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プレゼンター
プレゼンテーションのノート
Thank you, chairman. 
Good afternoon, I’m Kotaro Okamoto from Tohoku University, Japan.
My topic today is “A hierarchical graph-based approach to generating formally-proofed Galois-field multipliers.”
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Arithmetic algorithms over Galois fields 

 Demands of high security and reliable systems 
 Cryptography, Error correction code 

– Arithmetic operations over  
Galois Fields (GF) 

 
 Arithmetic algorithms 

 Hardware algorithms for arithmetic operation 
 Determine the performance of arithmetic circuits 
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There are two major difficulties in designing 
arithmetic algorithms based on Galois fields 

プレゼンター
プレゼンテーションのノート
Today, demands of high security and reliable systems are increasing.
In particular, cryptography and error correction codes are essential in those systems.
And arithmetic operations over Galois fields are required in such operations.

When we design such Galois-field arithmetic circuit, we have to consider the arithmetic algorithm.
That is a hardware algorithm for arithmetic operation, and it determines the performance of arithmetic circuits.
So we should consider arithmetic algorithms based on Galois fields.

However, there are two major difficulties in designing arithmetic algorithms based on Galois fields.
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Design issues 

 Lowest-level description using logical expressions 
 Difficult to describe GF arithmetic algorithms by 

conventional HDLs 
 
 
 
 
 
 

 Verification using logic simulation 
 Require a huge simulation time especially for  

arithmetic circuits with large operand lengths 
– Larger-scale multipliers than GF(232) 
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out0[0] = (((((in0[0] & in1[0]) ^ (in0[15] & in1[1])) ^ ((in0[14] &  
   in1[2]) ^ (in0[13] & in1[3]))) ^ (((in0[12] & in1[4]) ^  
   (in0[11] & in1[5])) ^ ((in0[10] & in1[6]) ^ (in0[9] &  
                                          ⋮ 
   in0[14]) ^ in0[12]) & in1[15]))))); 

e.g., GF(216) multiplier 

プレゼンター
プレゼンテーションのノート
First, it is difficult to handle GF arithmetic algorithms by conventional HDLs.
For example, this is a description of a multiplier over GF of 2 to the power of 16. 
As you can see, we have to use lowest-level description using logical expressions.

Second, we need a huge simulation time to verify using the logic simulation.
In particular, we cannot simulate all the inputs of the arithmetic circuits with the large operand lengths.
For example, larger-scale multipliers than GF(2^32).
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Graph-based approach 

Galois-Field Arithmetic Circuit Graph: GF-ACG 
 Represent a GF circuit using arithmetic equations 

based on GFs  
 Hierarchical representation 

 

 Formal verification using computer algebra 
Gröbner basis  
 polynomial reduction 
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Verification time of  
GF(2m) multipliers 

プレゼンター
プレゼンテーションのノート
To solve these problems, we introduce Galois-Field Arithmetic Circuit Graph, GF-ACG.
This is a graph-based representation for arithmetic circuits over Galois fields.
We represent a GF circuit hierarchically using arithmetic equations based on Galois fields.

One major advantage of this approach is (that) we can verify the circuit by formal verification method.
Our verification method uses computer algebra such as Groebner basis and polynomial reduction.

This figure shows the verification time of GF multipliers.
The horizontal axis shows the bit length,
 and the vertical axis shows the verification time.
The blue line shows the verification time using logic simulation, 
 and the red line shows the time of formal verification.
As you can see, the formal verification can reduce the verification time significantly.
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This work 

 Application to automatic generation system 
Galois-Field Arithmetic Module Generator: GF-AMG 
 System producing formally-proofed GF(2m) parallel 

multiplier for any irreducible polynomial 
– Mastrovito and Massey-Omura parallel multipliers 

 
 

5 Verified HDL codes  

Approach  
based on  
GF-ACGs 
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CSACSA
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CSA

module SD_MULTIPLIER(P, X, 
Y);

output TC P;
input TC X, Y;
constraint begin

P.high = 16; P.low = 0;
X.high = 7; X.low = 0;
Y.high = 7; Y.low = 0;

end
assertion P = X * Y;
structure begin

wire SD4_2 B;
wire SD2 PP[];
wire SD2 F;
constraint begin

B.high = 3; B.low = 0;
PP.high = 3; PP.low 
for (i, 0, 3) begin

PP[i].high = i*2
end
F.high = 15; F.low =

end
BOOTH_ENCODE U0 (B,Y);
PPG         
ACCUMULATE   U2 (F,PP);
SD2TC        U3 (P,F);

end
endmodule

Design specification 
Irreducible polynomial 

GF-AMG 

Designers 

プレゼンター
プレゼンテーションのノート
Today, I’d like to apply GF-ACG approach to Galois-Field arithmetic module generator, GF-AMG.
GF-AMG is the automatic generation system producing formally-proofed GF arithmetic circuits.
Given a design specification, 
 this system generates 2 types of typical GF parallel multiplier,
 Mastrovito and Massey-Omura parallel multiplier for any irreducible polynomial.
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Outline 

 Background 
 

Galois-Field Arithmetic Circuit Graph: GF-ACG 
 

 Hierarchical design of Mastrovito multiplier 
 

Galois-Field Arithmetic Module Generator:  
GF-AMG 

 

 Conclusion 
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プレゼンター
プレゼンテーションのノート
This is the outline of today’s talk. 
First, let me explain Galois-Field Arithmetic Circuit Graph, GF-ACG. 
Then, I’ll show you the hierarchical design of Mastrovito multiplier. 
In addition, I’ll show Galois-Field Arithmetic Module Generator, GF-AMG. 
Finally, conclusion and future work. 
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Extension field 

Galois field of order pm: GF(pm)   p: prime number 

 Each field element is a polynomial over GF(p) 
 Addition and multiplication are performed 

modulo irreducible polynomial IP of degree m 
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＋  0 1 β β+1 

0 0 1 β β+1 

1 1 0 β+1 β 

β β β+1 0 1 

β+1 β+1 β 1 0 

×  0 1 β β+1 

0 0 0 0 0 

1 0 1 β β+1 

β 0 β β+1 1 

β+1 0 β+1 1 β 

Multiplication over GF(22) Addition over GF(22) 

e.g., GF(22) = {0, 1, β, β+1},  IP = β2 + β + 1 

プレゼンター
プレゼンテーションのノート
First, I’ll talk about one of the major Galois fields called Extension Field.
This is a Galois field of order p to the power of m. 
The order of a field means the number of field elements.
Each field element is represented by a polynomial over GF of p and the degree of polynomial is less than m.
The operations are defined as polynomial addition and multiplication modulo an irreducible polynomial of degree m.
The irreducible polynomial is a polynomial that cannot be expressed as the product of elements more than 2.

Let me show you an example, addition and multiplication over GF of 2 squared.
In addition, for example 1 plus 1 is 0, because of modulo 2.
In multiplication, β times β is β plus 1, because of modulo IP, β squared plus β plus 1.

We want to design arithmetic circuits based on this kind of GF arithmetic.
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GF-ACG: Galois-Field Arithmetic Circuit Graph 

 
 

 N: set of nodes 
 Node: n = (F, G’) 

– F: function (GF equation) 
– G’: internal structure 

     (GF-ACG) 
 

 E: set of directed edges 
 Directed edge: e = (ns, nd, x) 

– ns: source node 
– nd: destination node 
– x: GF variable 
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GF-ACG: G = (N, E) 

プレゼンター
プレゼンテーションのノート
Now, let me show you the GF-ACG.
A GF-ACG consists of a set of nodes and a set of directed edges.

Each node indicates an arithmetic circuit which has function and internal structure. 
Function is given by GF equations, and internal structure is given by GF-ACG. 

On the other hand, each directed edge is a flow of data between the nodes. 
It consists of a source node, a destination node, and a GF variable.
For example, in a directed edge t0, its source node is n1, its destination node is n2 and its GF variable is t0.

Using this representation, we can manipulate large-scale circuits systematically.
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Formal verification of GF-ACGs 

 Verification is done by checking equivalence 
between the function and the internal structure 
 Function is correct if same function is derived from 

internal structure 
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z = x× y 
t0 + t1 = x× y 
z = t0 + t1 

Solve simultaneous equation by computer algebra 

プレゼンター
プレゼンテーションのノート
Then, I’ll talk about the formal verification of GF-ACGs.
Verification is done by checking equivalence between the function and the internal structure.
The function is correct if same function is derived from internal structure.

For example, this multiplier consists of a function z equals x * y, 
 and this internal structure whose functions are t0 + t1 = x * y and z = t0 + t1.
The correctness is easily checked in this case.

For arbitrary case, we solve the simultaneous equations by computer algebra.
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Outline 

 Background 
 

Galois-Field Arithmetic Circuit Graph: GF-ACG 
 

 Hierarchical design of Mastrovito multiplier 
 Typical GF(2m) parallel multiplier 

 

Galois-Field Arithmetic Module Generator:  
GF-AMG 

 

 Conclusion 

10 

プレゼンター
プレゼンテーションのノート
Then, let me show you the hierarchical design of Mastrovito multiplier.
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Matrix generation part 

Matrix operation part 

 Feature 
GF(2m) parallel multiplier 
 Smallest area 

 

 Structure 
Matrix generation part 

– Generation of matrix Z  
from the input a  

Matrix operation part 
– Calculation of inner product  

of Z and the other input b 

Mastrovito multiplier 
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e.g., GF(24) multiplier  
 for IP = β4 + β + 1 

Hierarchical description for GF-ACG design 

プレゼンター
プレゼンテーションのノート
The Mastrovito multiplier is a parallel multiplier over Galois field,
 and is known as one of the smallest multipliers.

This multiplier is originally composed of matrix generation and matrix operation parts.
Let me show you an example, GF of 2 to the fourth power multiplier. 
Matrix generation part generates an m times m matrix Z from the input a. 
Matrix operation part calculates the inner product of Z and the other input b.

For the GF-ACG design, we have to derive a hierarchical description from the flattened description like this figure.
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Why hierarchical description ? 

 Necessary to derive hierarchical description 
from original flattened description 
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e.g., GF(24) multiplier 

NG! 

OK! 

Number of variables  
increases exponentially  

against bit length 

Top level description Flattened description 

Hierarchical description 

プレゼンター
プレゼンテーションのノート
Here, why do we describe circuits hierarchically?

Let me show you an example, GF of 2 to the fourth power multiplier.
In the flattened description like this, we cannot verify large-scale circuits,
 because the number of variables increases rapidly against the bit length.
On the other hand, in the hierarchical description, we can verify large-scale circuits,
 because the number of variables increases gradually.

So we have to derive a hierarchical description from an original flattened description.
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Nodes and functions for GF-ACG design 
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Node Function 

Multiplier 

    Matrix Generator 

        MG 

    Matrix Operation 

        MO 

        GFA 
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プレゼンター
プレゼンテーションのノート
We succeeded in the hierarchical description.
This table shows the nodes and those functions for the GF-ACG design.
First, the highest level node is “Multiplier”, and the function is represented by this operation.
Then, the second level nodes are “Matrix Generator” and “Matrix Operation”,
 and the third level nodes are “MG”, “MO” and “GFA”.
Finally, the lowest level nodes performing “MG”, “MO” and “GFA” are given by logic gates.
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GF-ACG for GF(24) Mastrovito multiplier 
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プレゼンター
プレゼンテーションのノート
This figure shows the GF-ACGs for Mastovito multiplier over GF of 2 to the fourth power.
This GF-ACG is the highest level description, and consists of “Multiplier”.
Then, this is the second level description, and consists of “Matrix generator” and “Matrix operation”.
This is the third level description, and consists of 3 “MG”, 4 “MO” and 3 “GFA”.
Finally, this is the lowest level description, and these nodes are logic gates.
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GF-ACG for GF(24) Mastrovito multiplier 
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プレゼンター
プレゼンテーションのノート
This figure shows the GF-ACGs for Mastovito multiplier over GF of 2 to the fourth power.
This GF-ACG is the highest level description, and consists of “Multiplier”.
Then, this is the second level description, and consists of “Matrix generator” and “Matrix operation”.
This is the third level description, and consists of 3 “MG”, 4 “MO” and 3 “GFA”.
Finally, this is the lowest level description, and these nodes are logic gates.
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GF-ACG for GF(24) Mastrovito multiplier 

16 

プレゼンター
プレゼンテーションのノート
This figure shows the GF-ACGs for Mastovito multiplier over GF of 2 to the fourth power.
This GF-ACG is the highest level description, and consists of “Multiplier”.
Then, this is the second level description, and consists of “Matrix generator” and “Matrix operation”.
This is the third level description, and consists of 3 “MG”, 4 “MO” and 3 “GFA”.
Finally, this is the lowest level description, and these nodes are logic gates.
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GF-ACG for GF(24) Mastrovito multiplier 
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プレゼンター
プレゼンテーションのノート
This figure shows the GF-ACGs for Mastovito multiplier over GF of 2 to the fourth power.
This GF-ACG is the highest level description, and consists of “Multiplier”.
Then, this is the second level description, and consists of “Matrix generator” and “Matrix operation”.
This is the third level description, and consists of 3 “MG”, 4 “MO” and 3 “GFA”.
Finally, this is the lowest level description, and these nodes are logic gates.
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Outline 

 Background 
 

Galois-Field Arithmetic Circuit Graph: GF-ACG 
 

 Hierarchical design of Mastrovito multiplier 
 

Galois-Field Arithmetic Module Generator:  
GF-AMG 
 Application of GF-ACG approach  

 

 Conclusion 
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プレゼンター
プレゼンテーションのノート
Then, let me show you the application of GF-ACG approach to Galois-Field Arithmetic Module Generator, GF-AMG.
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GF(2m) multiplier generator on Website 

 Feature 
 Automatic generation system of GF(2m) multipliers for 

any irreducible polynomial IP  
Generate only formally-proofed HDL codes 

 

 System specification 
 
 
 
 

 Available from website 
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http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg 

Multiplication algorithm Degree for IP 
Mastrovito algorithm From 2 to 256 

Massey-Omura algorithm From 2 to 64 

プレゼンター
プレゼンテーションのノート
GF-AMG is the automatic generation system of GF(2^m) multipliers for any irreducible polynomial.
And this system generates only formally-proofed HDL codes.

This table shows the system specification. 
We can select Mastrovito and Massey-Omura algorithms.
For Mastrovito algorithm, the degree for IP is acceptable from 2 to 256, 
 and for Massey-Omura algorithm, the degree for IP is acceptable from 2 to 64.

In addition, this system is available from website.

http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg
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Block diagram of GF-AMG 
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GF-ACG Code Synthesizer  
Generation of GF-ACG code 

according to design specification 

Design Specification 
Irreducible polynomial 

GF-ACG Verifier 
Formal verification of 

generated GF-ACG code 

ACG-to-HDL Translator 
Translation of GF-ACG code into 

equivalent HDL code 

Verified Multiplier 
Verilog-HDL code 

プレゼンター
プレゼンテーションのノート
This figure shows a block diagram of GF-AMG.
GF-AMG consists of GF-ACG Code Synthesizer, GF-ACG Verifier and ACG-to-HDL Translator.

Given a design specification, 
  first, the GF-ACG Code Synthesizer generates a GF-ACG code according to the design specification.
Then, the GF-ACG verifier verifies the generated GF-ACG code by the formal verification.
Finally, the ACG-to-HDL Translator translates the verified GF-ACG code into the equivalent Verilog-HDL code. 
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Performance  evaluation 
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GF(28)  GF(216)  GF(232)  GF(264)  GF(2128)  
Logic simulation 0.279 9,330 N/A N/A N/A 

Formal verification 3.374 5.188 9.487 19.55 52.61 

Generation time of Mastrovito multiplier [sec] 

GF(28)  GF(216)  GF(232)  GF(264)  GF(2128)  
Logic simulation 0.460 N/A N/A N/A N/A 

Formal verification 3.618 5.482 16.24 372.5 34,263 

Generation time of Massey-Omura parallel multiplier [sec] 

Linux CPU: Intel Core2 Due E4600 2.40GHz, 7GB Memory   
Formula manipulation software: Risa/Asir 

Complete simulation of  
GF(232) multiplier was impossible 

Complete verification of  
GF(2128) multiplier was possible 

プレゼンター
プレゼンテーションのノート
To evaluate the performance of GF-AMG, 
 we generated the two types of multipliers with some typical degrees.
These tables show the generation times for Mastrovito and Massey-Omura parallel multipliers.

For comparison, we also performed the logic simulation using the HDL descriptions.
As the result using the logic simulation,
 we could not succeed the complete simulation of GF(2^32) and larger multipliers.
On the other hand, using our system,
 we could succeed the complete verification even for the multiplier over GF(2^128).
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Demonstration 

 Activation of GF-AMG  
 

 Stop of service for maintenance 
 Japanese holiday 

 

 Available from August 26 
 

 Explanation using some slides 
 Substitution for demonstration 
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http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg 

Access web-page 

プレゼンター
プレゼンテーションのノート
I want to actually activate our system as a demonstration.
However, unfortunately our system stops service for maintenance,  because it is holidays in Japan now. 

Our system is available from August 26.

Therefore, using some slides in substitution for a demonstration, 
 I show you how to use our system.

First, please access this web-page.

http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg
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Website for GF-AMG 

23 

select multiplication 
algorithm 

プレゼンター
プレゼンテーションのノート
This is the website for GF-AMG.
Then,  please select multiplication algorithm.
Here, I select mastrovito multiplier as an example.
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Submission of generation request 
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Input irreducible 
polynomial 

プレゼンター
プレゼンテーションのノート
Please fill the request form and push the “submit” button.
You input an irreducible polynomial.
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Submission of generation request 

25 

Input your name, 
affiliation and 

e-mail address 

プレゼンター
プレゼンテーションのノート
And you input your information.




GSIS,  TOHOKU UNIVERSITY 

Submission of generation request 
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Agree to license 

Push “submit” button 

プレゼンター
プレゼンテーションのノート
Then, you agree to the license, and push the “submit” button.
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Reception of email 
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Get REQUEST-ID 

Access web-page 

プレゼンター
プレゼンテーションのノート
Then, you receive e-mail from GF-AMG.
You get REQUEST-ID, and visit this web-page.
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Submission of REQUEAT-ID 
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Input REQUEST-ID 

Push “submit” button 

プレゼンター
プレゼンテーションのノート
Then, please input the REQUEST-ID and push the “submit” button.
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Download 
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Download 

プレゼンター
プレゼンテーションのノート
Finally, please download.
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Conclusion and future work 

 Conclusion 
 Hierarchical design of Mastrovito multiplier 
 Application to automatic generation system 

– System specification 
 
 
 

– Website for system 
 

 Future work 
 Development of advanced module generators for 

cryptographic datapaths with GF arithmetic circuits 
30 

http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg 

Multiplication algorithm Degree for IP 
Mastrovito algorithm From 2 to 256 

Massey-Omura algorithm From 2 to 64 

プレゼンター
プレゼンテーションのノート
Let me summarize my talk. 
Today, I showed the hierarchical design of Mastrovito multiplier, 
 and the application to the automatic generation system.

In the future, we are going to develop advanced module generators for cryptographic datapaths with GF arithmetic circuits.


http://www.aoki.ecei.tohoku.ac.jp/arith/gfamg
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END 

Thank you for your attention 
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プレゼンター
プレゼンテーションのノート
That’s all. Thank you for your attention.
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