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Side-Channel Information Leakage

m Cryptographic implementations information over side-channels

k

¢

® |Implementation countermeasures:
= Protected logic styles, masking schemes, re-keying schemes, ...

m Focus on: re-keying schemes for symmetric cryptography



Re-Keying Schemes [AB00, MSGR10]

m The success probability of many (physical) attacks depends on the amount
of cryptographic operations which are observable under the same key

m Idea: generate fresh keys from a master key using a re-keying function g

k
r— g
k*
y
P — C —» C

®m Requirements:

= g is DPA/SPA secure
= C is SPA secure
= 1 is a public random nonce



Re-keying Functions

Re-keying functions in the literature:
m Modular multiplication [MSGR10]

g: (GF(2®)[x]/(x? + 1)) = GF(2®)[x]/(x* +1): (k,r) = k-r

Our proposal:

m Leakage resilient pseudo-random function [SPY*09]

Informally:

m A pseudo-random function (PRF) is a function which is computationally
indistinguishable from a truly random function

m A leakage resilient pseudo-random function (LRPRF) is a PRF which
preserves “some” security, even in presence of leakages




Instantiating Block Cipher based PRFs

From classical construction [GGM86], r=bito||bit1||bitz]|,bits]|...||bitm

bito bit; bito bits bity,

BC BC BC BCp-rer-- : BC (»F(k,r)




Instantiating Block Cipher based PRFs

From classical construction [GGM86], r=bito||bit1||bitz]|,bits]|...||bitm

bito bit; bito bits bity,

BC BC BC BCp-rer-- : BC (»F(k,r)
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From efficient construction [SPY*09], r=wordo||word; ||wordz||...||word,

wordg word; words word,

BC BC BCf------- BC F(k,r)



Classical DPA Attack Scenario
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Divide et Impera: attack each S-box output independently



Classical DPA Attack Scenario
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Divide et Impera: attack first S-box output



Classical DPA Attack Scenario
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Divide et Impera: attack second S-box output



Classical DPA Attack Scenario

Divide et Impera:

attack third S-box output



Classical DPA Attack Scenario

Divide et Impera: attack fourth S-box output ...



BC-based PRF DPA Attack Scenario [MSJ12]
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® The implementation is parallel
m The leakage functions /, are all equal

m The subkey words k; are successfully recovered

= Still there is a super-exponential time complexity of an enumeration over N
to recover the full key, in case of AES: 16! = 2* time complexity



Contributions

1. Which block cipher best suits a leakage resilient PRF in hardware?

2. Which performance can be achieved for re-keying applications?

3. Is it possible to mount classical DPA attacks in a localized EM setting?



Efficient Leakage-Resilient PRFs: Block Cipher Design Principles
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Diffusion Box

SP-networks:

1. Define the round structure
2. Define the key schedule



Efficient Leakage-Resilient PRFs: Block Cipher Design Principles

m Design Parameter: number of S-boxes N; and S-box size b

m Design Criteria: best security vs performance trade-off

Ns 16 32 N 16 32
h—24 2% % h—4 oB3F 555
b—g 0% ol pb—g 0288 381

Table: Time complexity in the 15! round Table: Time complexity in the 2" round

Ns 16 32 Ns 16 32

b=4 432 1051 b=4 64 128

b=8 1060 2954 b=8 128 256
Table: # Tr. CPA VS data complexity Table: Datapath size Nsb

= Our Choice: 4-bit PRESENT S-box with Ns = 32



Efficient Leakage-Resilient PRFs: Block Cipher Design Principles

m Design Parameter: Diffusion layer

m Design Criteria: Efficient in hardware and not leaking intermediate values

First option: SMALL-PRESENT pLayer
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Efficient Leakage-Resilient PRFs: Block Cipher Design Principles

m Design Parameter: Diffusion layer

m Design Criteria: Efficient in hardware and not leaking intermediate values

Our proposal: SINGLE-PATTERN
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The relative offset of inputs bits must be preserved after the permutation

= Our Choice: SINGLE-PATTERN



Efficient Leakage-Resilient PRFs: Block Cipher Design Principles

m Design Parameter: Number of rounds
m Design Criteria: Full diffusion (minimum property for re-keying)
m > 3 rounds for Ns =32, b=4

= Our Choice: 5 rounds

m Design Parameter: Key schedule

m Design Criteria: Efficient and not leaking intermediate values

= Our Choice: No key schedule, simple key addition
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Efficient Leakage-Resilient PRFs: Block Cipher Design Principles

To sum up:
m S-box layer: 32 X 4-bit PRESENT S-boxes
m Diffusion layer: SINGLE-PATTERN wire crossing with improved “regularity”
m Key schedule: Simple key addition as for the LED block cipher
® Number of rounds: 5
m [terations: 32 for 128-bit nonces

k k k
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Note: intended for re-keying application only !
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Fresh Re-Keying with Efficient Leakage-Resilient PRFs:

Implementation Results

[ g [ BC [ Area [kGE]J [ Latency [Clock Cycles] ]
[MSGRI0] | 8-bit AES [FWRO05] 10.7 562
Our PRF 8-bit AES [HAHHO6] 7.19 324
Threshold AES [MPLT11] 10.8 266
Our PRF | PRESENT(ser) [RPLPOg] 4.09 643
Our PRF | PRESENT(par) [RPLPO0S] 4.47 131
Threshold PRESENT [PMKT11] 3.59 578
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Fresh Re-Keying with Efficient Leakage-Resilient PRFs:
Localized EM Attacks

m Analysis conducted on a depackaged (VQ100) Xilinx Spartan FPGA 3
m EM activity measured on the frontside

m Univariate profiled CPA attacks

17/23



Fresh Re-Keying with Efficient Leakage-Resilient PRFs:
Localized EM Attacks
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Fresh Re-Keying with Efficient Leakage-Resilient PRFs:
Localized EM Attacks
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Fresh Re-Keying with Efficient Leakage-Resilient PRFs:
Localized EM Attacks

m An optimal key enumeration algorithm [VCGRS13] was used to evaluate
the remaining time complexity after localized EM attacks

m Vet experimental results suggest security bounds > 2% time complexity
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Fresh Re-Keying with Efficient Leakage-Resilient PRFs:
Localized EM Attacks

m An optimal key enumeration algorithm [VCGRS13] was used to evaluate
the remaining time complexity after localized EM attacks

B Yet experimental results suggest security bounds > 2% time complexity
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Conclusion

1. We provided block cipher design principles to best suit an efficient
leakage-resilient PRF in hardware

= Security should be considered at all abstraction levels

2. We showed that efficient leakage resilient PRFs are valid alternatives for
fresh re-keying in hardware

3. We showed that the key-dependent algorithmic noise is still hard to
exploit, even in a localized EM setting (univariate)

Future work:
m Full specification of our BC-like proposal
m Multivariate attacks

m Randomization countermeasure to thwart localized EM attacks
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