PROOFS, August 24, 2013

A hierarchical graph-based approach to generating formally-proofed Galois-field multipliers

Kotaro Okamoto, Naofumi Homma, and Takafumi Aoki Tohoku University, Japan

Arithmetic algorithms over Galois fields

Demands of high security and reliable systems

- Cryptography, Error correction code
 - Arithmetic operations over
 Galois Fields (GF)
- Arithmetic algorithms
 - Hardware algorithms for arithmetic operation
 - Determine the performance of arithmetic circuits

There are two major difficulties in designing arithmetic algorithms based on Galois fields

Design issues

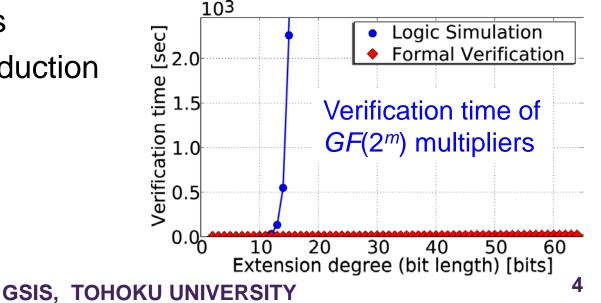
Lowest-level description using logical expressions
 Difficult to describe GF arithmetic algorithms by conventional HDLs

e.g., *GF*(2¹⁶) multiplier

out0[0] = (((((in0[0] & in1[0]) ^ (in0[15] & in1[1])) ^ ((in0[14] & in1[2]) ^ (in0[13] & in1[3]))) ^ (((in0[12] & in1[4]) ^ (in0[11] & in1[5])) ^ ((in0[10] & in1[6]) ^ (in0[9] & :

in0[14]) ^ in0[12]) & in1[15])))));

Verification using logic simulation
 Require a huge simulation time especially for arithmetic circuits with large operand lengths
 – Larger-scale multipliers than *GF*(2³²)
 GSIS, TOHOKU UNIVERSITY

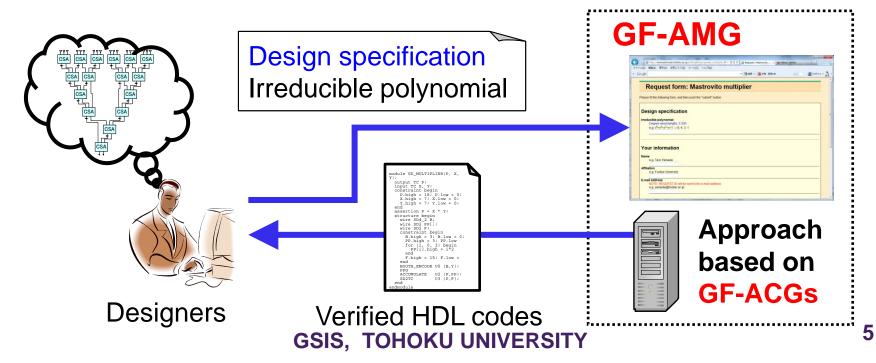

Graph-based approach

Galois-Field Arithmetic Circuit Graph: GF-ACG

- Represent a GF circuit using arithmetic equations based on GFs
- Hierarchical representation

Formal verification using computer algebra

- Gröbner basis
- polynomial reduction



This work

Application to automatic generation system
 Galois-Field Arithmetic Module Generator: GF-AMG

- System producing formally-proofed GF(2^m) parallel multiplier for any irreducible polynomial
 - Mastrovito and Massey-Omura parallel multipliers

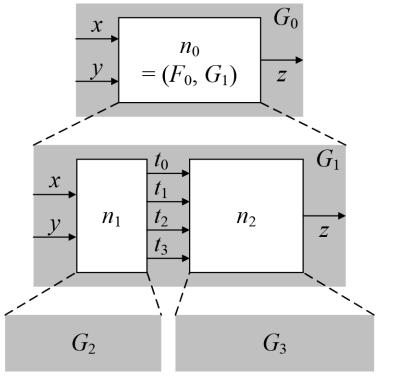
Outline

Background

- Galois-Field Arithmetic Circuit Graph: GF-ACG
- Hierarchical design of Mastrovito multiplier
- Galois-Field Arithmetic Module Generator: GF-AMG
- Conclusion

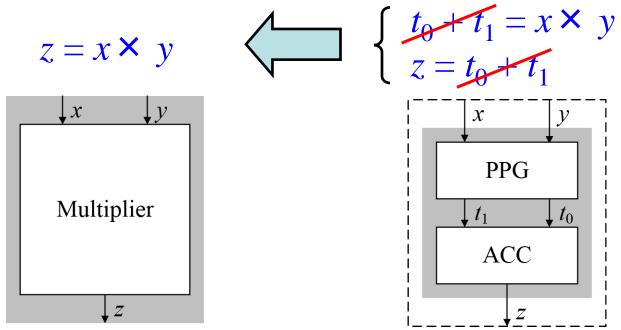
- Galois field of order p^m : $GF(p^m)$ p: prime number
- Each field element is a polynomial over GF(p)
- Addition and multiplication are performed modulo irreducible polynomial *IP* of degree *m*

e.g.,
$$GF(2^2) = \{0, 1, \beta, \beta+1\}, IP = \beta^2 + \beta + 1$$


Multiplication over $GF(2^2)$ Addition over $GF(2^2)$ 1 β $\beta+1$ 0 1 β $\beta+1$ 0 X ╋ 0 0 0 0 0 1 β $\beta+1$ 0 0 0 1 β $\beta+1$ 1 0 β +1 β 1 1 β 0 β $\beta+1$ 1 β $\beta+1$ 0 β 1 0 0 β +1 1 β $\beta + 1$ **GSIS. TOHOKU UNIVERS**

7

GF-ACG: Galois-Field Arithmetic Circuit Graph


$$\mathsf{GF-ACG}: G = (N, E)$$

- N: set of nodes Node: n = (F, G') -F: function (GF equation) -G': internal structure (GF-ACG)
- **E**: set of directed edges Directed edge: $e = (n_s, n_d, x)$
 - $-n_{\rm s}$: source node
 - $-n_{\rm d}$: destination node
 - -x: GF variable

Formal verification of GF-ACGs

- Verification is done by checking equivalence between the function and the internal structure
 - Function is correct if same function is derived from internal structure

Solve simultaneous equation by computer algebra GSIS, TOHOKU UNIVERSITY

Outline

Background

- Galois-Field Arithmetic Circuit Graph: GF-ACG
- Hierarchical design of Mastrovito multiplier
 Typical *GF*(2^m) parallel multiplier
- Galois-Field Arithmetic Module Generator: GF-AMG

Conclusion

Mastrovito multiplier

Feature
 GF(2^m) parallel multiplier
 Smallest area

Structure

Matrix generation part

- -Generation of matrix Z from the input a
- Matrix operation part
 - -Calculation of inner product

of ${\bf Z}$ and the other input b

e.g., $GF(2^4)$ multiplier for $IP = \beta^4 + \beta + 1$ Matrix generation part Matrix operation part

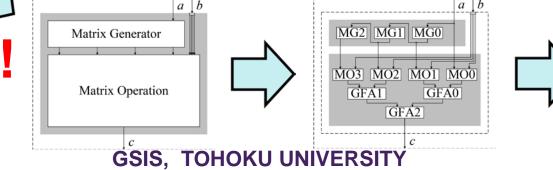
11

Why hierarchical description ?

Necessary to derive hierarchical description from original flattened description

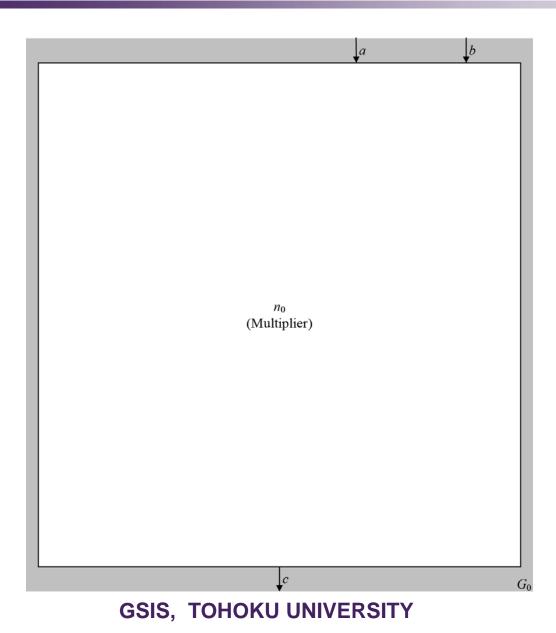
e.g., GF(24) multiplier

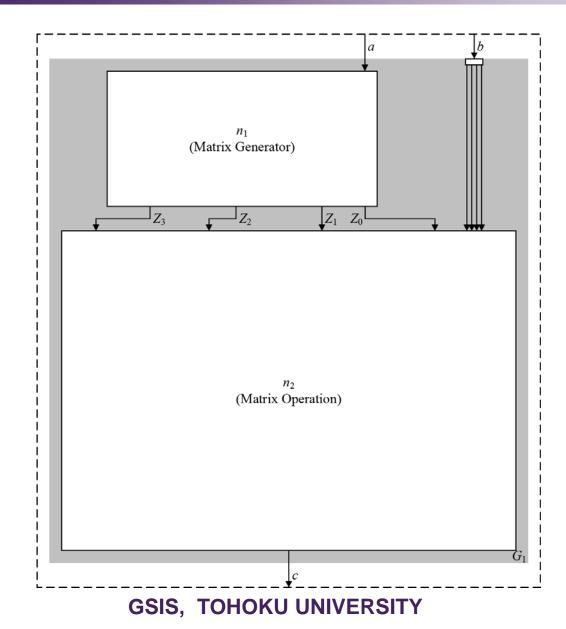
Multiplier

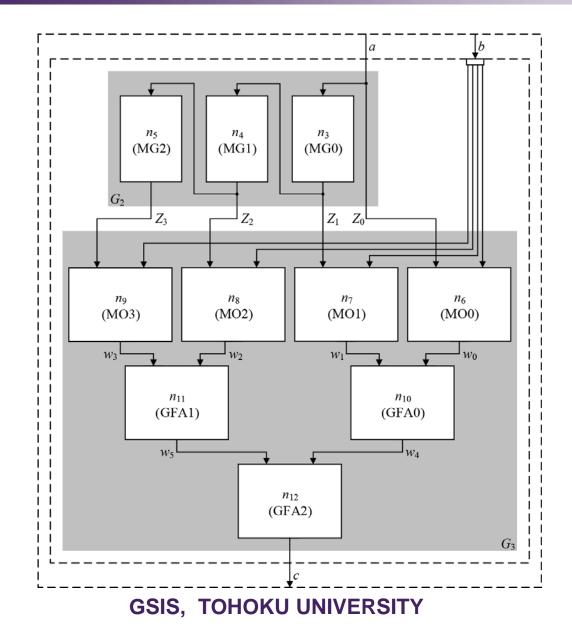

С

Top level description Flattened description

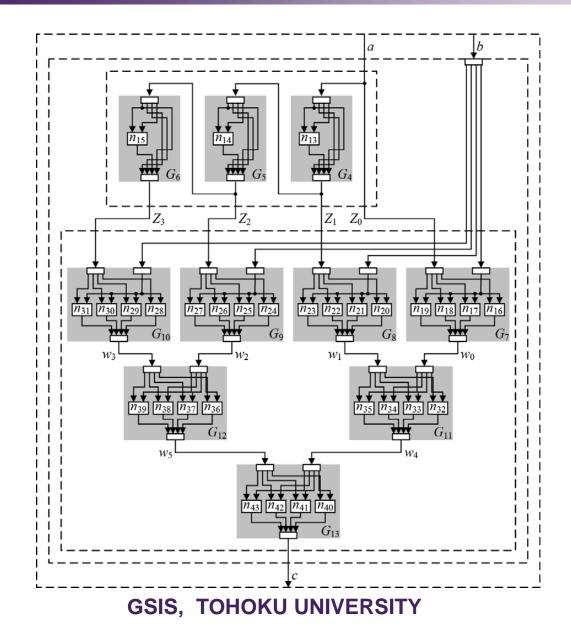
NG!


Number of variables increases exponentially against bit length


Hierarchical description



Nodes and functions for GF-ACG design


Node	Function
Multiplier	$c = a \times b$
- Matrix Generator	$Z_i = a \cdot \beta^i, 0 \le i \le m - 1$
LMG	$Z_i = Z_{i-1} \cdot \beta$
L Matrix Operation	$c = \sum_{i=0}^{m-1} Z_i \times \left(b_i^{(e)} \cdot \beta^{-i} \right)$
– MO	$w_i = Z_i \times \left(b_i^{(e)} \cdot \beta^{-i} \right)$
^L GFA	$w_{m+i} = w_{2i} + w_{2i+1}$

16

Outline

Background

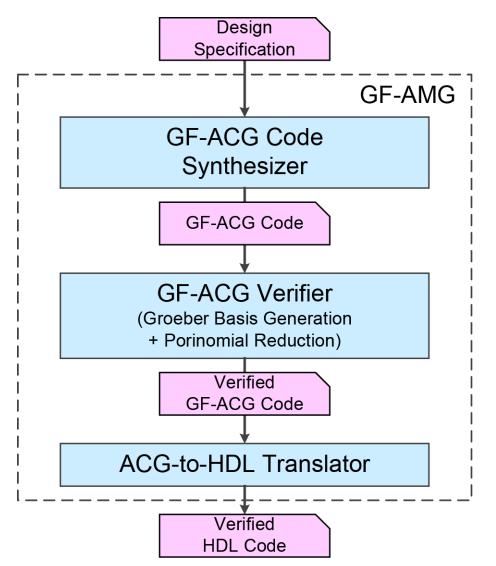
- Galois-Field Arithmetic Circuit Graph: GF-ACG
- Hierarchical design of Mastrovito multiplier
- Galois-Field Arithmetic Module Generator: GF-AMG
 - Application of GF-ACG approach

Conclusion

GF(2^{*m*}) multiplier generator on Website

Feature

Automatic generation system of GF(2^m) multipliers for any irreducible polynomial IP


Generate only formally-proofed HDL codes

System specification

Multiplication algorithm	Degree for <i>IP</i>
Mastrovito algorithm	From 2 to 256
Massey-Omura algorithm	From 2 to 64

Available from website <u>http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg</u> GSIS, TOHOKU UNIVERSITY

Block diagram of GF-AMG

Design Specification Irreducible polynomial

GF-ACG Code Synthesizer Generation of GF-ACG code according to design specification

GF-ACG Verifier

Formal verification of generated GF-ACG code

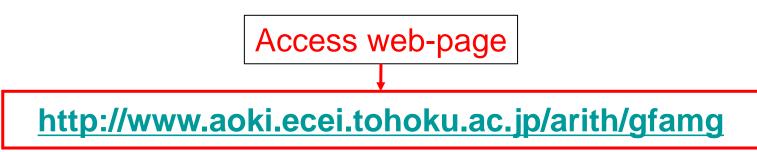
ACG-to-HDL Translator Translation of GF-ACG code into equivalent HDL code

> Verified Multiplier Verilog-HDL code

Performance evaluation

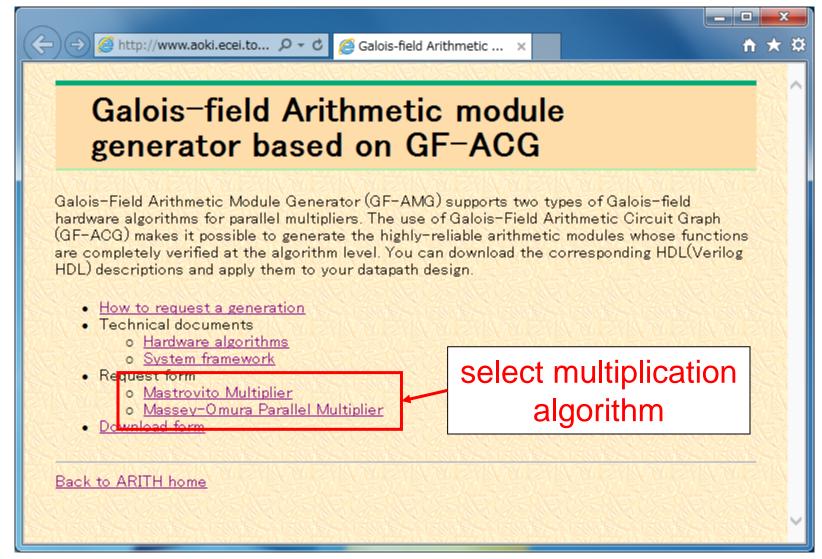
Generation time of Mastrovito multiplier [sec]

					-
	<i>GF</i> (2 ⁸)	<i>GF</i> (2 ¹⁶)	<i>GF</i> (2 ³²)	<i>GF</i> (2 ⁶⁴)	<i>GF</i> (2 ¹²⁸)
Logic simulation	0.279	9,330	N/A	N/A	N/A
Formal verification	3.374	5.188	9.487	19.55	52.61
Generation time of Massey-Omura parallel multiplier [sec]					
	GF(2 ⁸)	GF(2 ¹⁶)	<i>GF</i> (2 ³²)	<i>GF</i> (2 ⁶⁴)	GF(2 ¹²⁸)
Logic simulation	0.460	N/A	N/A	> N/A	N/A
Formal verification	3.618	5.482	16.24	372.5	34,263
4					


Complete simulation of
 $GF(2^{32})$ multiplier was impossibleComplete verification of
 $GF(2^{128})$ multiplier was possible

Linux CPU: Intel Core2 Due E4600 2.40GHz, 7GB Memory Formula manipulation software: Risa/Asir GSIS, TOHOKU UNIVERSITY

Activation of CF-AMC


Stop of service for maintenance Japanese holiday

- Available from August 26
- Explanation using some slides
 - Substitution for demonstration

Website for GF-AMG

Submission of generation request

Ē

← → 🦉 http://www.aoki.ecei.to ター Ċ <i>@</i> Reques	st: Mastrovito mu ×	□ × ↑ ★ ⊅	
Request form: Mastrovito multiplier			
Please fill the following form, and then push the	"submit" button.		
Design specification			
Irreducible polynomial Degree (word length): 2-256 e.g: $x^8+x^4+x^3+x+1 \rightarrow 8, 4, 3, 1$ 32, 7, 3, 2	Input irreducible polynomial		
Your information Name e.g. Taro Yamada Kotaro Okamoto Image: Construction			

Submission of generation request

Ē

← → ← http://www.aoki.ecei.to Ø ▼ Ø	Request: Mastrovito mu ×	× ‡
Your information		
Name e.g. Taro Yamada Kotaro Okamoto Affiliation e.g. Foobar University Tohoku University E-mail address	Input your name, affiliation and e-mail address	
NOTE: REQUEST-ID will be sent to e.g. yamada@foobar.ac.jp okamoto@aoki.ecei.tohc	o the e-mail address.	
License agreement	Arithmetic Module	

Submission of generation request

Ē

(←) ② http://www.aoki.ecei.to ♀ ▾ ♂ ② Request: Mastrovito mu ×	↑ ★ ☆		
	^		
License agreement			
By using the arithmetic modules obtained from Arithmetic Module Generator (the "Designs"), you agree to the following terms and conditions.			
The Designs are copyrighted information of Aoki Laboratory ("us"). Use of the Designs, with or without modification, is permitted provided that the following conditions are met:			
WE SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF THE			
Do you agree to the above terms an Agree to license ● Yes ○ No			
Submit - Push "submit" button			
Reals to Calaia field Arithmatic Madula Constant home			
Back to Galois-field Arithmetic Module Generator home	×		

Reception of email

🗊 okamoto@aoki.ecei.tohoku.ac.jp - Sylpheed 3.3.0
ファイル(E) 編集(E) 表示(V) メッセージ(M) ツール(I) 設定(C) ヘルプ(H)
差出人: ARITH research group <arith@aoki.ecei.tohoku.ac.jp> 宛先: Kotaro Okamoto <okamoto@aoki.ecei.tohoku.ac.jp> 件名: Your REQUEST-ID</okamoto@aoki.ecei.tohoku.ac.jp></arith@aoki.ecei.tohoku.ac.jp>
From: ARITH research group <arith@aoki.ecei.tohoku.ac.jp> To: Kotaro Okamoto <okamoto@aoki.ecei.tohoku.ac.jp> Subject: Your REQUEST-ID Date: Fri, 09 Aug 2013 05:03:42 -0000</okamoto@aoki.ecei.tohoku.ac.jp></arith@aoki.ecei.tohoku.ac.jp>
Dear Kotaro Okamoto
Thank you for your request. Your REQUEST-ID is 000018-6379.
http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg/download.py
Requested specification Hardware algorithm: Mastrovito Multiplier Irreducible polynomial: x^32+x^7+x^3+x^2+1
Regards, ARITH research group Computer Structures Laboratory Graduate School of Information Sciences

Submission of REQUEAT-ID

← → Ø http://www.aoki.ecei.to	. ター C 🥥 Download: Galois-field A ×	- □ - ×
Download	form	
Please input the REQUEST-II	D obtained in the <u>request page</u> .	
REQUEST-ID e.g. 012345-6789 000018-6379 ×	Input REQUEST-ID	
submit	Push "submit" button	
Back to Galois-field Arithmeti	<u>c Module Generator home</u>	

Download

¢		□ <u>×</u> ↑ ★ ☆
	Download	- ^
	Following ar chive files contain the design you requested. n Tar+Gzip archive: <u>download</u> n Zip archive: <u>download</u>	
	REQUEST-ID: 000018-6379 Status: Generation succeeded Permented date: 2012 09:00 14:02:42 UST	
	Requested date: 2013-08-09 14:03:42 JST Generated & verified date: 2013-03-07 07:48:52 JST	-
	Requested specification Hardware algorithm: Mastrovito multiplier Irreducible polynomial: x ³² +x ⁷ +x ³ +x ² +1	~

Conclusion and future work

Conclusion

- Hierarchical design of Mastrovito multiplier
- Application to automatic generation system
 - System specification

Multiplication algorithm	Degree for <i>IP</i>
Mastrovito algorithm	From 2 to 256
Massey-Omura algorithm	From 2 to 64

-Website for system

http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg

Future work

Development of advanced module generators for cryptographic datapaths with GF arithmetic circuits gsis, тоноки UNIVERSITY

Thank you for your attention