}_q$, compute $C = G^r$ and $K = X_T^r$

Dec1$^+_\text{BEG}(sk_{i-1}, C)$ choose $t_i, z_i \leftarrow \mathbb{F}_p$, set $u_i = f(t_i) \cdot f(z_i)$, and compute $sk_i = sk_{i-1} \cdot u_i$ and $Y_i = e(sk_i, C)$. Return (u_i, Y_i)

Dec2$^+_\text{BEG}(sk'_{i-1}, (u_i, Y_i), C)$ Set $sk'_i = sk'_{i-1} \cdot (u_i)^{-1}$ and $Y'_i = e(sk'_i, C)$. Return $K = Y_i \cdot Y'_i \in \mathbb{G}_T$
Fouque-Tibouchi encoding to Barreto-Naehrig curves

Require: A random number \(t \in \mathbb{F}_p \)

Ensure: Point \(P \in E(\mathbb{F}_p) \)

1. \(w \leftarrow \sqrt{-3} \cdot t / (1 + b + t^2) \)
2. \(x_1 \leftarrow (-1 + \sqrt{-3}) / 2 - tw \)
3. \(x_2 \leftarrow -1 - x_1 \)
4. \(x_3 \leftarrow 1 + 1/w^2 \)
5. \(r_1, r_2, r_3 \leftarrow \mathbb{F}_q^* \)
6. \(\alpha \leftarrow \chi_p(r_1^2 \cdot (x_1^3 + b)) \)
7. \(\beta \leftarrow \chi_p(r_2^2 \cdot (x_2^3 + b)) \)
8. \(i \leftarrow [(\alpha - 1) \cdot \beta \mod 3] + 1 \)
9. return \(P[x_i, \chi_p(r_3^2 \cdot t) \cdot \sqrt{(x_i^3 + b)}] \)

- \(p \equiv 3 \mod 4 \)
 - \(\chi_p(\cdot) \) is the Legendre symbol
- Use Extended Euclidean Algo to compute inverses as:
 \[\frac{1}{x} = \frac{1}{x \cdot r} \cdot r \text{ for } r \leftarrow \mathbb{F}_p \]
- \(\sqrt{x} \) for \(x \in \mathbb{F}_p \) is computed as a fixed-exponent computation:
 \[\sqrt{x} = x^{p+1}/4 \]
Fouque-Tibouchi encoding to Barreto-Naehrig curves

Require: A random number \(t \in \mathbb{F}_p \)

Ensure: Point \(P \in E(\mathbb{F}_p) \)

1: \(w \leftarrow \sqrt{-3} \cdot t / (1 + b + t^2) \)
2: \(x_1 \leftarrow (-1 + \sqrt{-3})/2 - tw \)
3: \(x_2 \leftarrow -1 - x_1 \)
4: \(x_3 \leftarrow 1 + 1/w^2 \)
5: \(r_1, r_2, r_3 \leftarrow \mathbb{F}_q^* \)
6: \(\alpha \leftarrow \chi_p(r_1^2 \cdot (x_1^3 + b)) \)
7: \(\beta \leftarrow \chi_p(r_2^2 \cdot (x_2^3 + b)) \)
8: \(i \leftarrow [(\alpha - 1) \cdot \beta \mod 3] + 1 \)
9: return \(P[x_i, \chi_p(r_3^2 \cdot t) \cdot \sqrt{(x_i^3 + b)}] \)

- \(p \equiv 3 \mod 4 \)
 - \(\chi_p(\cdot) \) is the Legendre symbol

- Use Extended Euclidean Algo to compute inverses as:
 \(\frac{1}{x} = \frac{1}{x \cdot r} \cdot r \)
 for \(r \leftarrow \mathbb{F}_p \)

- \(\sqrt{x} \) for \(x \in \mathbb{F}_p \) is computed as a fixed-exponent computation:
 \(\sqrt{x} = x^{\frac{p+1}{4}} \)

There are no branching instructions in the computation of the encoding
We present a security reduction in the Generic Bilinear Group Model if the leakage is **does not decrease** the min-entropy of the (intermediate) secret values “too much”...
We present a security reduction in the Generic Bilinear Group Model if the leakage is **does not decrease** the min-entropy of the (intermediate) secret values “too much”...

par single trace!

Great bonus: attacks that require multiple traces are **ruled out**

Michael Scott in [Computing the Tate pairing, CT-RSA 2005] claims:

"One might with reasonable confidence expect that the power consumption profile of (and execution time for) such protocols [against SPA attacks] will be constant and independent of any secret values."
[Unterluggauer-Wenger, ARES 2014] CPA attack with 1500 traces in an ARM Cortex-M0 processor

no attacks known with single (or few) trace(s)!
Pairings and Single Trace Attacks

[Unterluggauer-Wenger, ARES 2014] CPA attack with 1500 traces in an ARM Cortex-M0 processor

no attacks known with single (or few) trace(s)!

- “Intrinsically” more secure than e.g. exponentiation since the critical input data is a secret group element and not a secret scalar
- Operand-related SPA leakage from field-arithmetic operations is generally small (in large characteristic)
Implementation

- Barreto-Naehrig curve defined over a 254-bit prime field \mathbb{F}_p
- We implemented BEG-KEM+ in ANSI C
- MIRACL library for an efficient execution of the pairing evaluation
- Adruino Due microcontroller board with an ARM Cortex-M3 CPU

Table: Running times in 10^6 clock cycles

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square root \mathbb{F}_p</td>
<td>0.7</td>
</tr>
<tr>
<td>Inversion \mathbb{F}_p</td>
<td>0.087</td>
</tr>
<tr>
<td>Encoding to \mathbb{G}_2</td>
<td>3.7</td>
</tr>
<tr>
<td>Exponentiation \mathbb{G}_1</td>
<td>4.5</td>
</tr>
<tr>
<td>Exponentiation \mathbb{G}_2</td>
<td>10.0</td>
</tr>
<tr>
<td>Exponentiation \mathbb{G}_T</td>
<td>27.1</td>
</tr>
<tr>
<td>Pairing</td>
<td>65.0</td>
</tr>
</tbody>
</table>

Table: Comparison of BEG-KEM and BEG-KEM+

<table>
<thead>
<tr>
<th>Operation</th>
<th>BEG-KEM</th>
<th>BEG-KEM+</th>
</tr>
</thead>
<tbody>
<tr>
<td>KeyGen</td>
<td>108</td>
<td>108</td>
</tr>
<tr>
<td>Encryption</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Decryption</td>
<td>131</td>
<td>140</td>
</tr>
</tbody>
</table>
Conclusions

- We (would have liked to) contribute to bridge approaches for SCA resistance
 - SCA practice & countermeasures
 - provable security
- We provided a more reasonable leakage modeling
- We present a scheme and argue that it is susceptible to meet the leakage requirement
- We provided an implementation in an ARM Cortex-M3 processor
- Pairings have proven to be very useful in multiple contexts
 Maybe also for building SCA-resistant implementations?
- We continue exploring this approach
That's all folks! 😊