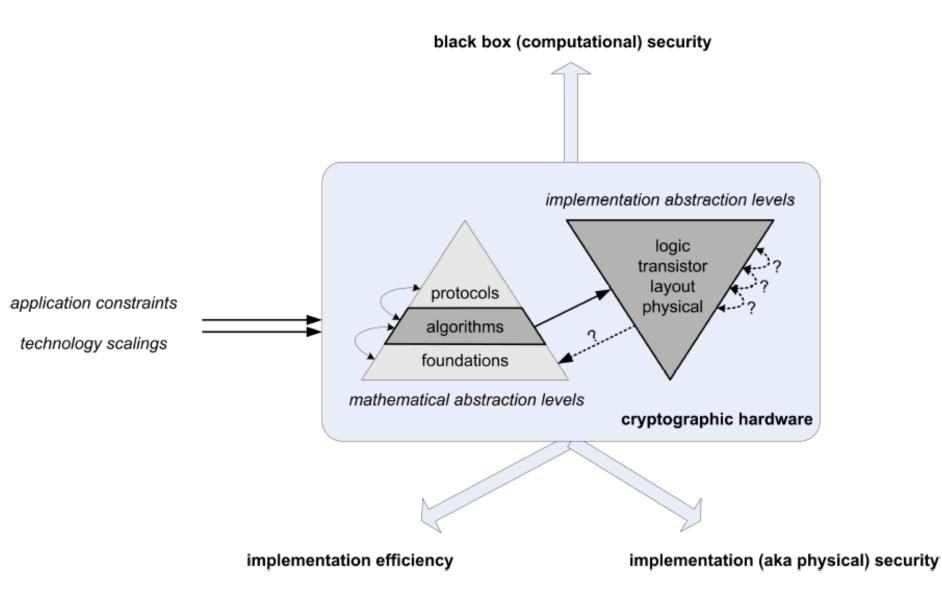
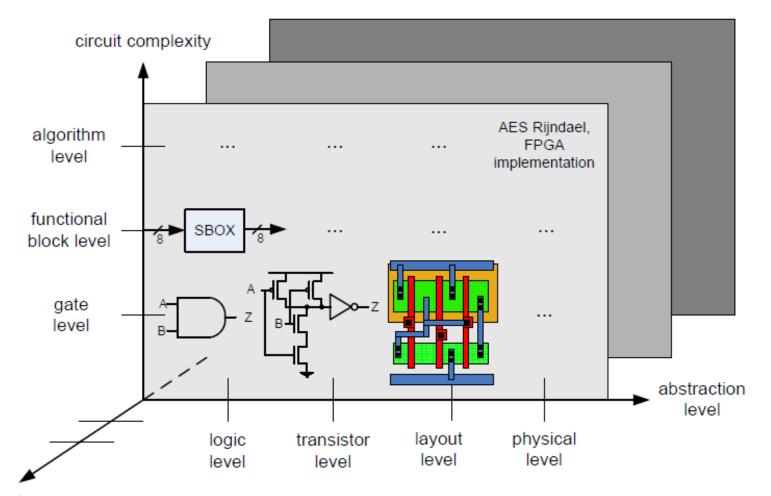
Understanding the Limitations and Improving the Relevance of SPICE Simulations in Security Evaluations

Dina Kamel, Mathieu Renauld, Denis Flandre, François-Xavier Standaert



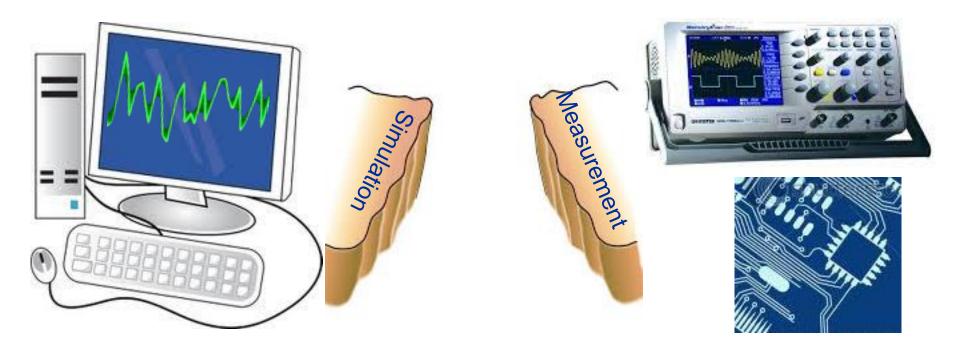
UCL Crypto Group


PROOFS 2013 Santa Barbara, USA

The cryptographic HW design space

Multidimensional problem

parameters (technology, temperature, process, ...)


- SCA countermeasures are expensive
- Confident evaluations require silicon
- But testing all ideas up to silicon is not realistic
- \Rightarrow We need to exploit the simulation paradigm

- SCA countermeasures are expensive
- Confident evaluations require silicon
- But testing all ideas up to silicon is not realistic

 \Rightarrow We need to exploit the simulation paradigm

- As for any hardware optimization criteria!
- Being aware of its limitations
- (i.e. knowing what can and cannot be learned)
- Main goal: avoid false negatives

Current situation

- Simulations and measurements differ
 - Quantitatively (amount of information leakage)
 - Qualitatively (nature of the information leakage)

Example

- DDSLL (dynamic and differential) S-box
- 65-nanometer technology
- Evaluated with the perceived information

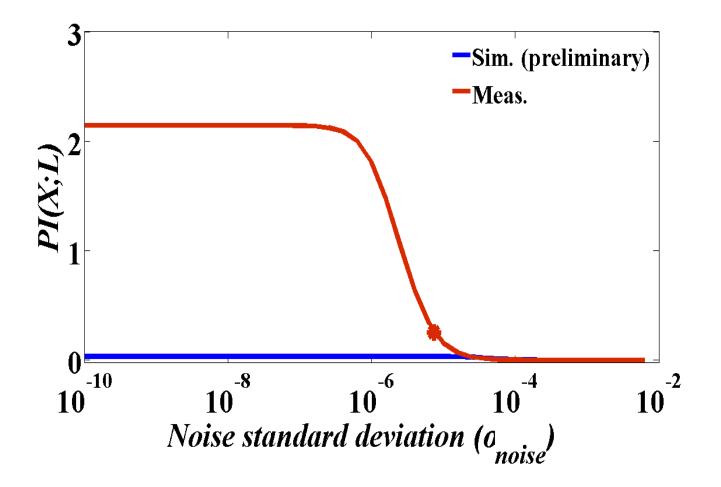
$$\hat{\mathbb{M}}(K; L) = \mathsf{H}[K] - \sum_{k \in \mathcal{X}} \mathsf{Pr}[k] \sum_{l \in \mathcal{L}} \mathsf{Pr}_{\mathsf{chip}}[l|k] \log_2 \hat{\mathsf{Pr}}_{\mathsf{model}}[k|l]$$

$$\hat{\mathsf{Pl}}$$

= estimator of the MI, biased by the adversary's model

Example

- DDSLL (dynamic and differential) S-box
- 65-nanometer technology
- Evaluated with the perceived information


 $\hat{\mathbb{M}}(K;L) = \mathbb{H}[K] - \sum_{k \in \mathcal{X}} \Pr[k] \sum_{l \in \mathcal{L}} \Pr_{\text{chip}}[l|k] \log_2 \hat{\Pr}_{\text{model}}[k|l]$ $\hat{\mathbb{P}}[l]$

= estimator of the MI, biased by the adversary's model

- Can be estimated, e.g. from
 - Gaussian templates
 - Linear regression with linear basis
 - (allows measuring the measurements "linearity")

CHES 2011 results

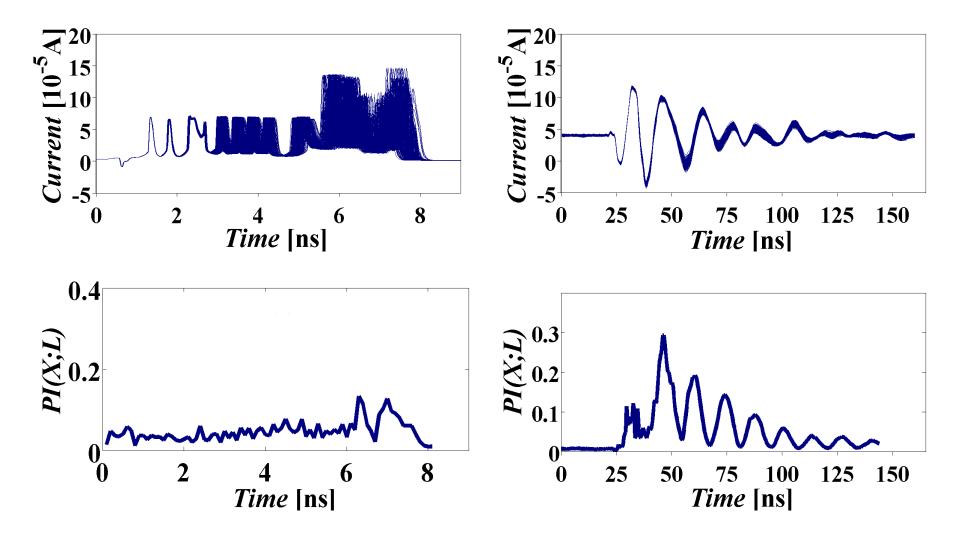
• Regression-based information theoretic evaluation

Why do we care?

• The linearity of the measurements is an important criteria for the application of non-profiled DPA

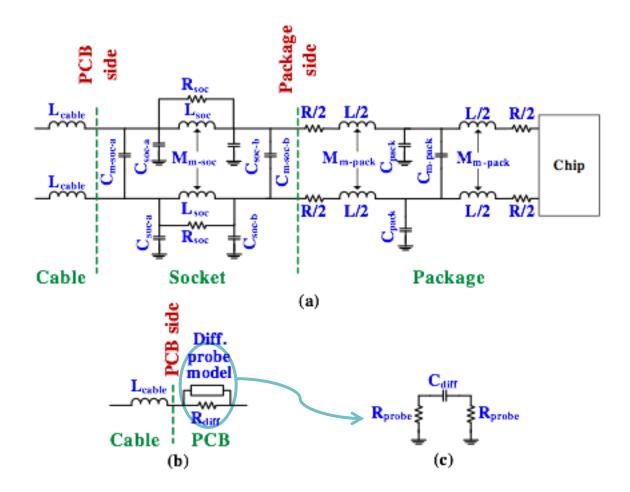
- The linearity of the measurements is an important criteria for the application of non-profiled DPA
- [VS11,WOS12]: generic attacks are only possible in the context of "sufficiently linear" leakages
 - One hope for dual-rail logic styles is to provide highly non-linear leakages (to avoid these attacks)
 ⇒ Simulations are misleading with this respect

Why do we care?


- The linearity of the measurements is an important criteria for the application of non-profiled DPA
- [VS11,WOS12]: generic attacks are only possible in the context of "sufficiently linear" leakages
 - One hope for dual-rail logic styles is to provide highly non-linear leakages (to avoid these attacks)
 ⇒ Simulations are misleading with this respect

• Our goal: understanding why, improving if possible!

Step 1: looking at the traces

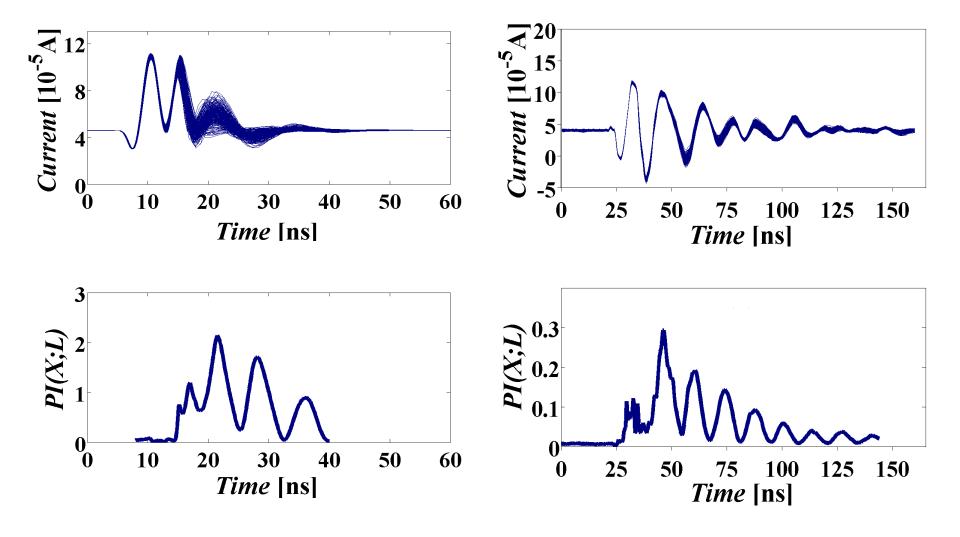

Simulation

Measurement (real noise 6e-6)

Step 2: trying to model

• Equivalent circuit model (generic)

Step 3: instantiating the model


Element	Symbol	Description	Value
Cable	L _{cable}	Supply inductance In/out inductance GND inductance	688 nH 300 nH 200 nH
Socket	L _{soc}	Lead inductance	1.35 nH
	R _{soc}	Parallel lead res.	600 Ω
	C _{soc-a}	Cap. to GND (PCB side)	0.3 pF
	C _{soc-b}	Cap. to GND (pack. side)	0.45 pF
	L _{m-soc}	Mutual inductance	0.3 nH
	C _{m-soc-a}	Mutual cap. (PCB side)	0.09 pF
	C _{m-soc-b}	Mutual cap. (pack. side)	0.09 pF
Package	L	Inductance	1.2 nH
	R	Series resistance	0.28 Ω
	C _{pack}	Cap. To GND	0.1 pF
	L _{m-pack}	Mutual inductance	1.3 nH
	C _{m-pack}	Mutual cap.	0.2 pF
Diff. Probe	C _{diff}	Capacitance	0.7 pF
	R _{probe}	Resistance	25 kΩ
	R _{diff}	Res. in S-box VDD path	1 kΩ

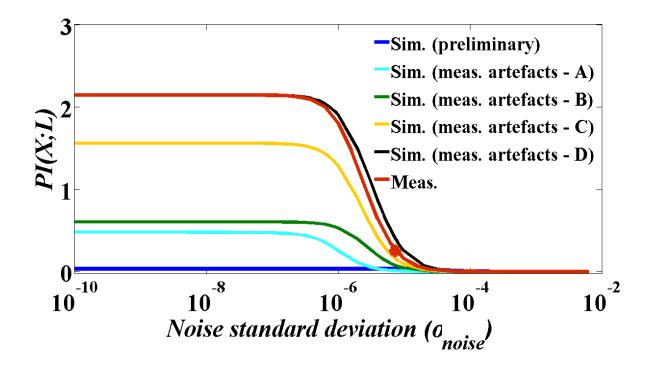
- The more precise the better (specific)
 - (but we sometimes had only approximations)

Example: looking at the traces again

Simulation with circuit model

Measurement (real noise 6e⁻⁶)

Step 4: how precise must the model be?


• Our strategy: use increasingly complex ones

Model	Description
А	1 kΩ + diff. probe
В	1 k Ω + diff. probe + pack. and socket
С	1 k Ω + diff. probe + pack. and socket + V _{DD} cable
D	1 k Ω + diff. probe + pack. and socket + V _{DD} cable + GND cable

Step 4: how precise must the model be?

• Our strategy: use increasingly complex ones

Model	Description
А	1 kΩ + diff. probe
В	1 k Ω + diff. probe + pack. and socket
С	1 k Ω + diff. probe + pack. and socket + V _{DD} cable
D	1 k Ω + diff. probe + pack. and socket + V _{DD} cable + GND cable

Conclusions

- Increase of the simulation time negligible
 - (already for a simple S-box circuit)

Conclusions

- Increase of the simulation time negligible
 - (already for a simple S-box circuit)
- Modeling circuit / measurement specificities is crucial
 - It increases the relevance of simulations
 => Reduces the risk of false negatives
 - Even with imprecise instantiation of the model!
 - \Rightarrow Reasonably generic approach

Conclusions

- Increase of the simulation time negligible
 - (already for a simple S-box circuit)
- Modeling circuit / measurement specificities is crucial
 - It increases the relevance of simulations
 => Reduces the risk of false negatives
 - Even with imprecise instantiation of the model!
 - \Rightarrow Reasonably generic approach
- Designing circuits with highly non-linear leakages seems challenging (filters linearize them)

THANKS http://perso.uclouvain.be/fstandae/