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Preface

On behalf of the steering committee, we are glad to welcome you to this second edition
of PROOFS. The �rst edition has been held on Thursday, September 13rd, 2012, i.e. on
the day following CHES at the K.U.Leuven, Belgium.

The goal of the PROOFS workshop series is to promote methodologies that increase
the con�dence level in the security of embedded systems.

Embedded system security too frequently consists in security by obscurity solutions
(except, of course, for high-security solutions produced by specialized �rms, for instance
in the smartcard industry). This has obvious drawbacks:

• it requires costly black-box evaluation,

• there is no certainty about the correctness of the security, etc.

Formal methods allow to increase the trust level of digital systems, especially those
that embed cryptography. They are very appealing, for the following reasons:

• they are mature in theory, and there are o�-the-shelf tried and tested methods and
tools,

• they have been applied both on software and hardware for a long time, mainly for
safety and conformance tests, but also sometimes for security assessment.

Some important security features (random number generation, physically unclonable
functions, side-channel resistance, etc.) rely on analog devices. Their correct functioning
can be ascertained by techniques such as physical modeling and unitary experimental
testing. But in general, physical models are better evaluated by mathematical methods,
which encompass �formal methods�.

An important objective for the PROOFS workshop is to bridge the gap between
both topics, and therefore to pave the way to �security by clarity� in the design and the
evaluation of embedded systems.

The steering committee:
Sylvain Guilley,
Çetin Kaya Koç,
David Naccache,

Akashi Satoh,
Werner Schindler.

The general chair:
Çetin Kaya Koç.

http://perso.telecom-paristech.fr/~guilley/proofs_2012/
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Forewords

For this second edition, the PROOFS workshop will be held on one day, with a
program that includes:

• one invited talk,

• four contributed standard talks,

• three contributed short talks,

• two short talks in the �WiP� (Work in Progress) session.

Enjoy the workshop!

Venue of the PROOFS 2013 workshop: UCSB campus.



Acknowledgements :
We are grateful to Institut MINES/TELECOM � TELECOM-ParisTech and
Secure-IC S.A.S. for the generous sponsorship of the workshop, and to UCSB
Department of Computer Science and Campus Conference Services for the perfect help
in its organization.

The programme committee (PC, listed at page 133) reviewed the papers, using the
easychair conference management system. Each submission has been evaluated by three
PC members. The submissions that involved at least one PC member as co-author have
been evaluated by four PC members (of course excluding those who cosigned the
submission).
Amongst the 12 submissions:

• 4 have been accepted for a regular talk (30 minute speaking time slot),

• 3 have been accepted for a short talk (20 minute speaking time slot), and

• 5 have been rejected.

Up-to-date information can be found on the workshop permanent web site:

http://www.proofs-workshop.org/
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Program of PROOFS

UCSB, USA, CA — Saturday August 24th, 2013

8h30–9h00 Registration, at Corwin Pavilion lobby (same location as the
CHES registration), coffee. The workshop will take place in
Flying A Room

9h00–9h15 Opening – Welcome, presentation of PROOFS 2013

9h15–10h15 Session 1: formal analysis of fault attacks Chair: Rob Bekkers.

• “Formal verification of a software countermeasure against instruc-
tion skip attacks”, by Karine Heydemann, Nicolas Moro, Emmanuelle En-
crenaz and Bruno Robisson.

• “A formal proof of countermeasures against fault injection attacks
on CRT-RSA”, by Pablo Rauzy and Sylvain Guilley.

10h15–10h30 Coffee break

10h30–11h30 Session 2: formal analysis of countermeasures against side-
channel attacks Chair: Jean-Pierre
Seifert.

• “Towards Fresh Re-Keying with Leakage-Resilient PRFs: Cipher
Design Principles and Analysis”, by Sonia Belaid, Fabrizio De Santis, Jo-
hann Heyszl, Stefan Mangard, Marcel Medwed, Jörn-Marc Schmidt, François-
Xavier Standaert and Stefan Tillich.

• “Understanding the Limitations and Improving the Relevance of
SPICE Simulations in Side-Channel Security Evaluations”, by Dina
Kamel, Mathieu Renauld, Denis Flandre and François-Xavier Standaert.

11h30–12h30 Invited keynote talk

• “Better Provability through Computer Architecture”, by Timothy
Sherwood.

12h30–14h00 Lunch

14h00–15h00 Session 3: Formal design methods Chair: Kris Gaj.

• “Formal Design of Composite Physically Unclonable Function”, by
Durga Prasad Sahoo, Debdeep Mukhopadhyay and Rajat Subhra Chakraborty.

• “A hierarchical graph-based approach to generating formally-
proofed Galois-field multipliers”, by Kotaro Okamoto, Naofumi Homma
and Takafumi Aoki.

• “Trojan-Resilient Circuits”, by Christoph Bayer and Jean-Pierre Seifert.

15h00–15h25 “Work in Progress” session

15h25–15h30 Wrap-up
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Formal verification of a software countermeasure
against instruction skip attacks

Karine Heydemann1, Nicolas Moro1,2, Emmanuelle Encrenaz1, and Bruno
Robisson2

1 Laboratoire d’Informatique de Paris 6 (LIP6), UPMC Univ Paris 06
{karine.heydemann,emmanuelle.encrenaz}@lip6.fr, nicolas.moro@etu.upmc.fr

2 Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)
{nicolas.moro,bruno.robisson}@cea.fr

Abstract. Fault attacks against embedded circuits enabled to define
many new attack paths against secure circuits. Every attack path re-
lies on a specific fault model which defines the type of faults that the
attacker can perform. On embedded processors, a fault model in which
an attacker is able to skip an assembly instruction is practical and has
been obtained by using several fault injection means. To handle this is-
sue, some countermeasure schemes which rely on temporal redundancy
have been proposed. Nevertheless, double fault injection in a long enough
time interval is practical and can bypass those countermeasure schemes.
Some fine-grained other countermeasure schemes have been proposed for
specific instructions. However, to the best of our knowledge, no approach
that enables to secure a generic assembly program in order to make it
fault-tolerant to instruction skip attacks has been formally proven yet.
In this paper, we provide a fault-tolerant replacement sequence for every
instruction of the whole Thumb2 instruction set and provide a formal
proof of this fault tolerance. This simple transformation enables to add
a reasonably good security level to an embedded program and makes
practical fault injection attacks much harder to achieve.

Keywords: microcontroller, fault attack, instruction skip, countermeasure, for-
mal proof

1 Introduction

Physical attacks were introduced in the late 1990s as a new way to break cryp-
tosystems. Unlike classical cryptanalysis, they use some weaknesses in the cryp-
tosystems’ implementations as a way to break them. Among them, faults attacks
were introduced in 1997 by Boneh et al. [1]. In this class of attacks, attackers
try to modify a circuit’s environment in order to change its behaviour or induce
faults into its computations [2]. This attack principle was first introduced against
cryptographic circuits but can be used against a larger set of embedded circuits.
Many physical means can be used to induce such faults: laser shots [3] [4], over-
clocking [5], chip underpowering [6], temperature increase [7] or electromagnetic
glitches [4] [8].
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Among fault attacks, three subclasses can be distinguished: differential fault
analysis, safe error and algorithm modifications. Differential fault analysis (DFA)
aims at retrieving some ciphering keys by comparing correct ciphertexts with
ciphertexts obtained from a faulted encryption [1] [9]. Safe-error attacks are
based on the fact that a fault injection may have or not have an impact on the
output [10]. Finally, algorithm modifications target an embedded processor and
aim at injecting faults into an embedded program’s control flow [11] [12].

Those attack schemes rely on an attacker’s fault model which defines the
set of faults an attacker can perform [13,14]. As a consequence, countermeasure
schemes must take this fault model aspect into account. On microcontrollers and
embedded processors, the fault model in which an attacker can skip an assembly
instruction has been observed on different architectures [11] [15] and for different
fault injection means [12] [8] [16]. As a consequence, this fault model is a realistic
threat for an embedded program.

In this paper, we consider this instruction skip fault model and propose a
countermeasure scheme that could enable to secure any assembly code against
instruction skip faults. Some countermeasures based on multiple executions of
a function have already been proposed and can theoretically handle this issue
[2]. However, this kind of high granularity temporal redundancy is vulnerable to
multiple fault attacks. Even with commonly-used low-cost fault injection means,
a high temporal accuracy can be obtained by an attacker, and performing the
same fault injection on several executions of an algorithm is practical [16]. On
the contrary, performing a multiple fault on two instructions separated by a few
clock cycles is significantly harder [17] while still possible. Indeed, it requires
a much more costly fault injection equipment and very high synchronization
capabilities. It is then not yet considered as a threat.

Our approach uses an instruction-scale temporal redundancy to ensure a
fault-tolerant execution of an embedded program. It is based on the statement
that performing two faults on two instructions separated by few clock cycles is
hardly feasible. In this paper, we propose a fault-tolerant replacement sequence
for each instruction of the whole Thumb2 instruction set. We also show how to
formally prove the fault tolerance of replacement sequences by using a model-
checking tool. By using such a fine-grained redundancy scheme, it is then possible
to strengthen any assembly program against fault attacks without any specific
knowledge about it. In the experimental results, we evaluate the overhead in-
duced by fault tolerance and show that it can be reduced by only applying this
countermeasure scheme to the sensitive parts of an implementation.

The rest of this paper is organized as follows. Section 2 introduces our fault
model and gives details about some related research papers. Section 3 introduces
our countermeasure scheme and details our replacement sequences. Section 4
explains the approach we use for the formal proof. Finally, section 5 evaluates
the efficiency of our countermeasure scheme on an AES implementation.
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2 Related works and fault model

This section is dedicated to related works. First, fault models are discussed in
section 2.1. Countermeasure schemes that have previously been proposed are
addressed in section 2.2. Section 2.3 presents some related research papers on
formal verification.

2.1 Fault model

On embedded processors, a fault model in which an attacker can skip an assem-
bly instruction or equivalently replace it by a NOP has been observed on several
architectures and for several fault injection means [13]. On a 8-bit AVR micro-
controller, Schmidt et al. [11] and Balasch et al. [12] obtained instruction skip
effects by using clock glitches. Dehbaoui et al. obtained the same kind of effects
on another 8-bit AVR microcontroller by using electromagnetic glitches [8]. On
a 32-bit ARM9 processor, Barenghi et al. obtained some instruction skip effects
by using voltage glitches. On a more recent 32-bit ARM Cortex-M3 processor,
Trichina et al. were able to perform instruction skips by using laser shots [16].
Moreover, this fault model has also been used as a basis for several cryptanalytic
attacks [18] [14]. As a consequence, it is considered as a common fault model an
attacker may be able to perform [19].

A more generic fault model is the instruction replacement model, in which
NOP replacements correspond to one possible case. In some previous experiments
on an ARM Cortex-M3 processor by using electromagnetic glitches, we have ob-
served a corruption of the instructions binary encodings during the bus transfers
[20] leading to such instruction replacements. Actually, instruction skips corre-
spond to specific cases of instruction replacements: replacing an instruction by
another one that does not affect any useful register has the same effect as a NOP

replacement and so is equivalent to an instruction skip. Many injection means
enable to perform instruction replacement attacks [20] [12]. Nevertheless, even
with very accurate fault injection means, being able to precisely control an in-
struction replacement is a very tough task and, to the best of our knowledge, no
practical attack based on such a fault model has been published yet.

As a conclusion, we consider in this paper that an attacker is able to skip an
instruction.

2.2 Countermeasure schemes

Several countermeasures schemes have been defined to protect embedded pro-
cessor architectures against specific fault models. At a hardware level, many
countermeasures have been proposed. As an example, Nguyen et al. [21] propose
to use integrity checks to ensure that no instruction replacement took place.

Software-only countermeasure schemes, which aim at protecting the assembly
code, are more flexible and avoid any modification of the hardware. Against fault
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attacks, the most common software fault detection approach relies on function-
level temporal redundancy [2]. For example, this principle applied to a crypto-
graphic implementation can be achieved by calling twice the same encryption
algorithm on the same input and then comparing the outputs. For encryption
algorithms, an alternative way is to call the deciphering algorithm on the out-
put of an encryption and to compare its output with the initial input. These
approaches enable fault detection and involves doubling the execution time of
the algorithm. Triplication approaches with voting enabling fault tolerance at
the price of tripling the execution time of the whole algorithm has also been
proposed [2].

At an algorithm level, in [22], Medwed et al. propose a generic approach based
on the use of specific algebraic structures named AN+B codes. Their approach
enables to protect both the control and data flow. An application to an AES
implementation has also been detailed in [23].

At an assembly level, in [17], Barenghi et al. propose three countermea-
sure schemes based on instruction duplication, instruction triplication and par-
ity checking. Their approach enables to ensure a fault detection for the load
instructions against instruction skip or transient data corruption fault models.
Our scheme enables a fault tolerance only against the instruction skip fault model
but for every instruction of the whole considered instruction set. Moreover, our
countermeasure scheme has been formally proven fault tolerant.

2.3 Formal verification of software countermeasures

Formal methods and formal verification tools have been used for cryptographic
protocols’ verification of to check that an implementation could meet the Com-
mon Criteria security specifications [24]. However, to the best of our knowledge,
very few formal proof approaches to check the correctness of software counter-
measure schemes against fault attacks have been proposed yet. The most signifi-
cant contribution has been proposed by Christofi et al. [25]. Their approach aims
at performing a source code level verification of the effectiveness of a counter-
measure scheme on a CRT-RSA implementation by using the Frama-C program
analyzer. In this paper, we formally prove all our proposed countermeasures
against an instruction skip fault model at an assembly level.

3 Countermeasure scheme

The proposed countermeasure scheme aims at ensuring a fault-tolerant execution
of an assembly code against instruction skip faults. The approach we propose re-
lies on providing a formally proven fault-tolerant replacement sequence for each
assembly instruction of a whole instruction set. We chose the ARM Thumb2
instruction set [26] since ARM is a widely used target architecture for embedded
processors. Thumb2 is actually the successor to both ARM and Thumb instruc-
tion sets, and contains both 16-bit and 32-bit instructions. In this section, we
present some of the replacement sequences we have defined for each instruction
of the Thumb2 instruction set. This fine-grained redundancy scheme enables to
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strengthen any assembly code against fault attacks without any specific knowl-
edge about it.

3.1 Instruction classes

We have defined a fault-tolerant replacement sequence for each instruction and
each encoding of the Thumb2 instruction set. This instruction set contains 151
instructions, and each instruction has up to four different encodings. For many
instructions, the replacement sequence is very simple. However, this sequence
can become much more complex for some specific instructions. According to the
replacement sequences found, the instructions in the Thumb2 instruction set can
be divided into three classes. Every class is associated to one kind of replacement
sequence. These three classes are summarized in table 1.

Table 1. Instruction classes in the Thumb2 instruction set

Instruction class Examples Replacement scheme

Idempotent instructions mov r1,r8 Instruction duplication
add r3,r1,r2

Separable instructions add r1,r1,#1 Use of extra registers and decomposition
push {r4,r5,r6} into an idempotent instruction sequence

Specific instructions bl <function> Replacement sequence
it blocks specific to each instruction
adcs r3,r1,r2

The first class is composed of the idempotent instructions which only need to
be duplicated to provide a fault tolerance. The second class gathers the instruc-
tions that are not idempotent but can be replaced by an equivalent sequence
of idempotent instructions. The third class gathers some specific instructions
that cannot easily be replaced by a list of idempotent instructions but for which
a specific replacement sequence is possible. This last class also contains the in-
structions for which no replacement sequence that ensures a fault tolerance and a
correct execution in any case can be provided. The solution for these instructions
is either to avoid the compiler to use them or to use a fault detection approach.
The following section gives more details about those classes. Moreover, it pro-
vides some examples of replacement sequences for every class.

3.2 Individual instruction replacement sequences

Idempotent instructions Idempotent instructions are the instructions that
have the same effect when executed once or twice. If all the source operands are
different from the destination operands, and if the value written into the destina-
tion operands does not depend on the instruction’s location in the code, then the
instruction is said to be idempotent. For such instructions, the countermeasure is
a simple instruction duplication. The overhead for such a duplication is twofold:
an overhead equals to the instruction size in terms of code size and a perfor-
mance overhead that is equal to the time execution time for the instruction.
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Table 2 gives some examples of idempotent instructions and their associated
replacement sequence.

Table 2. Replacement sequences for some idempotent instructions

Instruction Replacement sequence

mov r1,r8 mov r1, r8

(copies r8 into r1) mov r1, r8

ldr r1, [r8, r2] ldr r1, [r8, r2]

(loads the value at the address r8+r2 into r1 ldr r1, [r8, r2]

str r3, [r2, #10] str r3, [r2, #10]

(stores r3 at the address r2+10) str r3, [r2, #10]

add r3,r1,r2 add r3,r1,r2

(puts r1+r2 into r3) add r3,r1,r2

Separable instructions In the considered instruction set, some instructions
are not idempotent but can be replaced by a sequence of fully idempotent in-
structions whose execution gives the same result. Once this separation is per-
formed, each idempotent instruction of the replacement sequence can then be
duplicated. This class gathers the instructions whose destination register is also
a source register. To replace these instruction by a sequence of fully idempotent
instructions, an extra register has to be used. This register has to be available at
this location in the code: any dead register can be used3. Listing 1.1 shows the
replacement sequence for an add r1, r3 instruction. For this class of instruc-
tions, the overhead cost brought by our countermeasure scheme depends on the
instruction to replace. There is an overhead cost in code size, performance and
register pressure (since the replacement sequence needs some extra registers).
For the add r1, r3 instruction example, one extra register is needed and 3 ex-
tra instructions, the overhead cost in terms of code size is between 6 and 10
bytes (depending on the encoding used for the add instruction).

Listing 1.1. Replacement sequence for
the non idempotent add r1, r3 instruc-
tion

1 ; we assume rx is an

2 ; available register

3 mov rx , r1
4 mov rx , r1
5 add r1 , rx , r3
6 add r1 , rx , r3

Listing 1.2. Replacement sequence for
the push {r1, r2, r3, lr} instruction

1 ; the push{} instruction

2 ; is equivalent to the

3 ; stmdb sp!,{} instruction

4 stmdb sp , { r1 , r2 , r3 , l r }
5 stmdb sp , { r1 , r2 , r3 , l r }
6 sub .W rx , sp , #16
7 sub .W rx , sp , #16
8 mov sp , rx
9 mov sp , rx

3 It turns out that, in the ARM calling conventions, the r12 register can be used to
hold intermediate values and does not need to be saved on the stack. Thus, this
register can be used as a temporary register for such replacement scenarios.
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Stack manipulation instructions Some memory access instructions update the
address register before or after (stmdb4/ldmia5) a memory access. As a conse-
quence, this address register is both a source and a destination register for such
an instruction. This is notably the case of the stack manipulation instructions
(push and pop). These instructions respectively write or read on the stack and
decrement or increment the stack pointer. Such instructions can be separated
into a sequence of instructions that only perform one operation at a time, either
a memory access or an address register update. The push instruction can be de-
composed into instructions that first write the register to save on the stack and
then decrement the stack pointer. As decrementing the stack pointer implies
reading and writing the same register, this operation is decomposed into two
steps in order to get a sequence of idempotent instructions. Such a replacement
sequence for the push instruction is detailed on listing 1.2. This replacement
requires 1 extra register and has a code size and performance overhead of 5
instructions.

Listing 1.3. Replacement sequence for umlal rlo, rhi, rn, rm instruction that
performs rhi:rlo = rn*rm + rhi:rlo

1 mrs rt , APSR ; save

2 mrs rt , APSR ; flags

3 umull rx , ry , rn , rm
4 umull rx , ry , rn , rm
5 adds rz , rx , r l o
6 adds rz , rx , r l o
7 addc rx , ry , r h i
8 addc rx , ry , r h i
9 mov r l o , rz

10 mov r l o , rz
11 mov rh i , rx
12 mov rh i , rx
13 msr APSR, r t ; restore

14 mrs APSR, r t ; flags

umlal instruction The umlal instruction multiplies two source registers and then
adds the content of the concatenation of the two 32-bit destination registers. The
final result is written into the two 32-bit destination registers. As a consequence,
this instruction has registers that are both source and destination. However, it
can be decomposed. First, a multiply instruction whose result is a 64-bit value
can be performed. Then the 64-bit addition has to be decomposed into several
instructions. This requires to propagate the carry set by adding the 32 least
significant bits (by using an adds instruction) to the addition of the 32 most
significant bits by using an adc instruction. However the adds instruction sets
the flags whereas the umlal does not: this sequence of instructions is not strictly
equivalent to the umlal instruction and may be wrong if the flags are used after
the umlal instruction without being set. As a consequence, it is necessary to save

4 stmdb stores multiple registers into the memory in a descending direction
5 ldmia loads a memory segment into multiple registers in an ascending direction
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the flags before the sequence and restore them after it. Performing such a saving
requires 4 extra instructions. The corresponding replacement sequence for this
instruction is given in listing 1.3. This countermeasure requires 4 extra registers
and replaces the initial instruction by 14 instructions. This replacement sequence
is actually the most costly one of the whole instruction set, both in term of extra
registers and extra instructions.

Specific instructions Some instructions cannot easily be replaced by a list
of idempotent instructions. These instructions can still be decomposed into an
equivalent sequence of instructions that can be duplicated to enforce a robust
execution. There are also some instructions for which no fault-tolerant coun-
termeasure in any case can be found. Some of them can still be replaced by a
fault-tolerant sequence under some constraints. In this section, we give details
and provide some examples for both kinds of such specific instructions.

bl subroutine call instruction The subroutine call instruction (bl) performs a
jump and writes the return pointer into the link register (r14). Duplicating a
bl instruction would induce two subroutine calls if no attack is performed. A
possible solution is to manually put the return address into the link register and
then perform an unconditional jump. As the Thumb execution mode requires
the last bit of an instruction address to be set, this bit must be set before the
unconditional jump to the subroutine code, as shown on listing 1.4.

Listing 1.4. Replacement sequence for
a bl <function> instruction.

1 ; Thumb mode requires

2 ; the last bit to be set

3 adr ry ,< r e t u r n l a b e l >
4 adr ry ,< r e t u r n l a b e l >
5 add l r , ry , 1
6 add l r , ry , 1
7 b <funct ion>
8 b <funct ion>
9 r e t u r n l a b e l :

Listing 1.5. Replacement sequence for adcs

r1, r2, r3 instruction

1 ; This sequence is valid

2 ; if the flags are not alive

3 mrs rx , APSR ; save

4 mrs rx , APSR ; flags

5 adcs r1 , r2 , r3
6 msr APSR, rx ; restore

7 msr APSR, rx ; flags

8 adcs r1 , r2 , r3

Instructions that both read and write the flags Instructions that read and write
the flags cannot easily be replaced by a fault-tolerant sequence of instructions.
For example, the adsc instruction performs an addition between two source
operands (two registers or one register and an immediate value) and the carry
flag. The result is written into a destination register and the flags (carry, negative,
overflow and zero) are updated. Duplicating such an instruction is not correct
since the second adcs would use the carry set by the first adcs instruction instead
of the initial carry value. If the flags are read before being written whatever the
execution path after the adcs instruction is, then no simple replacement sequence
is possible, the code has to be modified. Otherwise, if the flags are written before
being used again, a replacement sequence is possible. Such a sequence consists in
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saving the flags values before the first adcs instruction and restoring these values
before the second adcs instruction. This replacement sequence is illustrated in
listing 1.5.

Listing 1.6. Example of it block

1 i t te NE
2 addne r1 , r2 , 10
3 eorne r3 , r5 , r1
4 moveq r3 , #10

Listing 1.7. Code equivalent to the it

block above

1 b . eq e l s e
2 add r1 , r2 , 10
3 eor r3 , r5 , r1
4 b cont inuat i on
5 e l s e
6 mov r3 , #10
7 cont inuat i on

Listing 1.8. Code of listing 1.7 strength-
ened with our individual instruction coun-
termeasure scheme

1 b . eq e l s e
2 b . eq e l s e
3 add r1 , r2 , 10
4 add r1 , r2 , 10
5 eor r3 , r5 , r1
6 eor r3 , r5 , r1
7 b cont inuat i on
8 b cont inuat i on
9 e l s e

10 mov r3 , #10
11 mov r3 , #10
12 cont inuat i on

it blocks Thumb2 provides conditional execution of instructions through it

blocks. An it instruction specifies a condition and up to the 4 following instruc-
tions can be conditionally executed according to this condition or its inverse.
it blocks correspond to if-then or if-then-else higher-level constructions and are
useful when the branches of a conditional statement are composed of a limited
number of instructions. Listing 1.6 gives an example of such an it block. The
simplest solution for such blocks is to first transform the it block into an equiv-
alent classical if-then-else structure such as the one presented on listing 1.8 and
then apply the countermeasure scheme to each instruction, as illustrated on list-
ing 1.7. However, we have defined a specific replacement sequence for it blocks
but this replacement has some limitations and can quickly become more costly
than its equivalent form with an if-then-else structure. Due to the lack of space,
this replacement sequence is presented in appendix A.

4 Formal proof of fault tolerance

In this section, we present how we formally prove the fault tolerance specification
for the countermeasure replacement sequences we presented in section 3. Details
about the modelings we use for the proof approach are presented in 4.1 and
proof examples for some replacement sequences are presented in 4.2.

4.1 State machine modeling and specification to prove

A program acts as the application of transformations of the values stored in
the set of registers or in memory. Each instruction of the program acts like a
function whose input is a registers and memory configuration and produces a
new registers and memory configuration. The program can be represented as
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a transition system whose states are registers and memory configurations and
transitions mimic the state transformation applied by the instructions.

Individual instruction modeling Instead of proving the fault tolerance for
a complete program, our model checking approach consists in proving the fault
tolerance for each replacement sequence proposed in our countermeasure scheme.
Indeed, it is sufficient to certify that the output state (register and memory con-
figuration) after the replacement sequence execution (with or without a fault
injection) is equivalent to the normal output state after the initial instruction
execution. As this output state is also the input state for the following instruc-
tion, using such a proof approach certifies that the next instruction will start
from the right configuration. Moreover, this enables to use model checking while
avoiding state-explosion problem.

State machine modeling We can model the execution of a sequence of in-
structions by a transition system TS. We define this transition system as TS =
{S, T, S0, Sf , L}. S is the set of states, T the set of transitions T : S → S, S0

and Sf are the subsets of S which respectively gather the initial states and final
states. The final states from Sf are absorbing states. A state from S is defined by
the value of the different registers (from the set of registers R which includes the
program counter) and processor flags (from the set of flags F ). Each transition
from T is defined by the effect of an instruction on the registers and processor
flags. L is a set of labels which correspond to the values the program counter
can take. An example of such a transition system for the add r1, r2, r3] in-
struction is shown in Fig. 1. To prove that a countermeasure for an instruction i
is robust against a fault, we build two transition systems: a first one for the ini-
tial instruction m(i) and another one for its strengthened replacement sequence
mcm(i).

# input r2, r3, flags

# output r1, flags

pc_init : add r1, r2, r3

pc_final : next_instruction

pc init, pc final ∈ L
(R,F ) is the current state
(R′, F ′) is the next state
t : (R,F ) → (R′, F ′) with
R.pc = pc init
R′.r1 = R.r1 + R.r2
R′.pc = pc final

Fig. 1. Transition system for the add r1, r2, r3 instruction

Fault modeling In any transition system mcm(i), skip fault or data transient fault
may occur. An instruction skip fault is modeled by a transition from a state to
any following one. Such a faulty transition only modifies the program counter. We
add to the whole transition system a skip instruction faulty transition between
every pair of adjacent states. As we assume that only one skip instruction fault
injection may occur, every fault transition is guarded with a boolean which
identifies that a fault has already occurred.
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Flags and registers modeling The set of registers is composed of the general-
purpose registers (r0-r12), the stack pointer (r13), the link register (r14) and
the program counter (r15). The 5 processor flags are: C (carry), N (negative), Z
(zero), V (overflow), Q (saturation). These flags can be set by some instructions
and are used by several others. The conditional jumps are among the instructions
that use those flags. Each flag is modeled as a 1-bit register. All the other registers
are modeled as 4-bit registers. This width is sufficient to model the arithmetic
and logic operations as well as the flags computations and enables to keep a
reasonable complexity for the model checker. Moreover, modeling all the registers
is not necessary since an instruction only reads a subset of the registers and writes
on the destination registers. Besides, according to our fault model, the registers
that are not modified by an instruction cannot be modified by a fault. Thus, for
a given m(i) or mcm(i), the set of registers R is only composed of the subset
of registers that are manipulated by i or its replacement sequence cm(i). Newly
introduced registers in cm(i) are supposed to be dead after the occurrence of
the instruction i in the initial program.

Memory modeling Since in our fault model we assume the memory cannot be
corrupted, modeling the memory is not relevant. To ensure that a write to the
memory took place, we only need to ensure that the corresponding instruction
has been executed at least once. As explained later in this section, we add a
counter variable to m(i) and mcm(i) in order to achieve this. For the loads from
the memory, we use symbolic values as the values cannot be corrupted and they
also do not matter since the formal proof consists in checking the equivalence for
any value. The important point is to give the same symbolic value to any loads
at a given address for the transition system m(i) (when i is a load instruction)
and for mcm(i). This is achieved by adding a variable for each memory address
that is read by i and cm(i) to both transition systems. These variables contain
the needed symbolic values.

Vis model checker We used the Vis model checker6 to prove the fault tolerance
of our countermeasure scheme. This tool can take as input a transition system
described with a subset of the Verilog hardware description language. Using Ver-
ilog is convenient to model transition systems which manipulate registers and
bit vectors. The Vis model checker supports symbolic model checking techniques
which enable to perform the proof in a symbolic way without having to enumer-
ate each value for the registers. The proofs presented in this paper required less
than one second to compute.

Specification to prove To prove the equivalence of the output of an instruction
and its replacement sequence, we prove the validity of logic formulas on the two
modelings. To perform such a proof, we use a specific construction in which the
two transition systems m(i) and mcm(i) have the same values for the set of
registers R (except for the program counter), the set of flags F and the symbolic

6 http://vlsi.colorado.edu/˜vis/
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values (for the memory loads) in their initial states. Such constructions are
presented in Fig. 2, 3 and 4. We need to prove that m(i) and mcm(i) always
reach a final absorbing state. Moreover, we also need to prove that, when m(i)
and mcm(i) reach a final state, the values for the set of alive registers R′ (except
for the program counter) and flags F ′ are similar. Such properties to check are
expressed with the CTL temporal logic.

4.2 Formal proof of fault tolerance for some replacement sequences

PC0

add R1, R3

R1 = R1 + R3

PC = PC1

PC = PC0, R1 = V1, R3 = V3, FLAGS =  FLAGS_VALUE

ADD CM(ADD)

PC0

add R2, R1, R3
R2 = R1 + R3
PC = PC0_1

PC = PC0_2
fault

add R2, R1, R3

R2 = R1 + R3

PC = PC0_2

mov R1, R2

R1 = R2

PC = PC0_3

mov R1, R2

PC = PC1

R1 = R2
PC = PC1

fault

PC = PC0_3

fault

add r2, r1, r3

add r2, r1, r3

mov r1, r2

mov r1, r2

add r1, r3

PC = PC0_1
fault

PC0_1

PC0_2

PC0_3

PC1

PC1

P1: AF(ADD.PC = PC1)
P2: AF(CM(ADD).PC = PC1)
P3: AG(((ADD.PC=PC1)*(CM(ADD).PC=PC1)) =>

ADD.R1 = CM(ADD).R1 &
ADD.FLAGS = CM(ADD).FLAGS)

Fig. 2. Modeling one non idempotent in-
stance of the add instruction and its coun-
termeasure

fault

PC0

PC1

PC = PC1

cpt++

str R3, [R1, R2]

STR

PC = PC0, R1 = V1, R2 = V2, FLAGS =  FLAGS_VALUE, cpt = 0

CM(STR)

str R3, [R1, R2]
cpt++
PC = PC0_bis

PC0

str R3, [R1, R2]

cpt++

PC = PC1

str r3, [r1, r2]
str r3, [r2, r1]

str r3, [r1, r2]

PC1

PC0_bis

PC = PC0_bis

fault

PC = PC1

P1 : AF(STR.PC=PC1)
P2 : AF(CM(STR).PC=PC1)
P3 : AG((STR.PC=PC1 * CM(STR).PC=PC1) =>

(CM(STR).cpt = 2 + CM(STR).cpt = 1))

Fig. 3. Modeling one idempotent instance
of the str instruction and its countermea-
sure

Idempotent and separable instructions The left part of Fig. 2 shows the
state machine corresponding to the transition system for a non-idempotent add
r1,r3 instruction. The program counter is updated and depending on the in-
struction, the registers or the flags may be updated too. The replacement se-
quence uses a dead register r2 and two extra mov instructions to write the result
to the destination register r1. Its transition system is modeled by the state ma-
chine on the right part of Fig. 2. To prove that the replacement sequence is fault
tolerant against a possible instruction skip, both state machines are fed with the
same values for the source registers (r1 and r3) and flags. Then, the validity of
three CTL logic formulas has been checked with the Vis model checker. P1 and
P2 express the fact that in both state machines any path from an initial state
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goes to a final state. P3 expresses the fact that in this final state, for all possible
values in the source registers, the values in r1 and the flags are identical in m(i)
and mcm(i). Fig. 3 presents the transition systems for an idempotent memory
write, an str r3, [r1, r2] instruction, and its replacement sequence. In this
case, as the instruction writes the content of r3 to the memory at the address
r1+r2, no proof is needed on the value inside the registers. We only need to make
sure that at least one str instruction has been executed. A counter variable is
added to the definition of a state. This counter is set to 0 and is incremented by
any transition which corresponds to a str instruction. P1 and P2 express the
fact that any path goes to the last state. P3 expresses the fact that the number
of writes made by the replacement sequence greater or equal to the number of
writes made by the initial instruction (which is equal to 1).

      => ((BL.cpt = 1) * CM(BL).cpt = BL.cpt)))

addr ry, <return_label>

addr ry, <return_label

b @fct

b @fct

add lr, ry, 1

add lr, ry, 1

PC0

PC1

@fct

PC0

PC0_1

PC0_2

PC = PC0 , cpt = 0

cpt++

addr ry, <return_label>

fault
PC = PC0_2

PC = PC0_1
fault

bl @fct

Ry = PC1
PC = PC0_1

Ry = PC1
PC = PC0_2

PC = @fct

LR = PC1

PC = LR

fault

fault
PC = PC0_4

PC = @fct

@fct

cpt++

b @fct

b @fct

PC1

return_label :

PC = PC1
fault

PC = PC0_5
fault

PC = @fct

( PC = <return_label>)

PC0_3

PC0_4

PC0_5

PC = PC0_3
PC = PC0_3

PC = PC0_4

add lr, ry, 1

addr lr, ry, 1

addr ry, <return_label>

LR = Ry + 1

LR = Ry + 1

BL CM(BL)

Properties to be checked

P3 : 

P2 : AF(BL.PC = PC1)

P1 : AF(BL.PC = PC1)

AG( ((BL.PC = PC1) *(CM(BL).PC = PC1))

Fig. 4. Transition systems for the bl instruction and its replacement sequence

Specific instructions

Subroutine call: the bl instruction Figure 4 shows the state machines for the
bl instruction and its replacement sequence. In both corresponding transition
systems, we have added a label @fct to model the target of the subroutine call.
Transitions from a state in which PC = @fct assign the link register to the
PC. Such a transition models the return of the function and also increments a
counter. Then, properties P1 and P2 to be checked by the model checker express
that any path from an initial state goes to a final state. Property P3 expresses
the fact that in a final state the number of calls to the function (the counter
values) are the same. Validity of property P3 ensures that the function has been
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executed only once while validity of P1 and P2 ensures that the control flow
comes back to the calling function.

Instructions that read and write the flags For the adcs instruction and its re-
placement sequence, as presented in listing 1.5, the CTL properties are the same
as the ones that were used for the add instruction. However, the property that
deals with the equality of the destination register and the flags is not valid if a
fault targets the last adcs instruction. Relaxing the constraint on flags equality
(expressed as LIGHT RESULT below) makes this property valid as shown with
the output of the Vis model checker in Fig. 5. To sum up, this countermeasure
can only be used if the flags are not used before being set again after the adcs

instruction.

MC: formula passed - AG(AF(adcs.pc=PC1))

MC: formula passed - AG(AF(cm(adcs).pc=PC1))

MC: formula passed - AG(((adcs.pc=PC1*cm(adcs).pc=PC1)->LIGHT_RESULT=1))

MC: formula failed - AG(((adcs.pc=PC1*cm(adcs).pc=PC1)->RESULT=1))

Fig. 5. VIS Model Checker output for the equivalence checking of the adcs instruction

5 Application to an AES implementation

In this section, we applied our countermeasure scheme to an implementation
of the AES-128 symmetric encryption algorithm. In our implementation, every
round key is calculated before the associated AddRoundKey operation. We pro-
vide an estimation of the overhead cost brought by our countermeasure scheme
and perform an exhaustive instruction skip simulation on an ARM Cortex-M3
microcontroller to confirm the effectiveness of our approach. The chosen target
is an up-to-date 32-bit microcontroller based on the ARM Cortex-M3 processor
[27]. This microcontroller uses an ARMv7-M Harvard architecture and runs the
Thumb2 instruction set [26].

Estimation of the overhead cost The overhead cost in terms of clock cycles
and code size for two implementations that use our countermeasure scheme is
shown on table 3. In the first implementation, the whole code has been strength-
ened with our methodology. Both overhead costs are high with this implemen-
tation. Another approach consists in applying our countermeasure to the last
two rounds. In terms of cryptanalysis, fault injections are supposed to be harder
to exploit if the fault does not target the last two rounds. This last scenario
is just an example of a possible optimization. It enables to reduce the clock
cycles overhead by strengthening some specific parts of an algorithm but some
cryptanalysis attacks may still exist against such an implementation.

The overhead cost brought by our countermeasure scheme is high, but re-
mains comparable to the one brought by classical algorithm triplication or other
software approaches for fault tolerance. However, unlike such classical algorithm
duplication or triplication approaches, our countermeasure scheme should be re-
sistant to double fault attacks in a time interval longer than a few clock cycles.
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Table 3. Countermeasures overhead for an AES implementation

Clock Relative Code Relative
cycles increase size increase

AES - without countermeasure 9595 490 bytes

AES - whole code with CM 20503 113.7 % 1480 bytes 202 %

AES - last two rounds with CM 11374 18.6 % 1874 bytes 282.5 %

6 Conclusion

In this paper, we have presented a countermeasure scheme that enables to
strengthen an embedded program and make it tolerant to instruction skip faults.
In our countermeasure scheme, we have build a fault-tolerant replacement se-
quence for each instruction of the whole Thumb2 instruction set. The instructions
can be separated into three classes, which all have their dedicated replacement
sequences. We have also provided a formal proof in order to guarantee the cor-
rectness and the fault tolerance of our replacement sequences for each class of
instructions.

Finally, we do not claim our scheme enables a full protection against fault
attacks. Nevertheless, such an approach enables to add a reasonably good se-
curity level to an embedded program, without requiring any extra hardware
countermeasure and any specific knowledge about the embedded program. The
overhead cost brought by using such a countermeasure is comparable to the extra
cost brought by using classical algorithm-level temporal redundancy approaches
and can be reduced with a more accurate knowledge about the sensitive parts
that should be protected. Moreover, using a very fine-grained redundancy at the
instruction scale makes the multiple fault attacks less practical with a reasonable
cost equipment.

In future works, we will try to extend the fault model to a global bus corrup-
tion fault model in which data loads from the memory can also be corrupted. This
fault model extension will require some changes in our fault tolerance proofs. Fur-
thermore, we also aim at performing a practical evaluation of our countermeasure
scheme by trying to attack a secured implementation on a real microcontroller
with real fault injection means.
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A Replacement sequence for it blocks

Listing 1.9. Example of it block

1 i t te NE
2 addne r1 , r2 , 10
3 eorne r3 , r5 , r1
4 moveq r3 , #10

Listing 1.10. Second step for replace-
ment of the it block given in listing 1.9

1 i t ??? NE
2 i t ?? NE
3 addne r1 , r2 , 10
4 addne r1 , r2 , 10
5 eorne r3 , r5 , r1
6 i t ??? NE
7 i t ?? NE
8 eorne r3 , r5 , r1
9 moveq r3 , #10

10 moveq r3 , #10

Listing 1.11. First step for replacement
of the it block given in listing 1.9

1 i t ??? NE
2 i t ?? NE
3 addne r1 , r2 , 10
4 addne r1 , r2 , 10
5 eorne r3 , r5 , r1
6 eorne r3 , r5 , r1
7 moveq r3 , #10
8 moveq r3 , #10

Listing 1.12. Replacement sequence of
the it block given in listing 1.9

1 i t t t t NE
2 i t t t NE
3 addne r1 , r2 , 10
4 addne r1 , r2 , 10
5 eorne r3 , r5 , r1
6 i ttee NE
7 itee NE
8 eorne r3 , r5 , r1
9 moveq r3 , #10

10 moveq r3 , #10

Thumb2 provides conditional execution of instructions through it blocks (it
stands for if true). An it instruction specifies a condition and up to the 4 follow-
ing instructions can be conditionally executed according to this condition or its
inverse. it blocks correspond to if-then or if-then-else higher-level constructions.
Such an instruction is useful when the branches of a conditional statement are
composed of a limited number of instructions. Listing 1.9 gives an example of
such an it block. If the condition NE is set, (i.e. if the Z flag has been set by
previous instructions), then the two following instructions (addne and eorne) are
executed. Otherwise, the last two instructions (subeq and moveq) are executed.
The whole it block needs to be considered in order to propose a countermea-
sure. The solution we propose is to first apply our countermeasure scheme to
every instruction of the it block. Every instruction of a replacement sequence
keeps the same condition as the initial instruction. The first it instruction is
duplicated. The second it instructions will specify one instruction less than the
first one. Moreover, they are to be updated depending on the instructions that
will result of the replacement sequence of the initial it block. This step is pre-
sented in listing 1.11. The second step consists in adding some it instructions,
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since it blocks cannot contain more than 4 instructions, as illustrated in 1.10.
Finally, the conditions set in the it instructions need to be updated to match
with the instructions of the it block they define. Listing 1.12 shows the secure
code corresponding to the it block code example given in listing 1.9.

Note that an it instruction should not appear in an it block. Thus, in
case of a fault targeting one of the duplicated it instructions, the code behaves
as if there was only one it instruction. Otherwise, the second it instruction
is executed in the it block defined by the first it instruction. The second it

instruction has actually no effect and is considered as a NOP. However, some
compilers may not accept such a construction. In this case, we have to use
traditional conditional sequences for if-then or if-then-else constructions and
apply our countermeasure scheme to each individual instruction of the resulting
code as presented in Section3.2. Moreover, transforming first the it block into
a classical if-then-else structure and then applying the countermeasure scheme
may induce a smaller overhead cost. Such a construction has been previously
presented in listings 1.7 and 1.8.
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Abstract. In this article, we describe a methodology that aims at ei-
ther breaking or proving the security of CRT-RSA algorithms against
fault injection attacks. In the specific case-study of BellCoRe attacks,
our work bridges a gap between formal proofs and implementation-level
attacks. We apply our results to three versions of CRT-RSA, namely the
naive one, that of Shamir, and that of Aumüller et al. Our findings are
that many attacks are possible on both the naive and the Shamir imple-
mentations, while the implementation of Aumüller et al. is resistant to
all fault attacks with one fault. However, we show that the countermea-
sure is not minimal, since two tests out of seven are redundant and can
simply be removed.

Keywords: RSA (Rivest, Shamir, Adleman [13]), CRT (Chinese Remainder
Theorem), fault injection, BellCoRe (Bell Communications Research) attack,
formal proof, OCaml.

1 Introduction

It is known since 1997 that injecting faults during the computation of CRT-
RSA could yield to malformed signatures that expose the prime factors (p and
q) of the public modulus (N = p · q). Notwithstanding, computing without the
fourfold acceleration conveyed by the CRT is definitely not an option in practical
applications. Therefore, many countermeasures have appeared that consist in
step-wise internal checks during the CRT computation. To our best knowledge,
none of these countermeasures have been proven formally. Thus without surprise,
some of them have been broken, and then patched. The current state-of-the-art
in computing CRT-RSA without exposing p and q relies thus on algorithms
that have been carefully scrutinized by cryptographers. Nonetheless, neither the
hypotheses of the fault attack nor the security itself have been unambiguously
modeled.

This is the purpose of this paper. The difficulties are a priori multiple: in
fault injection attacks, the attacker has an extremely high power because he can
fault any variable. Traditional approaches thus seem to fall short in handling
this problem. Indeed, there are two canonical methodologies: formal and com-
putational proofs. Formal proofs (e.g., in the so-called Dolev-Yao model) do not

28 Proceedings of PROOFS 2013



capture the requirement for faults to preserve some information about one of
the two moduli; indeed, it considers the RSA as a black-box with a key pair.
Computational proofs are way too complicated since the handled numbers are
typically 2, 048 bit long.

The state-of-the-art contains one reference related to the formal proof of
CRT-RSA: it is the work of Christofi, Chetali, Goubin and Vigilant [6]. For
tractability purposes, the proof is conducted on reduced versions of the algo-
rithms parameters. One fault model is chosen authoritatively (the zeroization of
a complete intermediate data), which is a strong assumption. In addition, the
verification is conducted on a pseudo-code, hence concerns about its portability
after compilation into machine-level code. Another reference related to formal
proofs against fault injection attacks is the work of Guo, Mukhopadhyay and
Karri. In [8], they explicit an AES implementation that is provably protected
against differential fault analyses [3]. The approach is purely combinational,
because the faults propagation in AES concerns 32-bit words called columns;
consequently, all fatal faults (and thus all innocuous faults) can be enumerated.

Contributions. Our contribution is also to reach a full fault coverage on CRT-
RSA algorithm, thereby keeping the proof even if the code is transformed (e.g.,
compiled or partitioned in software/hardware). To this end we developed tools
based of symbolic computation in the framework of modular arithmetic, which
enable formal analysis of CRT-RSA and its countermeasures against fault injec-
tion attacks. We apply our methods on three implementations of CRT-RSA: an
unprotected one, one protected by Shamir countermeasure, and one protected by
Aumüller et al. countermeasure. We find many possible fault injections which
enable BellCoRe attacks on an unprotected implementation of the CRT-RSA
computation, as well as on one protected by Shamir countermeasure. We for-
mally prove the security of the Aumüller et al. countermeasure against the Bell-
CoRe attack, under a fault model that considers permanent faults (in memory)
and transient faults (one-time faults, even on copies of the secret key parts),
with or without forcing at zero, and with possibly faults at various locations.
We also simplify Aumüller et al. countermeasure by proving that two out of the
seven tests it consists of are redundant and can be removed.

Organization of the paper. We recall CRT-RSA cryptosystem and the BellCoRe
attack in Sec. 2; still from an historical perspective, we explain how the CRT-
RSA implementation has been amended to withstand more or less efficiently the
BellCoRe attack. Then, in Sec. 3, we define our approach. Sec. 4, Sec. 5, and
Sec. 6 are case studies using the methods developed in Sec. 3 of respectively
an unprotected version of the CRT-RSA computation, a version protected by
Shamir countermeasure, and a version protected by Aumüller et al. countermea-
sure. Conclusions and perspectives are in Sec. 7. To improve the readability of
the article, the longest code portions have been consigned in appendix.
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2 CRT-RSA and the “BellCoRe” attack

This section recaps known results about fault attacks on CRT-RSA (see also [12]
and [15, Chap. 3]). Its purpose is to settle the notions and the associated nota-
tions that will be used in the later sections (that contain novel contributions).

2.1 CRT-RSA

RSA is both an encryption and a signature scheme. It relies on the identity that
for all message 0 ≤ m < N , (md)e ≡ m mod N , where d ≡ e−1 mod ϕ(N),
by the Euler theorem. In this equation, ϕ is the Euler totient function, equal to
ϕ(N) = (p− 1) · (q − 1) when N = p · q is a composite number, product of two
primes p and q. For example, if Alice generates the signature S = md mod N ,
then Bob can verify it by computing Se mod N , which must be equal tom unless
Alice is pretending to know d although she does not. Therefore (N, d) is called
the private key, and (N, e) the public key. In this paper, we are not concerned
about the key generation step of RSA, and simply assume that d is an unknown
number in J1, ϕ(N) = (p− 1) · (q − 1)J. Actually, d can also be chosen equal to

the smallest value e−1 mod λ(n), where λ(n) = (p−1)·(q−1)
gcd(p−1,q−1) is the Carmichael

function. The computation of md mod N can be speeded-up by a factor four
by using the Chinese Remainder Theorem (CRT). Indeed, figures modulo p and
q are twice as short as those modulo N . For example, for 2, 048 bit RSA, p and
q are 1, 024 bit long. The CRT-RSA consists in computing Sp = md mod p
and Sq = md mod q, which can be recombined into S with a limited overhead.
Due to the little Fermat theorem (special case of the Euler theorem when the
modulus is a prime), Sp = (m mod p)d mod (p−1) mod p. This means that in
the computation of Sp, the processed data have 1, 024 bit, and the exponent
itself has 1, 024 bits (instead of 2, 048 bits). Thus the multiplication is four times
faster and the exponentiation eight times faster. However, as there are two such
exponentiations (modulo p and q), the overall CRT-RSA is roughly speaking
four times faster than RSA computed modulo N .

This acceleration justifies that CRT-RSA is always used if the factorization
of N as p · q is known. In CRT-RSA, the private key is a more rich structure
than simply (N, d): it is actually comprised of the 5-tuple (p, q, dp, dq, iq), where:

– dp
.
= d mod (p− 1),

– dq
.
= d mod (q − 1),

– iq
.
= q−1 mod p.

The “naive” CRT-RSA algorithm is presented in Alg. 1. It is straightforward to
check that the signature computed at line 3 belongs to J0, p·q−1K. Consequently,
no reduction modulo N is necessary before returning S.

2.2 BellCoRe attack on CRT-RSA

In 1997, an dreadful remark has been made by Boneh, DeMillo and Lipton [4],
three staff of BellCoRe: Alg. 1 could reveal the secret primes p and q if the

30 Proceedings of PROOFS 2013



Algorithm 1: Naive CRT-RSA

Input : Message m, key (p, q, dp, dq, iq)
Output: Signature md mod N

1 Sp = mdp mod p /* Signature modulo p */

2 Sq = mdq mod q /* Signature modulo q */

3 S = Sq + q · (iq · (Sp − Sq) mod p) /* Recombination */

4 return S

computation is faulted, even in a very random way. The attack can be expressed
as the following proposition.

Proposition 1 (Orignal BellCoRe attack). If the intermediate variable Sp

(resp. Sq) is returned faulted as Ŝp (resp. Ŝq)1, then the attacker gets an erro-

neous signature Ŝ, and is able to recover p (resp. q) as gcd(N,S − Ŝ).

Proof. For all integer x, gcd(N, x) can only take 4 values:

– 1, if N and x are coprime,
– p, if x is a multiple of p,
– q, if x is a multiple of q,
– N , if x is a multiple of both p and q, i.e., of N .

In Alg. 1, if Sp is faulted (i.e., replaced by Ŝp 6= Sp), then S − Ŝ = q ·(
(iq · (Sp − Sq) mod p)− (iq · (Ŝp − Sq) mod p)

)
, and thus gcd(N,S− Ŝ) = q.

If Sq is faulted (i.e., replaced by Ŝq 6= Sq), then S − Ŝ ≡ (Sq − Ŝq) − (q

mod p) · iq · (Sq− Ŝq) ≡ 0 mod p because (q mod p) · iq ≡ 1 mod p. Thus S− Ŝ
is a multiple of p. Additionally, S−Ŝ is not a multiple of q. So, gcd(N,S−Ŝ) = p.

ut

This version of the BellCoRe attack requires that two identical messages with
the same key can be signed; indeed, one signature yields the genuine S while
the other one is perturbed, and thus returns Ŝ. Little later, the BellCoRe attack
has been improved by Joye, Lenstra and Quisquater [10]. This time, the attacker
can recover p or q with one only faulty signature, provided the input m of RSA
is known.

Proposition 2 (One faulty signature BellCoRe attack). If the intermedi-

ate variable Sp (resp. Sq) is returned faulted as Ŝp (resp. Ŝq), then the attacker

gets an erroneous signature Ŝ, and is able to recover p (resp. q) as gcd(N,m−Ŝe)
( with an overwhelming probability).

1 In other papers related to faults, the faulted variables (such as X) are noted either
with a star (X∗) or a tilde (X̃); in this paper, we use a hat, as it can stretch,
hence cover the adequate portion of the variable. For instance, it allows to make an
unambiguous difference between a faulted data raised at some power and a fault on
a data raised at a given power (contrast X̂e with X̂e).
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Proof. By proposition 1, if a fault occurs during the computation of Sp, then

gcd(N,S − Ŝ) = q (most likely). This means that:

– S 6≡ Ŝ mod p, and thus Se 6≡ Ŝe mod p (indeed, if the congruence was true,
we would have e|p− 1, which is very unlikely);

– S ≡ Ŝ mod q, and thus Se ≡ Ŝe mod q;

As Se ≡ m mod N , this proves the result. A symmetrical reasoning can be done
if the fault occurs during the computation of Sq. ut

2.3 Protection of CRT-RSA against BellCoRe attacks

Several protections against the BellCoRe attacks have been proposed. A non-
exhaustive list is given below, and then, the most salient features of these coun-
termeasures are described:

– Naive;
– Obvious countermeasures: no CRT, or with signature verification;
– Shamir [14];
– Aumüller et al. [1];
– Vigilant, original [16] and with some corrections by Coron et al. [7];
– Kim et al. [11].

Obvious countermeasures Fault attacks on RSA can be thwarted simply
by refraining from implementing the CRT. If this is not affordable, then the
signature can be verified before being outputted. Such protection is efficient in
practice, but is criticized for two reasons. First of all, it requires an access to e;
second, the performances are incurred by the extra exponentiation needed for
the verification. This explains why other countermeasures have been devised.

Shamir The CRT-RSA algorithm of Shamir builds on top of the CRT and
introduces, in addition to the two primes p and q, a third factor r. This factor r
is random and small (less than 64 bit long), and thus co-prime with p and q. The
computations are carried out modulo p′ = p · r (resp. modulo q′ = q · r), which
allows for a retrieval of the intended results by reducing them modulo p (resp.
modulo q), and for a verification by a reduction modulo r. Alg. 2 describes one
version of Shamir’s countermeasure.

Aumüller The CRT-RSA algorithm of Aumüller et al. is a variation of that
of Shamir, that is primarily intended to fix two shortcomings. First it removes
the need for d in the signature process, and second, it also checks the recom-
bination step. The countermeasure, given in Alg. 3, introduces, in addition to
p and q, a third prime t. The computations are done modulo p′ = p · t (resp.
modulo q′ = q · t), which allows for a retrieval of the intended results by reducing
them modulo p (resp. modulo q), and for a verification by a reduction modulo t.
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Algorithm 2: Shamir CRT-RSA

Input : Message m, key (p, q, d, iq),
32-bit random prime r

Output: Signature md mod N ,
or error if some fault injection has been detected.

1 p′ = p · r
2 dp = d mod (p− 1) · (r − 1)

3 S′p = mdp mod p′ /* Signature modulo p′ */

4 q′ = q · r
5 dq = d mod (q − 1) · (r − 1)

6 S′q = mdq mod q′ /* Signature modulo q′ */

7 Sp = S′p mod p
8 Sq = S′q mod q
9 S = Sq + q · (iq · (Sp − Sq) mod p) /* Same as in line 3 of Alg. 1 */

10 if S′p 6≡ S′q mod r then
11 return error

12 else
13 return S
14 end

However, the verification is more subtle than for the case of Shamir. In Shamir’s
CRT-RSA (Alg. 2), the verification is symmetrical, in that the computations
modulo p · r and q · r operate on the same object, namely md. In Aumüller et
al.’s CRT-RSA (Alg. 3), the verification is asymmetrical, since the computations
modulo p · t and q · t operate on two different objects, namely mdp mod (t−1) and
mdq mod (t−1). The verification consists in an identity that resembles that of El-
Gamal for instance: (mdp mod (t−1))dq mod (t−1) ≡ (mdq mod (t−1))dp mod (t−1)

mod t. Specifically, if we note S′p the signature modulo p′, then Sp = S mod p
is equal to S′p mod p. Furthermore, let us denote Spt = S′p mod t, Sqt = S′q
mod t, dpt = dp mod (t− 1) and dqt = dq mod (t− 1). It can be checked that

those figures satisfy the identity: S
dqt

pt ≡ S
dpt

qt mod t, because both terms are

equal to mdpt·dqt mod t. The prime t is referred to as a security parameter, as
the probability to pass the test (at line 23 of Alg. 3) is equal to 1/t (i.e., about
2−32), assuming a uniform distribution of the faults. Indeed, this is the proba-
bility to find a large number that, once reduced modulo t, matches a predefined
value.

Alg. 3 does some verifications during the computations, and reports an error
in case a fault injection can cause a malformed signature susceptible of unveiling
p and q. More precisely, an error is returned in either of these seven cases:

1. p′ is not a multiple of p (because this would amount to faulting p in the naive
algorithm)

2. d′p = dp + random1 ·(p−1) is not equal to dp mod (p−1) (because this would
amount to faulting dp in the naive algorithm)
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Algorithm 3: Aumüller CRT-RSA

Input : Message m, key (p, q, dp, dq, iq),
32-bit random prime t

Output: Signature md mod N ,
or error if some fault injection has been detected.

1 p′ = p · t
2 d′p = dp + random1 · (p− 1) /* Against DPA, not fault attacks */

3 S′p = md′p mod p′ /* Signature modulo p′ */
4 if (p′ mod p 6= 0) or (d′p 6≡ dp mod (p− 1)) then
5 return error

6 end

7 q′ = q · t
8 d′q = dq + random2 · (q − 1) /* Against DPA, not fault attacks */

9 S′q = md′q mod q′ /* Signature modulo q′ */
10 if (q′ mod q 6= 0) or (d′q 6≡ dq mod (q − 1)) then
11 return error

12 end

13 Sp = S′p mod p
14 Sq = S′q mod q
15 S = Sq + q · (iq · (Sp − Sq) mod p) /* Same as in line 3 of Alg. 1 */

16 if (S − S′p 6≡ 0 mod p) or (S − S′q 6≡ 0 mod q) then
17 return error

18 end

19 Spt = S′p mod t
20 Sqt = S′q mod t
21 dpt = d′p mod (t− 1)
22 dqt = d′q mod (t− 1)

23 if S
dqt
pt 6≡ S

dpt
qt mod t then

24 return error

25 else
26 return S
27 end
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3. q′ is not a multiple of q (because this would amount to faulting q in the naive
algorithm)

4. d′q = dq + random2 · (q−1) is not equal to dq mod (q−1) (because this would
amount to faulting dq in the naive algorithm)

5. S − S′p mod p is nonzero (because this would amount to faulting the recom-
bination modulo p in the naive algorithm)

6. S − S′q mod q is nonzero (because this would amount to faulting the recom-
bination modulo q in the naive algorithm)

7. S
dq

pt mod t is not equal to S
dp

qt mod t (this checks simultaneously for the
integrity of S′p and S′q)

Notice that the last verification could not have been done on the naive algorithm,
and constitutes the added value for the Aumüller algorithm. These seven cases
are informally assumed to protect the algorithm against the BellCoRe attacks.
The criteria for fault detection is not to detect all faults; for instance, a fault on
the final return of S (line 26) is not detected. However, of course, such a fault is
not exploitable by a BellCoRe attack.

Remark 1. Some parts of the Aumüller algorithm are actually not intended to
protect against fault injection attacks, but against side-channel analysis, such as
differential power analysis (DPA). This is the case of lines 2 and 8 in Alg. 3. They
can be removed if a minimalist protection against only fault injection attacks
is looked for; but as they do not introduce weaknesses, they are simply kept as
such.

Vigilant The CRT-RSA algorithm of Vigilant [16] also considers computations
in a larger ring than Zp (abbreviation for Z/pZ) and Zq, to enable verifications.
In this case, a small random number r is cast, and computations are carried out
in Zp×r2 and Zq×r2 . In addition, the computations are now conducted not on
the plain message m, but on an encoded message m′, built using the CRT as the
solution of those two requirements:

i : m′ ≡ m mod N , and
ii : m′ ≡ 1 + r mod r2.

This system of equations has a single solution modulo N ×r2, because N and r2

are coprime. Such a representation allows to conduct in parallel the functional
CRT-RSA (line i) and a verification (line ii). The verification is elegant, as

it leverages this remarkable equality: (1 + r)dp =
∑dp

i=0

(
dp

i

)
· ri ≡ 1 + dp · r

mod r2. Thus, as opposed to Aumüller et al.’s CRT-RSA, that requires one
exponentiation (line 23 of Alg. 3), the verification of Vigilant’s algorithm adds
only one affine computation (namely 1 + dp mod r2).

The original description of Vigilant’s algorithm involves some trivial compu-
tations on p and q, such as p− 1, q− 1 and p× q. Those can be faulted, in such
a way the BellCoRe attack becomes possible despite all the tests. Thus, a patch

by Coron et al. has been released in [7] to avoid the reuse of p̂− 1, q̂ − 1 and
p̂ · q in the algorithm.
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Kim The authors Kim, Kim, Han and Hong propose in [11] a CRT-RSA algo-
rithm that is based on a collaboration between a customized modular exponen-
tiation and verifications at the recombination level based on Boolean operations.
The underlying protection concepts being radically different from the algorithms
of Shamir, Aumüller and Vigilant, we choose not to detail this interesting coun-
termeasure.

In this paper, we will focus on three implementations, namely the naive one
(Sec. 4), the one protected by Shamir countermeasure (Sec. 5), and the one with
Aumüller et al. countermeasure (Sec. 6).

3 Formal Methods

For all the countermeasures presented in the previous section (Sec. 2), we can see
that no formal proof of resistance against attacks is claimed. Informal arguments
are given, that convince that for some attack scenarii, the attack attempts are
detected hence harmless. Also, an analysis of the probability that an attack
succeeds is carried out, however, this analysis strongly relies on assumptions on
the faults distribution. Last but not least, the algorithms include protections
against both passive side-channel attacks (SPA, DPA) and against active side-
channel attacks, which makes it difficult to analyze for instance the minimal
code to be added for the countermeasure to be correct.

Our goal is to prove that the proposed countermeasures work, i.e., that they
deliver a result that does leak information about neither p nor q (if the im-
plementation is subject to fault injection) exploitable in a BellCoRe attack. In
addition, we wish to reach this goal with the two following assumptions:

– our proof applies to a very general attacker model, and
– our proof applies to any implementation that is a (strict) refinement of the

abstract algorithm.

First, we must define what computation is done, and what is our threat
model.

Definition 1 (CRT-RSA). The CRT-RSA computation takes as input a mes-
sage m, assumed known by the attacker, and a secret key (p, q, dp, dq, iq). Then,
the implementation is free to instantiate any variable, but must return a result
equal to: S = Sq + q · (iq · (Sp − Sq) mod p), where:

– Sp = mdp mod p, and
– Sq = mdq mod q.

Definition 2 (fault injection). An attacker is able to request RSA computa-
tions, as per Definition 1. During the computation, the attacker can modify any
intermediate value by setting it to either a random value or zero. At the end of
the computation the attacker can read the result.
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Of course, the attacker cannot read the intermediate values used during the com-
putation, since the secret key and potentially the modulus factors are used. Such
“whitebox” attack would be too powerful; nonetheless, it is very hard in practice
for an attacker to be able to access intermediate variables, due to protections
and noise in the side-channel leakage (e.g., power consumption, electromagnetic
emanation). Remark that our model only take into account fault injection on
data; the control flow is supposed not to be modifiable.

As a side remark, we notice that the fault injection model of Definition 2
corresponds to that of Vigilant ([16]), with the exception that the conditional
tests can also be faulted. To summarize, an attacker can:

– modify a value in the global memory (permanent fault), and
– modify a value in a local register or bus (transient fault),

but cannot

– inject a permanent fault in the input data (message and secret key), nor
– modify the control flow graph.

The independence of the proofs on the algorithm implementation demands
that the algorithm is described at a high level. The two properties that charac-
terize the relevant level are as follows:

1. The description should be low level enough for the attack to work if protec-
tions are not implemented.

2. Any additional intermediate variable that would appear during refinement
could be the target of an attack, but such a fault would propagate to an
intermediate variable of the high level description, thereby having the same
effect.

From those requirements, we deduce that:

1. The RSA description must exhibit the computation modulo p and q and the
CRT recombination; typically, a completely blackbox description, where the
computations would be realized in one go without intermediate variables, is
not conceivable.

2. However, it can remain abstract, especially for the computational parts2.

In our approach, the protections must thus be considered as an augmentation
of the unprotected code, i.e., a derived version of the code where additional
variables are used. The possibility of an attack on the unprotected code attests
that the algorithm is described at the adequate level, while the impossibility of
an attack (to be proven) on the protected code shows that added protections are
useful in terms of resistance to attacks.
2 For instance a fault in the implementation of the multiplication (or the exponen-

tiation) is either inoffensive, and we don’t need to care about it, or it affects the
result of the multiplication (or the exponentiation), and our model take it into ac-
count without going into the details of how the multiplication (or exponentiation)
is computed.
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Remark 2. The algorithm only exhibit evidence of safety. If after a fault injec-
tion, the algorithm does not simplify to an error detection, then it might only
reveal that some simplification is missing. However, if it does not claim safety,
it produces a simplified occurrence of a possible weakness to be investigated
further.

Several tools are a priori suitable for a formalization of CRT-RSA. PARI/GP
is a specialized computer algebra system, primarily aimed at solving number
theory problems. Although PARI/GP can do a fair amount of symbolic ma-
nipulation, it remains limited compared to systems like Axiom, Magma, Maple,
Mathematica, Maxima, or Reduce. Those last software also fall short to im-
plement automatically number theoretic results like the Euler theorem. This
explains why we developed from scratch a system to reason on modular num-
bers from a formal point of view. Our system is not general, in that it cannot for
instance factorize terms in an expression. However, it is simply able to simplify
recursively what is simplifiable from a set of unambiguous rules. This behavior
happens to be suitable to the problem of resistance to fault attacks, because the
redundancy that is added in the computation is meant to be simplified at the
end (if no fault happened).

We describe the computation by a recursively defined term and we model it
in OCaml [9]3 with an algebraic data type:

type term =

| Zero (* the constant zero *)

| One (* the constant one *)

| Named of string (* a named number with no properties *)

| Num of int (* a number with no properties *)

| Prime of string (* a named prime number *)

| Sum of term list (* a sum of terms *)

| Prod of term list (* a product of terms *)

| Opp of term (* the opposite of a term *)

| Inv of term (* the inverse of a term *)

| Mod of term * term (* the remainder of division of a term by another *)

| Pow of term * term (* the exponentiation of a term by another *)

| Let of string * term * term (* the definition of a variable *)

| Let_ of string * term * term (* the safe definition of a variable *)

| Var of string (* a reference to a variable *)

| If of term * term * term (* a condition *)

There is no difference between Named and Num other than cosmetic, for display
purpose. The Num constructor takes an int to ensure that OCaml sees each of
them as a different value4.

The definition of a variable (Let) consists of a string for the name of that
variable, a term for its value, and a term in which the variable is defined (it writes

3 We can only guarantee the validity of our tools by the simplicity of its code, and by
making it free software (in the near future) so that it can be subject to review.

4 Using a constructor with no argument, Random for instance, is not possible because
OCaml would return true when comparing a Random with a Random.
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like the let x = v in e form, which binds x to the value of the expression v in
the expression e, in the OCaml programming language).

The safe definition of a variable (Let ) is the same thing except that we
assume that there will be no fault in the value term.

An If conditional consists of three terms. Its value is the value of the second
term if the first one is not zero, or of the third term otherwise5.

Such a description of the computation, while abstracting the computational
parts, allows to simplify the defined terms using rules from arithmetic and prop-
erties that we can deduce on the terms, such as being null, being null modulo
another term, or being a multiple of another term.

We implement simplification as an OCaml function based on pattern-matching
on the term. It applies most of the rules from arithmetic in the Z ring, and from
modular arithmetic in the Z/nZ rings. We omit factorization and expansion as
they are not confluent operations in general. We also implement a few theorems
such as the little Fermat’s theorem and its generalization, i.e., Euler’s theorem.
Of course we cannot do integer factorization to compute ϕ in our model so we
raise an exception to handle cases where the exponent is not a product of prime
numbers, but this actually never happens in well formed CRT-RSA computa-
tions, including computations with Shamir or Aumüller et al. countermeasure.

The simplification function is a recursive traversal of the term tree, and each
step is very simple and easily verifiable, thus making it trustworthy. In particular,
it is able to prove Proposition 1 and 2.

Injecting a fault in a computation amounts to replacing a subterm by zero or
by a number with no properties, according to Definition 2. In the former case,
the fault consists in zeroizing an intermediate variable (like in [6]). In the latter
case, the fault consists in assuming that all the properties of the subterm are
lost. Indeed, numbers with remarkable properties are extremely rare and thus
the probability to create a property by a randomizing fault is negligible.

In our model, a fault can occur at any place in the computation. This is mod-
eled by creating a faulted version of the term for each possible fault. To compute
the nth faulted version, we traverse the term tree incrementing a counter at each
recursive call, and when this counter’s value is n, we return the fault (either Zero
or Num(n)). When the computation of the faulted version is finished, the faulted
term is compared to the original one. If they are the same, it means that the
recursive traversing of the term tree was complete and that n is too large, which
means we have generated all possible faulted versions of the term.

The faulted versions of the term we want to study are then used to check
whether the properties required for the BellCoRe attack to be effective are re-
spected.

Example 1. If we have the following term t which represents the computation
a + b × c: Sum([ Named("a") ; Prod([ Named("b") ; Named("c") ]) ]), it
can be faulted in five different ways (using the randomizing fault):

5 Remark: we do not apply any restrictions on the possible fault injections in any of
the three arguments of the If constructor.
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1. Num(1), the final result is faulted;
2. Sum([ Num(2) ; Prod([ Named("b") ; Named("c") ]) ]), a is faulted;
3. Sum([ Named("a") ; Num(3) ]), the result of b× c is faulted;
4. Sum([ Named("a") ; Prod([ Num(4) ; Named("c") ]) ]), b is faulted;
5. Sum([ Named("a") ; Prod([ Named("b") ; Num(5) ]) ]), c is faulted.

If the properties that interest us is to know whether t is congruent with a modulo
b, we can check if Mod(Sum([ t, Opp(a) ]), b) simplifies to Zero. Of course it
will be true for t, but it will only be true for the fifth version of faulted t. If we
had used the zeroing fault, it would also have been true for the third and fourth
versions.

4 Study of an Unprotected CRT-RSA Computation

Here is the description of the naive CRT-RSA computation (Alg. 1). For read-
ability reasons, Named("x") and Prime("x") have been replaced by x. p and q
are prime numbers; m and e are numbers with no properties):

Let_("dp", Mod(Pow(e, Opp(One)), Sum([ p ; Opp(One) ])),

Let_("dq", Mod(Pow(e, Opp(One)), Sum([ q ; Opp(One) ])),

Let_("iq", Mod(Pow(q, Opp(One)), p),

Let("sp", Mod(Pow(m, Var("dp")), p),

Let("sq", Mod(Pow(m, Var("dq")), q),

Sum([ Var("sq")

; Prod([ q

; Mod(Prod([ Var("iq")

; Sum([ Var("sp") ; Opp(Var("sq")) ]) ]),

p) ]) ]) )))))

The first three lines define dp, dq, and iq. As we can see we use Let rather
than Let for these definitions, so the computation of the values of these vari-
ables cannot be faulted (since they are seen as inputs of the algorithm). After
that, Sp and Sq are computed and then recombined in the last expression, as in
Definition 1.

To test if the BellCoRe attack works on a faulted version Ŝ, we perform the
following tests (we note |S| for the simplified version of S):

1. Is |S| equal to |Ŝ|?
2. Is |S mod p| equal to |Ŝ mod p|?
3. Is |S mod q| equal to |Ŝ mod q|?

If the first test is false and at least one of the second and third is true, we
have a BellCoRe attack, as seen in Sec. 2.

There are 27 different possible faults in our model of the unprotected CRT-
RSA, 17 of which allows a BellCoRe attack using the randomizing fault, and 19
with the zeroing fault. These results are obtained almost instantaneously by our
tool.
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As an example, replacing the intermediate variable holding the value of iq ·
(Sp − Sq) mod p in the final expression with zero or a random value makes the
first and second tests false, and the last one true, and thus allows a BellCoRe
attack.

5 Study of the Shamir Countermeasure

The description of the computation of CRT-RSA with Shamir countermeasure
(Alg. 2) can be found in App. A.

Using the same method as for the unprotected implementation of CRT-RSA,
we can prove that on the 75 different possible faults, 21 allows a BellCoRe attack,
whether using a randomizing fault or a zeroing fault (these results are obtained
almost instantaneously by our tool). This is not really surprising, as the test
which is done on line 10 of Alg. 2 does not verify if a fault is injected during the
computations of Sp and Sq, nor during their recombination in S. For instance
zeroing or randomizing the intermediate variable holding the result of Sp − Sq

during the computation of S (line 9 of Alg. 2) result in a BellCoRe attack.

During our study of this countermeasure, we remarked that if the attacker
can modify the value of an intermediate variable only for one use of this variable
(transient fault), we can do more attacks. In practice, it would translate into
faulting the variable when it is read (e.g., in a register or on a bus), rather
than in (persistent) memory. This behavior could also be the effect of a fault
injection in cache, which is later replaced with the good value when it is read from
memory again. To the authors knowledge, these are not impossible situations.
Nonetheless, growing the power of the attacker to take that into account break
some very important assumptions that are classical (sometimes even implicit) in
the literature. It does not matter that the parts of the secret key are stored in
a secure “key container” if their values can be a faulted at read time. Indeed,
allowing this kind of fault enable even more BellCoRe attacks on a CRT-RSA
computation protected by the Shamir countermeasure. For instance, if the value
of p is randomized for the computation of the value of Sp (line 7 of Alg. 2), then

we have S 6= Ŝ, but also S ≡ Ŝ mod q, which enables a BellCoRe attack, as
seen in Sec. 2.

It is often asserted that the countermeasure of Shamir is unpractical due to
its need for d (as mentioned in [1] and [16]), and because there is a possible fault
attack on the recombination, i.e., line 9 of Alg. 2 (as mentioned in [16]). However,
the attack on the recombination can easily be checked, by testing that S−Sp 6≡ 0
mod p and S − Sq 6≡ 0 mod q before returning the result. Notwithstanding, to
our best knowledge, it is difficult to detect the attack our tool found (described
in the previous paragraph), and so the existence of this attack (new, in the sense
it has not been described previously) is a compelling reason for not implementing
Shamir’s CRT-RSA.
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6 Study of the Aumüller et al. Countermeasure

The description of the computation of CRT-RSA with Aumüller et al. counter-
measure (Alg. 3) is quite large and can thus be found in the App. B.

Using the same method as before, we can prove that on the 145 different
possible faults, none allows a BellCoRe attack, whether the fault is zero or
random (these results are obtained in very few seconds by our tools). This is a
proof that the Aumüller et al. countermeasure works when there is one fault6.

We also tried to remove some of the tests that the countermeasure consists
of. It appears that two of them are unnecessary : the first ones of lines 4 and 10
in the Aumüller CRT-RSA as presented in Alg. 3. These two tests are actually
redundant with the two tests of line 16 and the test of line 23 of Alg. 3 which
also verify the integrity of p′ and q′ by using them indirectly. Removing these
tests is not very useful in terms of performances, but their uselessness shows
the need for formal studies in the field of implementation security, even if they
might appear unnatural at first.

Since it allowed more attacks on the Shamir countermeasure, we also tested
the Aumüller et al. countermeasure against transient fault such as described in
Sec. 5. It happens that Aumüller et al. is resistant against such fault injections
too.

Our methods also confirmed that the computation of dp, dq, and iq (in terms
of p, q, and d) must not be part of the algorithm. The countermeasure effectively
needs these three variables to be inputs of the algorithm to work properly. For
instance there is a BellCoRe attack if dq happens to be zeroed. However, even
with dp, dq, and iq as inputs, we can still attempt to attack a CRT-RSA imple-
mentation protected by the Aumüller et al. countermeasure by doing more than
one fault.

Our results are as follows. With more than one fault it is obvious that the
countermeasure can be dodged if one of the fault is a zeroing of an intermediate
variable which is used as condition in one of the useful tests. However we were
able to prove that Aumüller et al. countermeasure is still efficient if there is two
or even three randomizing faults. The computations for two and three faults
took respectively a few minutes and a few dozen of minutes.

7 Conclusions and Perspectives

We have formally proven the resistance of the Aumüller et al. countermeasure
against the BellCoRe attack by fault injection on CRT-RSA. To our knowledge,
it is the first time that a formal proof of security is done for a BellCoRe coun-
termeasure.

6 This result is worthwhile some emphasis: the genuine algorithm of Aumüller is thus
proved resistant against single fault attacks. At the opposite, the CRT-RSA al-
gorithm of Vigilant is not immune to single fault attacks (refer to [7]), and the
corrections suggested in the same paper by Coron et al. have not yet been proved.
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The proof enables us to show that two out of seven of the tests done by
Aumüller et al. countermeasure are unnecessary, thereby simplifying the pro-
tected computation of CRT-RSA.

During our research, we have raised several questions about the assumptions
traditionally made by countermeasures. The possibility of fault at read time
is, in particular, responsible for many vulnerabilities. The possibility of such
fault means that part of the secret key can be faulted (even if only for one
computation). It allows interesting BellCoRe attacks on a computation of CRT-
RSA protected by Shamir countermeasure.

The first of these two points demonstrates the lack of formal studies of fault
injection attack and their countermeasures, while the second one shows the im-
portance of formal proofs in the field of implementation security.

As a first perspective, we would like to address the hardening of software
codes of CRT-RSA under the threat of a bug attack. This attack has been in-
troduced by Biham, Carmeli and Shamir [2] at CRYPTO 2008. It assumes that
a hardware has been trapped in such a way that there exists two integers a and
b, for which the multiplication is incorrect. In this situation, Biham, Carmeli
and Shamir mount an explicit attack scenario where the knowledge of a and b is
leveraged to produce a faulted result, that can lead to a remote BellCoRe attack.
For sure, testing for the correct functionality of the multiplication operation is
impractical (it would amount to an exhaustive verification of 2128 multiplications
on 64 bit computer architectures). Thus, it can be imagined to use a countermea-
sure, like that of Aumüller, to detect a fault (caused logically). Our aim would be
to assess in which respect our fault analysis formal framework allows to validate
the security of the protection. Indeed, a fundamental difference is that the fault
is not necessarily injected at one random place, but can potentially show up at
several places.

As another perspective, we would like to handle the repaired countermeasure
of Vigilant [7] and the countermeasure of Kim [11]. Regarding Vigilant, the
difficulty our verification framework in OCaml shall overcome is to decide how
to inject the remarkable identity (1 + r)dp ≡ 1 + dp · r mod r2: either it is kept
as such such, like an ad hoc theorem (but we need to make sure it is called
only at relevant places, since it is not confluent), or it is made more general
(but we must ascertain that the verification remains tractable). However, this
effort is worthwhile, because the authors themselves say in the conclusion of
their article [7] that:

“Formal proof of the FA-resistance of Vigilant’s scheme including our
countermeasures is still an open (and challenging) issue.”

Regarding the CRT-RSA algorithm from Kim, the computation is very detailed
(it goes down to the multiplication level), and involves Boolean operations (and,
xor, etc.), so more expertise about both arithmetic and logic must be added to
our software.

Eventually, we wish to answer a question raised by Vigilant [16] about the
prime t involved in Aumüller et al. countermeasure:
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“Is it fixed or picked at random in a fixed table?”

The underlying issue is that of replay attacks on CRT-RSA, that are more
complicated to handle; indeed, they would require a formal system such as
ProVerif [5], that is able to prove interactive protocols.

Concerning the tools we developed during our research, they currently only
allow to study fault injection in the data, and not in the control flow, it would be
interesting to enable formal study of fault injections affecting the control flow.
We would also like to make these tools usable by anyone, which will require the
creation of a better DSL for describing computations and attacks, as well as a
nice user interface to our code, which is still in “research code” stage for now.
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A Description of Shamir Implementation of CRT-RSA

For readability purpose, Named("x") and Prime("x") have been replaced by x;
p, q, and r are prime numbers; m, d, and ERROR are numbers with no properties):

Let_("iq", Mod(Pow(q, Opp(One)), p),

Let("p’", Prod([ p ; r ]),

Let("dp", Mod(d, Prod([ Sum([ p ; Opp(One) ]) ; Sum([ r ; Opp(One) ]) ])),

Let("S’p", Mod(Pow(m, Var("dp")), Var("p’")),

Let("q’", Prod([ q ; r ]),

Let("dq", Mod(d, Prod([ Sum([ q ; Opp(One) ]) ; Sum([ r ; Opp(One) ]) ])),

Let("S’q", Mod(Pow(m, Var("dq")), Var("q’")),

Let("Sp", Mod(Var("S’p"), p),

Let("Sq", Mod(Var("S’q"), q),

Let("S", Sum([ Var("Sq")

; Prod([ q

; Mod(Prod([ Var("iq")

; Sum([ Var("Sp") ; Opp(Var("Sq")) ]) ]),

p) ]) ]),

If(Mod(Sum([ Var("S’p") ; Opp(Var("S’q")) ]), r),

ERROR,

Var("S"))))))))))))))

B Description of Aumüller et al. Implementation of
CRT-RSA

For readability purpose Named("x") and Prime("x") have been replaced by x
(m, e, Random1, Random2, and ERROR are numbers with no properties; and p, q,
and t are prime numbers).

Let_("dp", Mod(Pow(e, Opp(One)), Sum([ p ; Opp(One) ])),

Let_("dq", Mod(Pow(e, Opp(One)), Sum([ q ; Opp(One) ])),

Let_("iq", Mod(Pow(q, Opp(One)), p),

Let("p’", Prod([ p ; t ]),

Let("d’p", Sum([ Var("dp") ; Prod([ Random1 ; Sum([ p ; Opp(One) ]) ]) ]),

Let("s’p", Mod(Pow(m, Var("d’p")), Var("p’")),

If(Mod(Var("p’"), p),

ERROR,

If(Mod(Sum([ Var("d’p") ; Opp(Var("dp")) ]), Sum([ p ; Opp(One) ])),

ERROR,

Let("q’", Prod([ q ; t ]),

Let("d’q", Sum([ Var("dq") ; Prod([ Random2 ; Sum([ q ; Opp(One) ]) ]) ]),

Let("s’q", Mod(Pow(m, Var("d’q")), Var("q’")),

If(Mod(Var("q’"), q),

ERROR,

If(Mod(Sum([ Var("d’q") ; Opp(Var("dq")) ]), Sum([ q ; Opp(One) ])),

ERROR,

Let("sp", Mod(Var("s’p"), p),

Let("sq", Mod(Var("s’q"), q),
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Let("S", Sum([ Var("sq")

; Prod([ q

; Mod(Prod([ Var("iq")

; Sum([ Var("sp")

; Opp(Var("sq")) ]) ]), p) ]) ]),

If(Mod(Sum([ Var("S") ; Opp(Var("s’p")) ]), p),

ERROR,

If(Mod(Sum([ Var("S") ; Opp(Var("s’q")) ]), q),

ERROR,

Let("spt", Mod(Var("s’p"), t),

Let("sqt", Mod(Var("s’q"), t),

Let("dpt", Mod(Var("d’p"), Sum([ t ; Opp(One) ])),

Let("dqt", Mod(Var("d’q"), Sum([ t ; Opp(One) ])),

If(Mod(Sum([ Pow(Var("spt"), Var("dqt"))

; Opp(Pow(Var("sqt"), Var("dpt"))) ]), t),

ERROR,

Var("S"))))))))))))))))))))))))
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Abstract. Leakage-resilient cryptography aims at developing new algo-
rithms for which physical security against side-channel attacks can be
formally analyzed. Following the work of Dziembowski and Pietrzak at
FOCS 2008, several symmetric cryptographic primitives have been in-
vestigated in this setting. Most of them can be instantiated with a block
cipher as underlying component. Such an approach naturally raises the
question whether certain block ciphers are better suited for this purpose.
In order to answer this question, we consider a leakage-resilient re-keying
function, and evaluate its security at different abstraction levels. That is,
we study possible attacks exploiting specific features of the algorithmic
description, hardware architecture and physical implementation of this
construction. These evaluations lead to two main outcomes. First, we
complement previous works on leakage-resilient cryptography and fur-
ther specify the conditions under which they actually provide physical
security. Second, we take advantage of our analysis to extract new de-
sign principles for block ciphers to be used in leakage-resilient primitives.
While our investigations focus on side-channel attacks in the first place,
we hope these new design principles will trigger the interest of symmetric
cryptographers to design new block ciphers combining good properties
for secure implementations and security against black box cryptanalysis.

1 Introduction

Securing embedded devices against side-channel attacks is an important chal-
lenge in modern cryptography. Because of their technology-dependent nature,
protections against these attacks usually require combining ideas at different
abstraction levels, e.g. exploiting noise in physical processes and randomness in
hardware/software designs [21]. In the context of symmetric cryptography, a re-
cent and concurrent trend has investigated the opportunities to analyze new
primitives, better suited for physically-secure implementations. Dziembowski
and Pietrzak’s leakage-resilient cryptography is one of the most investigated
models for this purpose [7], and several proposals of pseudorandom generators
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(PRGs)/stream ciphers, pseudorandom functions (PRFs) and pseudorandom per-
mutations (PRPs) have been considered in this setting [6,9,27,35,39,40]. These
new constructions naturally raise interesting open questions regarding the prac-
tical relevance of formal models for physical security analysis. Yet, they are all
based on some kind of re-keying strategies (i.e. reminiscent from Kocher’s early
patents [17]). Hence, and somewhat independent of these modeling issues, it
may very well be that (small variations of) ideas proposed in such theoretical
works actually provide significantly enhanced security against large categories
of “practical attacks”. Since another possible drawback of leakage-resilient cryp-
tography is its significant performance overheads, it naturally suggests an in-
termediate line of research, where the security of leakage-resilient primitives is
analyzed in front of actual side-channel adversaries, in order to mitigate these
overheads. This approach has been recently followed by Medwed et al. for the
case of leakage-resilient PRFs [26]. In this paper, we embrace a similar strategy
and further study the possibilities to design secure and efficient leakage-resilient
PRFs. In particular, we focus on their instantiation using block ciphers, which is
motivated by the large literature on side-channel attacks and countermeasures
for this type of building blocks. In this context, our main goal is to investigate
new design principles that would be best suited for the secure implementation
of such primitives. For this purpose and as a starting point, we analyze the
physical security of a generic block cipher construction, aimed to be used in the
re-keying scheme represented in Fig. 1. This re-keying essentially uses a function
g to re-key a block cipher f with a master key k and a public random nonce r.
For each block of message, a fresh key is computed as k? = gk(r), and then used
to generate the ciphertext c = fk?(m). One important advantage of this scheme
(put forward and analyzed in [25]) is that (informally): (i) from the mathemat-
ical point of view, f has to be cryptographically strong while g only requires
some minimum diffusion properties, (ii) by contrast, from the implementation
point of view f only needs to be secure against Simple Power Analysis (SPA)
, while g has to resist both SPA and Differential Power Analysis (DPA) . The
solution previously proposed in [25] was to use a modular multiplication for g,
which benefits from the feature of being easy to mask [5,11]. Yet, and despite
being promising from a security and performance point of view, this proposal is
quite specific to one countermeasure (namely, masking) that has proved to be
quite effective in software [32], but may turn out to be difficult to implement
in hardware [23]. As a result, we propose to investigate alternative candidates
for the g function, and focus on hardware implementation issues, in order to
increase the versatility of the design space for fresh re-keying.

Our contributions. The CHES 2012 work of Medwed et al. is based on a new
assumption that identical components (e.g. S-boxes) in parallel hardware imple-
mentations leak similarly. It also suggests that the AES may not be the best
block cipher for integration in a leakage-resilient PRF and left a number of ques-
tions open regarding the security of this proposal. In this paper, we contribute to
these issues in two main directions. On one hand, we extend the leakage-resilient
security analysis of [26], paying attention to three different abstraction levels.
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Fig. 1. Fresh re-keying: basic principle.

At the algorithm level, we investigate generic side-channel attacks targeting the
first and second rounds of a re-keying function (and check how much they can
help to break the “identical leakage assumption”). We also use our analysis to
provide a discussion of the tradeoff between the time and data complexity of
such attacks. At the architecture level, we exhibit a possible weakness in the
(realistic) case where an implementation would leak according to a distance-
based leakage model (e.g. the Hamming distance one). We then put forward
different solutions to mitigate the issue. Eventually, at the implementation level,
we study the impact of localized Electro-Magnetic Analysis (EMA) [10,30] for
distinguishing the leakage of different components of our constructions. We use
an FPGA case study to highlight that the resulting (key-dependent) algorith-
mic noise remains difficult to exploit by actual adversaries. On the other hand,
we take advantage of our security evaluations in order to specify the compo-
nents of a block cipher that would be better suited to leakage-resilience than
the AES. Starting from a PRESENT-like structure [2] (a natural candidate for
hardware implementations), the results of our algorithmic-level security anal-
ysis allows determining the size of S-boxes in this cipher, while the result of
our architecture-level security analysis leads to new criteria for the permutation
layer. The latter example is interesting from a methodological point of view,
as it suggests that low-level issues in physical security can sometimes be more
efficiently solved at higher abstraction levels. We claim that the resulting cipher
integrated in the leakage-resilient PRF construction from [26] can lead to secure
and efficient implementations of the fresh re-keying scheme in Fig. 1.

Organization. We start the paper with the description of a generic block ci-
pher for use in leakage-resilient schemes, leaving some parameters open (e.g. the
previously mentioned S-box size and permutation layer). Following, Sec. 3, 4
and 5 contain our security analyzes at different abstraction levels and fix the
open parameters progressively. Eventually, we specify an instance of block ci-
pher based re-keying function in Sec. 6, and detail an open source Hardware
Description Language (HDL) code for an instance of hardware architecture. We
hope that this open source code will stimulate further research and practical
security evaluations of our proposal. Conclusions are in Sec. 7.
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Cautionary note. Our focus is on the side-channel resistance of the proposed
construction. In this context, the first/last encryption rounds of a block cipher
implementation are usually the most critical. We consequently investigate these
rounds as an important step in validating the interest of leakage-resilient PRFs
based on block ciphers. By contrast, we do not make any specific claim regarding
the fact that our proposal is a secure PRF yet. Our hope and belief naturally
is that combining enough of the iterations proposed in this paper can lead to
mathematical security at lower cost than previous proposals, and our perfor-
mance evaluations in Sec. 6 provide good indications that this could indeed be
the case. Meanwhile, we specify our constructions up to the point where its phys-
ical security can be analyzed, and suggest to use it as a possible instance for the
function g in Fig. 1, since it has relaxed mathematical requirements.

2 Towards efficient leakage-resilient PRF designs

The block diagram of our instance of re-keying function g is given in Fig. 2,
where r[0] denotes the 0th word of the public random nonce r in Fig. 1, and the
word size is determined by the S-box size of the underlying cipher used in the re-
keying steps. In the CHES 2012 proposal, each step corresponds to the execution
of the AES Rijndael and the words are 8-bit wide. In the rest of this paper, we
will consider an alternative (generic) cipher design represented in the right part
of the picture, in which the iterations combine a bitwise key addition, an S-
box layer and a permutation layer (aka wire crossing). Intuitively, the improved
physical security of this re-keying function comes from the careful selection of
this plaintexts that can be enforced in tree-based PRFs. Namely, the block cipher
(i.e. the steps) in Fig. 2 can only be queried with inputs of a very specific format,
where each word of r bears the same value (i.e. r[0]||r[0]|| . . . ||r[0] for the first
round). This implies that any divide-and-conquer DPA trying to exploit the
leakage will be affected by a key-dependent algorithmic noise. Besides, if the
leakage functions corresponding to all the S-boxes are identical, they will only
provide information about the master key (e.g. k0) up to a permutation of its
words (see [26] for a detailed analysis of this claim).

As previously mentioned, using this construction for re-keying rather than
directly as a PRF (which would require a secure block cipher) allows relaxing its
mathematical security requirements, leading to the following advantages. First,
the number of rounds in the block cipher can possibly be reduced since this block
cipher essentially needs to fulfill the diffusion criteria detailed in [25]. Second,
the output of the re-keying function will be used as a fresh session key k∗ that
is not public. Hence, the output whitening step of the CHES 2012 construction
is not necessary. For performance reasons, we will also consider a very minimum
key scheduling (inspired by [3,12]), which allows that the recovery of any ith
step key ki does not directly translate into a master key recovery. Given these
choices, the main design questions we will consider in the next sections are:

1. How to select the S-boxes number Ns and bit size b?
2. How to choose the permutation layer?
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Fig. 2. Our instance of re-keying function g.

3. How many block cipher rounds per step are necessary?
4. How many steps are necessary?

The analysis of Sec. 3 will answer the first question. The analysis of Sec. 4 will
allow answering the second question. As for the number of rounds and steps, we
will discuss minimum requirements for fresh re-keying applications in Sec. 4.3.

3 Physical security analysis at the algorithm level

In this section, we investigate the physical security of our generic block cipher
construction in a simple model where the leakage produced by each S-box is
assumed identical. We first refine the security levels provided in [26], by relaxing
the simplifying hypothesis that all key words are pairwise different. Our results
show that efficient design choices still allow preventing low-complexity attacks
targeting the first S-box layer. Next, we focus on the second block cipher round
and highlight possible attacks with practical time complexities. Finally, we ex-
hibit in Sec. 3.3 that despite its limited time complexity, DPA taking advantage
of the second-round leakages may remain difficult because of the bounded data
complexity that is guaranteed by our leakage-resilient construction.

3.1 Analysis of the first S-box layer

Our substitution layer is composed of Ns b-bit S-boxes operating in parallel, as
illustrated in Fig. 3 for Ns = 4 and b = 4. Intuitively, this parallelism combined
with a careful selection of the plaintexts improves security against DPA, since
an attacker may succeed in recovering the set S of the Ns key words, but has no
information to order them as long as the leakage functions Li’s are identical. As
a result, the security analysis of [26] suggests that successful attacks should have
at least the (super-exponential) time complexity of an enumeration over Ns S-
boxes. Yet, in practice one should additionally consider that several key words in
S may share the same value in [0...2b−1]. In this case, the optimistic complexity
Ns! has to be divided by the (factorial of the) multiplicities of each value in S.
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Details about the computations of these multiplicities are given in Appendix A.
The improved attack complexities are given in the left part of Table 1.

Fig. 3. Attacks against the first S-box layer.

3.2 Analysis of the second S-box layer

One important argument in the previous subsection is that it can be compu-
tationally difficult to distinguish the different key words in the set S when the
leakage functions Li’s are identical. In this context, a natural question is to
know whether the second round leakage could not be used to discriminate these
key words with lower complexities. To answer it, we use the exemplary design
of Fig. 4 (given for Ns = 4 and b = 4). For now, we use the permutation of

Fig. 4. Attacks against the second S-box layer.

Small-Present in our analysis [18]. In this case, the second-round S-box inputs
depend on b key words from the multiset S. So an adversary essentially has to
pick these b key words and determine their order. Assuming no key addition
in the second round, the first step is equivalent to the enumeration of the b
combinations of a multiset of cardinal Ns, which complexity is given by [19]:

Ns∑

p=0

(−1)p
∑

1≤i1≤i2≤···≤ip≤Ns

(
Ns + b−mi1 −mi2 − · · · −mip − p− 1

Ns − 1

)
,
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with the mi’s standing for the multiplicities of the values in S. The complexity
of second step is determined as in the previous subsection. The resulting attack
complexities are given in the right part of Table 1. Additionally considering a
key addition in the second round would multiply them by 2b. We conclude that
the large time complexities obtained when only taking advantage of first round
leakages vanish if the second round is targeted.

Table 1. Expected time complexities of attacks targeting the first (left) and the
second (right) S-box layer estimated with Monte Carlo sampling (in log2 scale).

Ns 16 24 32

b = 4 39 66 95
b = 8 44 78 116
b = 12 44 79 118
b = 16 44 79 118

Ns 16 24 32

b = 4 13.4 14.8 15.5
b = 8 28.8 34.4 38.1
b = 12 39.7 50.2 56.5
b = 16 44.3 63.7 73.4

3.3 Time complexity vs. data complexity tradeoff

Since the best attacks exploiting second round leakages do not have a sufficiently
high time complexity for ensuring practical security, we finally investigate the
exploitation of this leakage in the context of practical adversaries with data
complexity bounded to 2b, as guaranteed by design in our leakage-resilient con-
struction. In this case, the main goal is to solve the estimation issue that is
typical from side-channel distinguishers. We will focus on Brier et al.’s Correla-
tion Power Analysis (CPA) to illustrate our claims [4]. Yet, we note that in a
first-order DPA scenario, this distinguisher is actually equivalent to worst-case
template attacks as long as both distinguishers use the same leakage models [16].
Since our following analyzes consider perfect leakage models anyway, our conclu-
sions are reflective of most actual strategies that could be used in practice [22].
In general, a successful CPA requires that an adversary can distinguish a corre-
lation coefficient estimated for the correct key candidate (denoted as ρg) from
correlation coefficients estimated for wrong key candidates (denoted as ρw). In
order to simplify analyses, a usual assumption is to consider ρw = 0 (i.e. that
wrong key candidates give rise to uncorrelated signals) [21]. Further assuming
that the adversary obtains noiseless leakages and that she perfectly knows the
leakage model, we can additionally approximate the maximum correlation ob-
tained for the correct key candidate as ρg ≈ 1√

Ns
. In this simple setting, the

number of traces required to distinguish both distributions is given by [20]:

Nt = 3 + 8 ∗ z21−α
ln2 1+ρg

1−ρg
, (1)

with z1−α the quantile value. When testing Nk key candidates, we typically set
the confidence α to 1

Nk
. This number of key candidates to test for the attack
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strategies described in Sec. 3.2 is given in the left part of Table 2. It directly leads
to the minimum data complexities required for a CPA to be successful for various
parameters Ns and b, given in the right part of the table. For b = 4, b = 8 and
the combination b = 12 Ns = 32, the data complexity needed is larger than the
available 16, 256 and 4096 tolerated by our construction. For b = 12 combined
with Ns 6 24 and b = 16, a sufficient number of traces is available to mount a
successful attack. This naturally suggests that b = 4 is the preferred solution for
security reasons (which comes at the cost of lower performances, since less bits
of r will be operated per step in Fig. 2). The next sections will stick with this
design choice and consider Ns = 32 to prevent first-round attacks1.

Table 2. Left: number of key hypotheses to test for a known key words set (in
log2 scale). Right: Minimum number of traces to a successful CPA.

Ns 16 24 32

b = 4 13.4 14.8 15.5
b = 8 28.8 34.4 38.1
b = 12 39.7 50.2 56.5
b = 16 44.3 63.7 73.4

Ns 16 24 32

b = 4 432 741 1051
b = 8 1060 1966 2954
b = 12 1513 2969 4526
b = 16 1705 3831 5977

4 Physical security analysis at the architecture level

The previous analyzes are essentially independent of the architecture used to
implement our re-keying scheme. In this section, we move towards a lower ab-
straction level and investigate possible attacks taking advantage of a typical
hardware implementation that would implement the operations of our block ci-
pher round in parallel. In this context, an important observation is that CMOS
devices usually leak proportional to the Hamming distance of values which ap-
pear subsequently in a part of the hardware module, e.g. a data bus or register.
As a result, an attack can take advantage of extra information provided by the
combined leakage of the two values (which would not be available in two sepa-
rate attacks on the individual values). We first show that such attacks exist in a
reasonable implementation context, and then discuss how to mitigate them with
an appropriate choice of permutation layer. Finally, we conclude the section with
a short discussion of the minimum number of rounds required for re-keying.
1 Since for b = 4, Nt might be not large enough for the formula of Equation 1 to be

accurate, we also performed the following experiment. We uniformly sampled a 16-
tuple of 4-bit values as hypothesis for the correct key (A) and simulated the observed
signal by adding 15 more random 16-tuples to the first one (B). Then, we sampled
216 tuples of 4-bit values for the incorrect key hypotheses (Ci). Finally, we applied
a Hamming weight leakage function and calculated the 216 correlation coefficients
between (A) and (B), and (B) and (Ci) respectively. The resulting coefficients for the
wrong hypotheses lied between -0.85 and 0.85. Furthermore, over 100 experiments
we observed that on average 18 000 wrong hypotheses yielded a higher ρ than the
correct key. The observed minimum of favored wrong keys was 209 and the maximum
64 800. This experiment identically suggests that a b of no more than four should be
chosen.
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4.1 The Hamming distance issue

As our leakage-resilient design requires the parallel execution of all the S-boxes, a
natural architecture for implementing a re-keying step would consist of a single-
round unit performing key addition, substitution and permutation in a single
clock cycle, whose result is fed back until the required number of rounds is
reached. In a device leaking the Hamming distance, this would mean that there is
combined leakage of two values occurring at the same point in subsequent rounds,
e.g. two round inputs or two S-box outputs. Assuming that the permutation layer
used in the rounds is exactly the one of Small-Present as proposed in Sec. 3.1,
such a Hamming distance leakage would directly lead to improved attacks. The
main issue is that such a permutation layer has the property that the relative
position of a bit within a word after the permutation is dependent on the index
of the S-box the bit originated from. For example for Ns = 4, the first bit
of each word after the permutation originates exclusively from the first S-box.
Considering (as in Sec. 3.1) that the values of the key words are known and
only their order remains unknown, an attacker could further identify (e.g.) the
first key word in the following way. Derive the S-box output using the value of
each key word and calculate the Hamming distance with a word consisting of
the first bit of the input replicated four times. When attacking the power traces
with these hypotheses, only the one for the actual first key word will succeed.
This process can be repeated for all other key word positions using different bits
from the nonce word to calculate the Hamming distance hypothesis. For Ns > b,
the position of the key word cannot be determined uniquely by this attack.
However, their number of possible orderings will be reduced significantly, even
in the optimistic case where these words are all pairwise independent. Before the
attack, each key word could potentially appear in each position of the key, giving
Ns! possible candidates (in this optimistic case). After the attack there will be
b mutually exclusive groups of Ns/b candidates, each belonging to fixed parts of
the key. So only the ordering within the b groups will remain unknown, leading to
((Ns/b)!)

b possible candidates (again in the optimistic case). A straightforward
solution to avoid this issue is to deal with it at the architecture level, i.e. design
an implementation where such Hamming distance leakages do not appear. For
example, one could use multiple registers for this purpose (so that the output of a
round never erases its input). In the next subsection, we change the permutation
layer to mitigate the issue algorithmically.

4.2 Mitigating distance-based leakages with the permutation layer

The described Hamming distance attack is enabled by the structure of the per-
mutation layer. It is therefore interesting to examine alternative permutations
which avoid this particular property but retain the desired diffusion properties.
This means that for each bit of the output of the new permutation, the offset
within its word should not depend on the index of the S-box the bit originated
from. Put another way, all S-box output bits of a specific offset (e.g. all first
bits of the S-box outputs) should end up in the same position of a word after

56 Proceedings of PROOFS 2013



the permutation (e.g. the first bit of a word). The diffusion of the permutation
should still be optimal (as for the permutation of Small-Present). Optimal
diffusion means that full diffusion (i.e. each output bit depends on each input
bit) is reached after at most dlogb(Ns)e rounds of the SP-network2. We have
constructed several such permutations. For example, a fairly general variant for
arbitrary values of Ns and b (with the requirement Ns ≡ 0 (mod b)) is given by:

P (i) = ((i mod b) ∗ (Ns + 1) + (bi/bc mod b) ∗Ns + bi/b2c ∗ b) mod (b ∗Ns).

This permutation connects the first bit of each S-box output to the first bit of a
word after the permutation, the second bit of each S-box output to the second
bit of a word after the permutation, . . . Hence, an attack using the Hamming
distance yields no extra information about the location of the key words.

4.3 Number of rounds per step

In order to keep our construction efficient, it is naturally desirable to minimize
the number of rounds per step. In this respect, let us assume that an adversary
can use two consecutive chunks of r to recover the input and the output of a step
up to a permutation over the S-boxes. If one step does not have full diffusion
(e.g. if it has too few rounds), she should again be able to exclude some positions
for the key bytes and thus reduce the complexity of finding their order. By
contrast, a step with full diffusion would then require to guess the permutation
in the first place (so that nothing can be gained by such an attack anymore).
In the following, we will consequently set as minimum criterion that one step
should have complete diffusion. By using a permutation with optimal diffusion,
dlogb(Ns)e rounds are necessary to reach full diffusion. For 4-bit S-boxes (b = 4),
a choice of 4 < Ns ≤ 16 would require at least two rounds and 16 < Ns ≤ 64
would require at least three rounds per step. A security margin of one or two
rounds could be added depending on the number of S-boxes. Such parameters
are sufficient for ensuring the security of the re-keying scheme in Fig. 1 (since
they fulfill the six conditions stated in [25]). Besides, we note that they also
provide a better mathematical security level than the modular multiplication of
the Africacrypt 2010 proposal (e.g. some non-linearity is provided by the use
of S-boxes). As mentioned in introduction, it is an interesting open problem
to determine the number of rounds required for our construction to become a
mathematically strong PRF.

5 Physical security analysis at the implementation level

In this section, we further move down to low abstraction levels and investigate
the practicality of the “similar leakage” assumption that is probably the most
important one to validate in practice. For this purpose, we consider a prototype
implementation of our leakage-resilient construction on a FPGA, and evaluate

2 Under the assumption that the S-box does not contain structural weaknesses.
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its security against localized Electro-Magnetic (EM) field analysis [13], which
was left as an open problem in [26]. The architecture of the design is detailed in
Appendix B. It implements the first round of our construction in the first step (as
described in Sec. 2), using 32 parallel PRESENT S-boxes and the permutation
layer presented in Sec. 4.2. In order to allow worst-case analysis of our re-keying
function, the architecture additionally provides two operational modes. In a first
(open) mode, it is possible to change each single word of both the master key
k and the random nonce r, keeping all the other words constant. While this is
exactly what is prevented by construction (i.e. only carefully selected plaintexts
are observable by the adversary), this mode was investigated in order to allow
profiling without the impediment of the key-dependent algorithmic noise. In the
second (fixed) mode, the master key is fixed and the word r[i] of the nonce
in the ith step is replicated 32 times to cover the length of the nonce register.
This corresponds to the actual circumstances that an adversary would face when
attacking our leakage-resilient construction. In the rest of the section, we describe
the worst-case profiling together with the selection of points of interests in the
EM maps. Next, we present the results of attacks against our implementation
in fixed mode taking advantage of these worst-case profiles. Finally, we discuss
the relevance of worst-case evaluations and the interpretation of our results.

5.1 Worst-case profiling in open mode

In open mode, the adversary is able to independently observe the EM leakage
characteristic of each subkey at different locations over the chip surface, without
the influence of the key-dependent algorithmic noise (since the untargeted words
can be set to random values). Hence, she can directly profile a leakage model of
each subkey, just as in any other parallel implementation. In order to identify
the univariate leakage of individual subkeys, we recorded 216 measurements and
computed the signal-to-noise ratio (SNR) for each word j, at each location (x, y)

and for each time instant t. That is, SNRj(x, y, t) = σ̂(µ̂0→0,µ̂0→1,...,µ̂F→F )
µ̂(σ̂0→0,σ̂0→1,...,σ̂F→F ) , where

µ̂u→w and σ̂u→w are the maximum likelihood estimators of the mean value and
standard deviation of the leakages at time instant t conditioned on the transition
from the value u to the value w of the target S-box. The 4-bit inputs to the key
and nonce registers were carefully chosen from a 16-bit LFSR, in order to produce
all the possible 256 transitions of a word in the state register exactly 256 times
each. As a result, we obtained 32 SNR maps which are provided in Appendix C.
It can be observed that the leakage of individual key words are clearly bounded
to some confined regions on the chip surface. However, if we consider the leakage
of each subkey as occurring simultaneously during an actual attack, then all the
SNRs overlap significantly, as shown in the left part of Fig. 5. This result can
be easily explained by looking at the placement of our design on the floorplan,
which is shown in the right part of the figure. In fact, contrary to [14] where
constraints on the placement were set, in our case the logic cells on the floorplan
of the FPGA are located only in one large fuzzy region (due to an unconstrained
placement). This region overlaps with the region of high SNR.
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Fig. 5. Left: SNR over the 27×27 chip surface. Right: Placement on the floorplan

Given these preliminary results, the next question is to determine how to
select the Points Of Interests (POIs) that will be used in our attacks. Quite nat-
urally, the previous SNRs considered individually are not optimal in this respect,
since they are based on the implicit assumption of independent noise. Therefore,
we considered two additional criteria in order to better reflect the activity of in-
dividual key words considering the presence of key-dependent algorithmic noise:

C2 = max
SNRj(x, y, t)∑
i6=j SNRi(x, y, t)

, C3 = max
SNRj(x, y, t)

maxi 6=j SNRi(x, y, t)
. (2)

The intuition behind these criteria is that the best POIs should isolate one target
S-box from either all the other S-boxes (on average) or from the “closest” S-box.

5.2 Attacks exploiting worst-case profiles in fixed mode

For the different selections of POIs in the previous section (including the basic
SNR), we built leakage models and then performed 32 CPA attacks in fixed
mode (i.e. for a fixed key, with the nonces defined in Sec. 2), using a fresh set of
measurements. In this context, the data complexity for each attack is bounded to
16. Yet, nothing prevents an adversary to repeatedly measure each of its allowed
input queries in order to get rid of physical noise. Hence, we performed attacks
exploiting increasing number of traces (from 28 to 216) and first observed that
the results were stable from 212 traces on. Next, we had a look at the subkey
ranks (i.e. the position of the correct subkeys in the 32 vectors of 16 candidates
as provided by the attacks). For illustration, we list the ones obtained for the
worst criteria (SNR) and the best one (i.e. C2 or C3 depending on the S-boxes):

Subkey ranks (SNR): [1 5 14 7 6 8 3 1 2 1 1 14 14 1 7 1 6 9 6 15 6 1 1 3 6 16 7 14 8 2 11 1].
Subkey ranks (best): [1 1 14 2 3 4 1 1 2 1 1 7 14 1 7 1 6 6 6 12 1 1 1 3 3 6 2 12 8 1 7 1].

One can directly observe that for a number of S-boxes (namely 9 for the worst
and 13 for the best cases), the correct subkey is ranked first - hence suggesting
that the localized EM profiling indeed allows improved attacks. Yet, looking at
the CPA results more precisely, we also observed that firstly ranked subkeys were
usually slightly better correlated than other candidates. By contrast for badly
ranked subkeys, some of them showed very poor correlation results. The main
consequence of this observation is that enumerating the master key remains a
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computationally intensive task, even in the context where worst-case profiling
is possible. To illustrate this claim, first observe that an underestimated time
complexity for the enumeration can be obtained by computing the product of the
subkey ranks. From the two previous lists, we obtain 264 and 246, respectively.
Improving this lower bound can be done by merging the lists, e.g. the 16 subkey
ranks for 8-bit bytes corresponding to the same two attacks are given by:

Subkey ranks (SNR): [9 202 59 9 7 68 78 26 90 159 6 11 142 112 80 78].
Subkey ranks (best): [1 76 19 1 7 27 78 26 50 107 1 11 35 50 43 36].

leading to refined bounds of 286 and 266, respectively. Intuitively, the better
bounds derive from the fact that when merging dimensions (as an optimal key
enumeration algorithm does [37]), the time complexity significantly increases
every time both subkeys are not highly ranked. Using the rank estimation al-
gorithm in [38], we finally obtained tight bounds for the master key rank as
[2115−2118] and [299−2102]. Quite naturally, one could further consider that the
knowledge of which subkeys are “easy to recover” is an additional outcome of the
worst-case profiling3. In this conservative scenario, the adversary could reduce
the dimension of her enumeration problem (down to 23 and 19, respectively),
but our experiments still lead to security bounds of [289 − 290] and [269 − 270].

5.3 Interpretation of the results

The previous results are encouraging, as they suggest that the master key of our
construction remains hard to enumerate, even in conditions where worst-case
profiling is possible. Despite being difficult to compare (since based on totally
different hardware assumptions), it is worth to note that under similar condi-
tions, the security of a masked implementation would most likely be quite weak
(since the localized electromagnetic measurements would allow obtaining low-
noise leakages for each of the shares [36]). Nevertheless, it is also important to
consider these results with care, as they only correspond to a single implemen-
tation context. In this respect, we emphasize the large number of factors that
could have impact on our conclusions, such as the manufacturing technology,
the distribution of active logic cells on the floorplan, the resolution of the coil,
and the distance and materials between the probe and the leaking circuitry. We
now briefly discuss the interpretation of our experiments with respect to two
important axes, namely (i) what are the possible improvements and (ii) how
representative is worst-case profiling. As far as improvements are concerned,
they could certainly go in two directions. On the one hand, improved attacks
could be considered. The most natural proposal would be to take advantage of
multivariate leakages in order to better discriminate the S-boxes. It raises many
interesting open problems. For example, the selection of POIs could not be based
on SNRs anymore in this case. Best exploiting multivariate information would

3 This is realistic as this information mainly depends on the placement of the S-
boxes in the implementation. By contrast, the information of the correct subkey
ranking depends on the key-dependent algorithmic noise and cannot be considered
as constant for all attacks.
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require to perform the information theoretic evaluations advertised in [34] and
to exploit dimensionality reductions such as, e.g. [1,33]. These evaluations may
turn out to become challenging in view of the huge data sets considered in our
experiments (more than one week of measurements and 400GB of traces). On
the other hand, several solutions to improve the countermeasure could be stud-
ied as well. In this respect, a starting observation is that the discrimination of
S-boxes in our leakage-resilient construction inherently requires some profiling.
Therefore, general questions about the portability of templates (e.g. in front of
nanoscale devices with variability [31]) are particularly relevant in this case. Be-
sides, the investigation of place-and-route constraints that best allow “interleav-
ing” the S-boxes in our design is certainly another interesting scope for further
research. Moving from FPGAs to ASICs could also reveal additional opportuni-
ties to improve the countermeasure. Eventually and if needed, taking advantage
of space randomization such as proposed, e.g. in [28], is yet another possible
track for security enhancement. As far as worst-case profiling is concerned, the
main question is whether similar results could be obtained in the more realistic
scenario where the implementation is in fixed mode for profiling as well. One di-
rect problem is that in this context, the first-round leakages cannot be exploited
as in this section. In fact, the transitions used to compute our SNRs would all
be equivalent up to a permutation in this case, making it impossible to select
POIs for different subkeys. Nevertheless, alternative profiling paths also exist.
One solution would be to “group” similar transitions thanks to a non-bijective
transformation. But the choice of a transformation that adequately captures the
similarity of different transitions is not straightforward (and we can anyway only
loose information by profiling in this way). For example, experiments performed
under a Hamming distance transformation exhibited significantly reduced SNRs
for our prototype. Another solution is to profile second-round leakages. But this
would require building more templates and could also be limited by the bounded
data complexity issues discussed in Sec. 3.2. Other options certainly exist and are
an interesting scope for further research. Meanwhile, we conclude that although
fixed-key profiling may be more annoying to perform in practice, considering
worst-case profiling for reference is certainly a relevant choice for the evaluation
of our countermeasure in view of the improved attacks that could be designed.

6 An open source and generic VHDL code

In order to estimate the costs of our method in terms of speed and size in silicon,
we implemented a leakage-resilient re-keying function in VHDL. We decided to
keep the design as flexible as possible to allow realizing and testing different
configurations. The parameters a designer can set before synthesizing the re-
keying function comprise the number of rounds within a step and the number
of steps to generate a fresh key. Furthermore, both 4-bit PRESENT S-boxes
and 8-bit AES S-boxes can be selected. The designer can additionally choose
the desired bit-size of the data path and hence the size of the key-material
generated. Finally, and as a complement to functional parameters, a tradeoff
between speed and required area can be configured. That is, the implementation
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supports unrolling of rounds, where the overall number of rounds must be a
multiple of those performed in a single clock cycle. Thus, the latency to generate
a fresh key using our construction can be computed as (number of steps) ∗
(number of rounds) / (unrolled rounds) + (one initialization cycle). An overview
of this architecture is given in Fig. 6. The dotted lines in the figure depict possible
extensions of the design that were not used in this paper. For example, the design
is ready for including a final step like a Davies-Meyer transformation and/or
a key expansion that transforms the key between each round. Our synthesis
results for implementations with different configuration options are shown in
Table 3. We targeted the UMC 0.18µm FSA0A C standard-cell library [8] and
did not perform timing optimizations. The first two implementations use our
recommended configuration with two different degrees of round unrolling, while
the third implementation features the absolute minimal options which could
still yield a moderate degree of security. All implementations use the PERSENT
S-box, the linear layer proposed in Sec. 4.2, no key expansion, and no final
transformation in the step4.

Fig. 6. Overview of our open source hardware architecture for fresh re-keying.

It is important to note that 562 cycles for 7,300 GEs correspond to the cost
of a first-order masked implementation for the modular multiplication in [25].
So the performances of our architecture already compare favorably with this one
(moving to higher-order masking naturally makes the comparison even better).
Besides and most importantly, our implementation is a parallel one while the
Africacrypt 2010 one is only 8-bit wide. This means that reaching acceptable
noise levels for the masking countermeasure to become effective requires addi-
tional shuffling, e.g. as proposed in [24] and leading to significant performance

4 Our source codes are available under an open source license on the authors’ home
pages.

62 Proceedings of PROOFS 2013



overheads (in the 10th of thousands cycles). These preliminary investigations
suggest with good confidence that in a hardware context, the fresh re-keying
based the construction we describe in this paper had good potential to lead to a
better performance vs. security tradeoff than a masked modular multiplication.

Table 3. Synthesis results using the UMC 0.18µm FSA0A C library.

Latency Area Clock freq.
S-boxes/steps/rounds/unrolled rounds cycles GE MHz

32/32/5/1 161 7,300 338
32/32/5/5 33 16,828 210
24/20/3/1 61 5,302 354

7 Conclusion

In this paper, we presented an exploratory analysis of the design space for fresh
re-keying opened by the use of leakage-resilient PRFs to prevent side-channel
attacks. Our results provide new guidelines for the choice of block cipher com-
ponents to consider in this context and for their implementation. Admittedly,
the understanding and security evaluation of this type of constructions is still
far from the one of standard protections such as masking and shuffling. Yet, the
preliminary investigations we describe in this paper are promising and suggest
new solutions to build physically secure hardware devices. From the side-channel
security point of view, further optimizing the localized electromagnetic measure-
ments by exploiting multivariate attacks is certainly worth further investigations.
Depending on the strength of these advanced attacks, space-randomized imple-
mentations (where the localization of the S-box executions would vary over time)
could then be designed as well. From a more theoretical point of view, it would
be interesting to investigate whether a PRF could be directly obtained by ex-
tending the number of rounds of our new construction. It would allow to use it
directly as a leakage-resilient primitive rather than for re-keying the AES, and
maybe to obtain additional performance gains.
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A Impact of key words repetitions

Let us denote by S a multiset of Ns key words uniformly distributed in [0..2b−1].
The number of permutations of these key words, or equivalently the complexity
to order them, depends on the multiplicities of these key words in S. We denote
by mj (with 1 ≤ j ≤ 2b − 1) the multiplicity of value j, i.e. the number of
times this value appears in the multiset S. For instance, with S = {3, 3, 5, 8, 8, 8}
(Ns = 6), we have m3 = 2, m5 = 1, m8 = 3 and mj = 0, ∀j ∈ [0, 24−1]\{3, 5, 8}.
Let us additionally denote by Mq

i the random variable representing the number
of multiplicities equal to q when selecting the ith key word (with 1 6 i 6 N).
We can then write the following recursion formula that, under relevant boundary
conditions, gives us the desired probabilities ∀i, q, k ∈ [0..Ns]:

Pr[Mq
i+1 = k] =

k + 1

2b
Pr[Mq

i = k + 1]

+

N∑

l=0

(
Pr[Mq

i = k − 1]
l

2b
+ Pr[Mq

i = k] (1− k + l

2b
)
)

Pr[Mq−1
i = l].

From these probabilities, we can deduce those of the time complexities of attacks
for various parameters Ns and b. In practice, we used Monte Carlo sampling to
evaluate the mean complexities thanks to the multiplicities distribution. That is,
we drew a large (i.e. sufficient to have accurate estimates) number of independent
random variables following a specific law to estimate its expectation using the
law of large numbers.

B Architecture’s Design on a FPGA

Our analysis was conducted on a Xilinx Spartan 3 FPGA device manufactured in
a 90 nm technology. We performed localized magnetic field measurements using
a coil with a resolution of 100µm very closely positioned to the depackaged
circuit’s front side surface. We performed 27 × 27 measurements covering the
surface area confined by the conjunctions of the bonding wires. The architecture
of the design is shown in Fig. 7.
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Fig. 7. Prototype architecture for worst-case EM profiling.
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C SNR maps of the 32 key words over the chip surface
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Understanding the Limitations and Improving

the Relevance of SPICE Simulations in

Side-Channel Security Evaluations

Dina Kamel, Mathieu Renauld, Denis Flandre, François-Xavier Standaert.
ICTEAM/ELEN/Crypto Group, Université catholique de Louvain, Belgium.

Abstract. Simulation is a very powerful tool for hardware designers.
It generally allows the preliminary evaluation of a chip's performances
before its �nal tape out. As security against side-channel attacks is an
increasingly important issue for cryptographic devices, simulation also
becomes a desirable option for preliminary evaluation in this case. How-
ever, its relevance highly depends on the proper modeling of all the attack
peculiarities. For example, several works in the literature directly exploit
SPICE-like simulations without considering measurement peripherals.
But the outcome of such analyses may be questionable, as witnessed by
the recent results of Renauld et al. at CHES 2011, which showed how
far the power traces of an AES S-box implemented using a dynamic
and di�erential logic style fabricated in 65 nm CMOS can lie from their
post-layout simulations. One important di�erence was found in the linear
dependencies between the (simulated and actual) traces and the S-box
input/output bits. While simulations exhibited highly non-linear traces,
actual measurements were much more linear. As linearity is a crucial pa-
rameter for the application of non-pro�led side-channel attacks (which
are only possible under the assumption of �su�ciently linear leakages�),
this observation motivated us to study the reasons of such di�erences.
Consequently, this work discusses the relevance of simulation in security
evaluations, and highlights its dependency on the proper modeling of
measurement setups. For this purpose, we present a generic approach to
build an adequate model to represent measurements artifacts, based upon
real data from equipment providers for our AES S-box case study. Next,
we illustrate the transformation of simulated leakages, from highly non-
linear to reasonably linear, exploiting our model and regression-based
side-channel analysis. While improving the relevance of simulations in
security evaluations, our results also raise doubts regarding the possibil-
ity to design dual-rail implementations with highly non-linear leakages.

1 Introduction

Side-channel attacks are considered an escalating threat to the physical security
of cryptographic devices. These attacks are worrisome for actual applications
since they are relatively cheap, easy to conduct and can be extremely power-
ful (e.g. leading to key recoveries). Generally, side-channel attacks are classi�ed
as pro�led or non-pro�led [9]. Pro�led attacks, such as using templates [2], are
based upon the assumption that the adversary has prior access to the target
device and is capable of accurately pro�ling it. By contrast, non-pro�led attacks
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(e.g. Correlation Power Analysis (CPA) [1]) represent another group of (subop-
timal but sometimes more realistic) adversaries who do not have the required
capabilities to pro�le the leakages of the target. This di�erence is important
as it was shown in a recent work by Whitnall et al. that we have a strict sep-
aration between such attacks [22]. That is, there (theoretically) exist leaking
devices that can only be attacked under some a priori assumptions obtained
through pro�ling. In practice though, the actual scenarios where only pro�led
attacks can succeed usually correspond to so-called �highly non-linear" leakage
functions [21] - of which the existence remains an open question. Informally, a
leakage function is considered non-linear if it cannot be accurately estimated by
a linear combination of some intermediate bits processed by the target device
(e.g. with Schindler et al.'s stochastic approach [16]). We say that it is highly
non-linear if the resulting models do not allow successful key recoveries.

Security against side-channel attacks is usually obtained through a combina-
tion of countermeasures. As such countermeasures imply signi�cant performance
overheads, the best tradeo� between e�ciency and security for small embedded
devices has become an important research topic. But as usual in hardware de-
sign, the �nal performances of a taped out chip is not the only cost criteria. In
particular, it has been frequently observed that countermeasures looking sound
on a mathematical basis could be less e�ective than expected, because of phys-
ical artifacts (the problem of masking and glitches is a well-known example of
this concern [10]). Hence, avoiding such limitations as early as possible in the
development of a cryptographic implementation is also desirable. As a result, the
improvement of simulation-based side-channel security evaluations has become
another topic of interest [8,13], with the long-term goal to develop integrated
design �ows, with physical security as part of the optimization criteria [12,20].
Quite naturally, such a goal also raises questions regarding the relevance of sim-
ulated leakages, as noted by Tiri and Verbauwhede [19], or more recently by Re-
nauld et al. [14]. The latter used state-of-the-art evaluation tools for quantifying
information leakages, and put forward a di�erence of linearity between actual
and simulated traces, raising questions about both the relevance of simulations
for this criteria, and the possibility to design circuits with non-linear leakages.

In this paper, we contribute to these two important issues. Namely, we �rst
narrow the gap between simulations and actual measurements. For this purpose,
we develop a �exible model that captures measurement artifacts in side-channel
attacks and integrate it into SPICE simulations. In order to validate it, we then
analyze a Dynamic and Di�erential Swing-Limited Logic (DDSLL [3]) implemen-
tation of the AES S-box, in a 65nm CMOS technology (implementation details
of the DDSLL S-box are beyond the scope of this study and can be found in [7]).
This target circuit was chosen because it includes a circuit-level countermeasure
for which non-linear leakages are expected (and have been previously observed in
simulations [14]). But as highlighted in this previous work, such a non-linearity
was not found in actual measurements. We repeat this comparison with gradu-
ally improved simulation models, that include elements such as the cables, socket
and package that potentially a�ect the leakage traces, eventually leading to ac-
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curate approximations of our measurements. By performing a regression-based
information theoretic evaluation of our target implementation, we demonstrate
how certain elements of the model can explain the transformation of a leak-
age function, from highly non-linear to fairly linear. Since this transformation is
quite independent of the logic style design, our study consequently raises doubts
regarding the possibility to design a dual-rail implementation with highly non-
linear (and hard to linearize) leakages. Eventually, and despite the fact that the
model we propose is speci�c and adapted to the measurement environment that
we used in our experiments, we mention that our approach is rather generic. That
is, the contribution of each element in the model will of course di�er depend-
ing on the type of package, socket (if used), type of cable, etc. But we expect
the way we include these elements in a model and their relative importance to
remain meaningful for a wide range of implementations and setups.

2 Preliminaries

2.1 Notations

In this work, capital letters are assigned to random variables, while lower case
letters refer to samples of these random variables. For example, L is the random
variable representing a leakage and l is an actual power trace picked up from
this distribution. The power trace is composed of t time samples. Generally, the
leakage function has two input arguments: the discrete random variable X which
denotes the value of the processed data under investigation, and the continuous
random variable N which represents the noise in the measurements. The leakage
function variable denoted by L( , ) contains either random variable arguments
or �xed arguments. For example, L(x,N) is a random variable representing the
noisy traces corresponding to a �xed processed data x. We also denote the tth

time sample in a leakage trace as Lt( , ). In the measurement environment, we
�nally de�ne (noise-free) mean traces as:

Lmeas
t (X) = Ê

n
L(X,n), (1)

where Ê denotes the sample mean operator1. Note that in the simulation en-
vironment, the provided traces are noise-free by default. In this case, and in
order to analyze the impact of noise on the security of the S-box implementa-
tion, we added a Gaussian noise to the simulations2 (this is a usual assumption
in side-channel attacks, which will also be con�rmed in Section 3). As a result,
our investigations considered three types of leakage traces. The �rst case is the
simulated leakage function which is given by:

L1
t (X,N) = Lsim

t (X) +N. (2)

1 The noise-freeness naturally depends on the sampling, but in view of our low-noise
measurements, we were able to extract well estimated means in our experiments.

2 Gaussian noise is added to the simulated traces in a post processing step assuming
the noise-free simulated traces to provide the means of our leakages.
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The second case is when the actual power traces are considered. Here, the noise
is directly present in the measurements obtained from the oscilloscope and the
corresponding leakage function is given by:

L2
t (X,N) = Lmeas

t (X,N). (3)

The third case is a hybrid leakage function combining the noise-free mean traces
of Equation 1 with Gaussian noise:

L3
t (X,N) = Lmeas

t (X) +N. (4)

2.2 SCA evaluation metrics

In order to evaluate the leakage of the measured and simulated traces of the
DDSLL S-box and assess their linearity, we estimated the information theoretic
metric put forward in [17] and re�ned in [15]. That is, we computed the Perceived
Information (PI) that corresponds to the amount of information that can be
exploited by a side-channel adversary given a certain leakage model, namely:

P̂I(X;L) = H[X]−
∑

x∈X
Pr[x]

∑

l∈L
Pr
chip

[l|x] . log2( P̂r
model

[x|l]).

It captures the accuracy of the adversary's leakage model estimate (given by
P̂rmodel[x|l]) at predicting the true (unknown) leakage function of an imple-
mentation (denoted as Prchip[l|x]). In case these two distributions are identical
(e.g. in a simulated environment), we have a perfect evaluation and the PI is
equivalent to the standard de�nition of mutual information (i.e. it captures the
worst-case information leakages). By contrast, if these distributions deviate -
because of practical limitations in the number of traces used for pro�ling, or
because of a simpli�ed (e.g. linear) leakage model - the PI is the (best available)
estimate of the target device's leakage, biased by this slightly incorrect model.

2.3 Estimation tools

As previously mentioned, computing the PI �rst requires to estimate the leakage
distribution with a model P̂rmodel[x|l]. Then, the evaluator just has to sample
values l from the true distribution Prchip[l|x] and estimate the previous equation
from it. In this section, we brie�y describe the statistical tool we used for this
purpose, namely Schindler et al.'s pro�led stochastic approach [16]. It essentially
aims to approximate the leakage samples with a linear combination of some base
vectors. That is, during pro�ling the adversary chooses the base vectors g0(x),
g1(x), . . ., gd(x). These base vectors represent monomials in x (the input and/or
output and/or intermediate bits of the DDSLL S-box under attack), e.g. d=8
in case of a linear model for an 8-bit S-box. Then, the adversary performs a
regression in order to build a model L̂t(x,N) = Σi βi,t . gi(x) + N that best
suits the true leakages. Of course, the stochastic approach with a linear model
cannot be perfect if the leakage function is non-linear. But by increasing the
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number of elements in the basis, non-linearities can additionally be captured (e.g.
with a d=256-element basis, a stochastic model is equivalent to the templates
in [2], excepted that it only estimates a single variance for N). In the rest of this
paper, the use of the stochastic approach was naturally motivated by our goal
to analyze the linearity of di�erent (simulated and real) leakage functions.

2.4 Test chip and measurement setup

The chip was fabricated using a low-power 65 nm technology. All the input,
output and clock signals of the DDSLL S-box are bu�ered. The S-box is powered
by its own supply rail which is di�erent from that of the bu�ers in order to
directly assess the security of the DDSLL S-box implementation by itself. The
chip is packaged in a 44-pin CQFP package. To study the power traces, the
voltage drop on a resistor (1kΩ) introduced in the path of the power supply
of the measured S-box is monitored using a di�erential probe and adequately
manipulated in a post processing step to get the power traces. We used a high
sampling rate oscilloscope (1 Gsample/second), while running the chips at 2 MHz
(motivated by interface constraints of our prototype board). Measurements were
repeated 100 times to assess the security of DDSLL S-box under real noise. On
the other hand, simulated power traces are obtained using post-layout SPICE
simulations. Only parasitic capacitances to GND are extracted from the layout
using Synopsys Star-RCXT. Both simulations and measurements are done at
ambient temperature using a nominal supply voltage of 1.2 V. Figure 1 shows
the �oor plan of the test chip and all the PADs description are given in Table 1.
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Fig. 1. Floor plan of the test chip.
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Table 1. Description of the di�erent PADs shown in Fig. 1.

Model Description

in[0-7] Input analog PADs
Dout[0-7] Output analog PADs
Clk Clock analog PAD
V DDpwrDDSLL Supply analog PAD for the DDSLL AES S-box
V DDBUFL Supply analog PAD for core bu�ers
V DDBUFH Supply PAD for I/O bu�ers
GND 2 Ground analog PADs

V DDE Supply PAD for the PADs
GNDE Ground PAD for the PADs

3 Simulated traces vs. actual measurements

In this section, we exploit a linear regression based information theoretic analy-
sis to analyze simulated and actual leakage traces, and to evaluate the practical
relevance of certain assumptions regarding the physical behavior of our mea-
surements. For this purpose, we essentially compute the PI between 256 events
x given their leakage, using a model P̂rmodel[x|l] obtained thanks to the stochas-
tic approach3. Our analyses are limited to the evaluation phase of the DDSLL
S-box, which have been previously shown to leak the most information [14].

3.1 Direct analysis

In the direct analysis, we compare preliminary post-layout SPICE simulations
and actual measurements. For the preliminary simulations, we simply probed the
current �owing from the supply voltage without adding a resistor in its path and
without any model representing the measurement speci�cities. The upper part
of Figure 2 plots the current traces of both preliminary simulations and mea-
surements, allowing to highlight two signi�cant di�erences. First, we observe the
di�erent scales in the X-axes: computations end in about 8 ns for preliminary
simulations, whereas in measurements, they last around 100 ns. Next, there ex-
ist high frequency components resulting from the computations of the di�erent
blocks of the S-box in preliminary simulations (assumably related to the high
switching activity in strong cryptographic functions). By contrast in measure-
ments, these high frequency components are �ltered out due to the presence of
di�erent elements related to the chip, PCB, cables and equipments. Besides, it
is also noticeable that measured traces oscillate at a changing frequency that
is not observed in simulations. This point can be explained by the fact that in

3 Strictly speaking, there are 2562 transitions that could be considered. To reduce the
cost of our analysis, we only considered transitions between 0 and a value between 0
and 255. From past experiments, we do not expect this restriction to have a strong
impact on our conclusions, in particular for the part related to the leakages linearity.
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Fig. 2. (a) Simulated and (b) measured current traces of the DDSLL S-box during the
evaluation phase for di�erent inputs (inputs transition from 0 to an arbitrary state
from 0 to 255). (c) Perceived information using a linear stochastic model in function of
time for simulated traces without any noise and (d) measured traces with real noise.

preliminary simulations, the traces are perfectly aligned with minimal ampli-
tude and time shifts at the beginning of the clock cycle, and start to misalign as
the computations progress. Such a phenomenon is mainly due to the presence
of unavoidable imbalances between the capacitances of the di�erential signals
and circuitry which lead to some dependencies on the processed data. Due to
the larger span of the measured traces over time, this misalignment appears
to be smaller in actual traces. Furthermore, it is also reshaped by the various
components present in the measurement setup forming oscillations

As a natural complement to this informal analysis, we investigated the in-
formativeness of all the time samples in the simulated and measured traces, as
illustrated in Figure 2 (c) and (d), respectively. The leakage function in Fig-
ure 2 (c) corresponds to simulations (de�ned as L1

t (X) in Section 2.1) where the
noise parameter is set to 0. The leakage function in Figure 2 (d) corresponds
to the actual measurements L2

t (X,N). Clearly, the linear stochastic model is
unable to e�ciently extract information from the simulated traces (for all time
samples) as the PI < 0.1 for basic simulation, whereas it is quite successful in
the actual measurement case where the PI is ' 0.3 for measurement noise in the
order of 6.10−6. So we can indeed conclude that there is a signi�cant di�erence
of linearity between these two contexts. In view of the previously mentioned
�ltering e�ects, a natural explanation would be that these deviations can be
explained by the measurement setup. As a result, we try in the next section to
incorporate measurement artifacts in our simulation environment.
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3.2 Measurement artifact models

A measurement environment includes di�erent components such as equipment,
cables, PCB, socket, chip's package and pads, . . . The precise modeling of these
components is a tedious task and goes with a risk to signi�cantly increase the
simulation time (which is of course undesirable). As a result, our main goal is to
have a �exible model that adequately captures the most signi�cant physical phe-
nomenon contributing to the �ltering of the traces seen in measurements (thus
removing all the nonlinearities, as will be shown in the following section), within
reasonable simulation time. One way to do this is to gradually add components
that we believe important to the model, until the simulations are �good enough".
For example, we easily found out (as will be con�rmed in the rest of the sec-
tion) that the resistor in the supply path, package [4], QFP socket [18], cables
and di�erential oscilloscope probe are important components in the model4. By
contrast, we choose to neglect other components to keep the model simple, such
as the terminations of the testing equipment (e.g. the supply sources and the
oscilloscope), the bonding wires, the pads and the PCB connecting paths.

Note that a previous work [5] developed a method to simulate cryptographic
systems using an equivalent circuit model (the linear equivalent circuit and cur-
rent source model [6,11]), based on real measurements obtained from a prototype
chip. The authors built their model for an FPGA implementing the AES algo-
rithm and accurately emulated the peripheral circuitry, such that the simulation
results are in agreement with measurements. Our approach is rather di�erent
because we focus on building an admittedly simpler peripheral model that does
not need prior measurements (which typically corresponds to the situation dur-
ing ASIC developments). So both approaches can be viewed as complementary:
ours for preliminary investigations based on simulation models only, and the one
in [5] whenever measurements are available to re�ne the model.

Figure 3 illustrates the equivalent circuit model of the measurement artifacts
used in our improved simulation environment, and Table 2 details the descrip-
tion and value of each element in the model. Based upon the length of the cables
used, the self inductance is calculated for the supply and input/output signals.
However, since the ground occupies the entire lower plane of the PCB and is
at the same time connected to the supplying equipment via several cables (the
grounds of all equipment are connected together), we assumed the ground ca-
ble inductance to be less than the supply cable inductance. As for the mutual
inductances and capacitances between adjacent pins in the socket and package,
only those to the immediate pins are shown in Figure 3. Nevertheless, mutual in-
ductances to the next-of-immediate pins in the package model are also included
(not shown in the Figure 3 for simplicity). The relationship between pins can
be seen from the test chip in Figure 1 in order to e�ectively model the mutual
inductances and capacitances. The value of the resistor in the S-box supply path

4 Models for the package [4] and QFP socket [18] do not exactly correspond to our
setup (e.g. they di�er in pin count) - but were the only publicly available ones.
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Fig. 3. Equivalent circuit model of (a) two arbitrary signals illustrating the cable,
socket and package elements featuring self and mutual inductances/capacitances and
(b) extra components that are included in the S-box supply path (namely, Rdiff and
di�erential probe model which is further detailed in part (c) of the �gure).

depends on the amount of instantaneous current to be monitored and the resolu-
tion of the oscilloscope. The probe model can be simpli�ed by a small di�erential
capacitance and two resistors connected on each side to the ground.

Of course, neither our measurement artifacts model nor the one in [5] can
be considered as completely generic, in the sense that they both need �some
prior knowledge" about the target circuit (FPGA / ASIC, type of package to be
used, . . . etc.) and measurement setup (socket / no socket, PCB, types of probes,
. . . etc.). Quite naturally, a circuit designer is always advised to incorporate the
most precise information in his peripheral model. Yet, we belive the most impor-
tant shortcomings in security evaluations happen when measurement setups are
simply ignored from the simulation environment. In this respect, the quality of
our model gradually improves with the accuracy of its component speci�cations,
but even approximated speci�cations already allow increasing the relevance of
simulations signi�cantly, which is the main contribution of this work.

3.3 Improved analysis

We now employ the model illustrated in the previous section in order to improve
our analysis and re�ect our measurement environment in simulations. First, we
show in Figure 4 (a) how close the shape of the simulated traces gets to the
measured ones in Figure 2 (b). In particular, the �gure now features an expansion
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Table 2. List of the elements in the measurement environment model of Figure 3.

Element Symbol Description Value

Cable Lcable

supply inductance 688 nH
input/output inductance 300 nH
GND inductance 200 nH

Socket [18]

Lsoc lead inductance 1.35 nH
Rsoc parallel lead resistance 600 Ω
Csoc−a cap. to ground (PCB side) 0.3 pF
Csoc−b cap. to ground (pack. side) 0.45 pF
Lm−soc mutual inductance 0.3 nH
Cm−soc−a mutual cap. (PCB side) 0.09 pF
Cm−soc−b mutual cap. (pack. side) 0.09 pF

Pack. [4]

L inductance 1.2 nH
R series resistance 0.28 Ω
Cpack cap. to ground 0.1 pF
Lm−pack mutual inductance 1.3 nH
Cm−pack mutual capacitance 0.2 pF

Di�. Probe
Cdiff capacitance 0.7 pF
Rprobe resistance 25 kΩ

Rdiff resistor in S-box VDD path 1 kΩ

in the time span (with respect to preliminary simulations), �ltering o� the high
frequency components and oscillations at a changing frequency. Although neither
the time span nor the frequency of oscillations of the improved simulated traces
perfectly �t the measured results, the model proves to adequately emulate the
measurement speci�cities to a much better extent. In particular, it directly shows
the impact of di�erent components on the linearization of the leakage samples.
As can be observed in Figure 4 (b), most of the time samples now appear to
be su�ciently linear (i.e. the leakage function is well modeled by the linear
stochastic approach based upon the output bits of the S-box).
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Fig. 4. (a) Simulated current traces for the the DDSLL S-box with measurement arti-
facts and (b) corresponding perceived information using a linear stochastic model.

As a complement, we investigated the impact of some key elements in the
measurement artifacts model on linearizing the leakage function of the simulated
traces. For this purpose, we computed the PI in function of the simulated noise
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for leakage variables L1
t (X,N) and L1

t (X,N) (represented by solid lines) as well
as the PI for the actual noise in our measurements for leakage variable L2

t (X,N)
(represented by a dot). The results of this experiment are reported in Figure 5,
in which the curves are given for the single time sample that maximizes the
perceived information using the linear stochastic model in all the investigated
cases (denoted with letters A to D, depending on the simulation model). The
description of these di�erent models used is provided in Table 3.

Table 3. Description of the di�erent models used in Figure 5.

Model Description

A 1 kΩ + di�. probe
B 1 kΩ + di�. probe + package and socket
C 1 kΩ + di�. probe + package and socket + VDD cable
D 1 kΩ + di�. probe + package and socket + VDD cable + GND cable

As previously observed, it is clear that the leakage function given by prelim-
inary simulations is highly non-linear. Next for case A, only the 1 kΩ resistor in
the S-box supply path is modeled without any cable, socket or package models,
leading to a �rst (slight) improvement of the linearity in simulated traces. Adding
the socket and package models in case B (including all the mutual e�ects) with-
out the cable inductances to the 1 kΩ resistor further increases the linearity at
low noise levels, and shifts the curve towards the measurement one at real noise.
Although not shown here, the mutual e�ects in the socket and package models
did not have a signi�cant impact on linearizing the simulated leakage function.
Nevertheless, the use of the mutual inductances and capacitances in the model
helped forming the oscillations in the simulated traces. Furthermore, including
cable inductances in the supply paths (S-box and bu�ers) without those of the
GND in case C signi�cantly raises the perceived information to 1.6 bits at low
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noise levels, and pushed the curve even closer to the measurement one at real
noise. This is mainly attributed to the fact that the e�ect of the cable inductance
for the S-box supply is taken into account (with negligible impact of the cable
inductance of the bu�ers supply). Finally, adding the GND cable inductances to
the model in case D helped the simulated perceived information to coincide with
the measurements with a slight overestimation at noise levels higher than 10−6.
Here, the e�ect of ground bounce could be seen both in the improved simulated
traces and linearization of the leakage function to match the measurements.

Clearly, the cable inductances of both the S-box supply and GND are the
dominating contributors to the linear dependency between the actual traces and
the S-box output bits. They helped forming the low-pass �lter that leads to
smoothing the shape of the traces by removing the high frequency components,
which eventually emphasizes the amplitude shifts and increase the linearity of
the leakage function. Overall, the careful choice of the contributing elements in
the measurement artifacts model rendered the simulation time overhead negligi-
ble since the DSSLL S-box itself (on-chip) has many orders of magnitude more
elements than the simple o�-chip model (the simulation time overhead due to

our model was less than 1% of the original S-box simulation time). Also, it is im-
portant to note that the Gaussian noise hypothesis is reasonably accurate, as the
hybrid leakages with simulated noise correspond well to the actual measurements
with real noise (which is con�rmed by the position of the dot in Figure 5).

Consequently, our study highlights the importance of having (even approx-
imate) prior knowledge about the measurement speci�cities of a cryptographic
implementation during its early design cycle. This way, the designer can incorpo-
rate these artifacts in the simulation environment and make any design changes
(if necessary) before having to actually manufacture the �nal chip.

4 Conclusions

In a previous work by Renauld et al. at CHES 2011, a di�erence in the linear-
ity of the leakage functions was observed between actual and simulated traces,
raising doubts about the relevance of simulations and the possibility of design-
ing circuits with non-linear leakages. This result suggested the improvement of
simulation-based side-channel security evaluations as an important open prob-
lem, and a preliminary step for the integration of such tools in standard de-
sign �ows. In this paper, we consequently aimed to improve this situation, both
regarding the linearity of simulated traces (that matters for the application of
non-pro�led side-channel attacks) and regarding the amount of information they
provide (that determines the data complexity of pro�led side-channel attacks).
For this purpose, we �rst modeled the measurement speci�cities associated to
side-channel attacks and integrated it into SPICE simulations. Then we vali-
dated the model by gradually accumulating the di�erent components that we
believe important such as the resistor in the supply path, package, socket, and
cables, until the simulated and measured traces of the target implementation
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provided the same level of linearity and similar perceived information. By do-
ing so, preliminary simulated traces were transformed from highly non-linear
to fairly linear traces. Our investigations con�rmed the need to incorporate the
key physical artifacts in the simulation environment to obtain an accurate as-
sessment of countermeasures against side-channel attacks at the design stage.
Besides, our study also raises the question whether it is possible to design an
implementation with highly non-linear leakages in light of the linearization e�ect
that the physical artifacts inevitably have on the �nal outcome.
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Abstract

Computer performance has doubled many times over during the past 40 years,
but the very techniques used to achieve these performance gains have made
it increasingly difficult to build hardware/software systems with cross-cutting
properties such as determinism, real-time guarantees, and (perhaps most crit-
ically) security. As we move towards increasingly complex chips, with more
and more hidden state (e.g., predictors, caches, modes), these properties are
only becoming harder to realize. This trend significantly impedes progress in
the development of our most safety-critical embedded systems such as those
found in medical, avionic, and automotive systems. What if we started from
scratch? What if we built processors from the ground up with an eye towards
both the new complex reality in which we live and the radical improvements
in automated formal methods we now have access to? How much better could
we do? Dr. Sherwood will discuss his and his collaborators efforts to explore
this question through the creation of a complete prototype system including: a
new instruction set architecture, a synthesizable hardware designs, a new pro-
gramming language and compiler, a custom micro-kernel generator, interfaces
to existing I/O devices, and ultimately non-trivial trustworthy applications.
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Abstract. Physically Unclonable Function (PUF) in silicon is the em-
bodiment of an instance-specific challenge-response mapping, that ex-
ploits random manufacturing process variation in an integrated circuit
(IC) to determine the mapping. PUF designs proposed in the recent lit-
erature vary widely in diverse characteristics such as hardware resource
requirement, reliability, entropy, and robustness against mathematical
cloning. Most of the standalone PUF designs suffer from either poor per-
formance profile or huge resource-overhead. This work presents a PUF
design paradigm, termed as PUF Synthesis, that exploits the smaller
PUFs (both strong and weak) as design building blocks to define a com-
posite PUF having large challenge-space and good performance profile.
A formal framework for PUF synthesis has also been developed to guide
the composition in systematic fashion. The notion of PUF synthesis has
been validated by the implementation of a composite PUF that com-
bines two widely studied PUFs, Arbiter PUF (APUF) and Ring Oscil-
lator PUF (ROPUF), and inherits the desirable characteristics of both.
Resource requirement of this target design with 60-bit challenge is lesser
than a standalone 10-bit ROPUF, while its robustness against model
building attack is much superior compared to APUF. Implementation
of the proposed design on Altera Cyclone-III Field Programmable Gate
Array (FPGA) shows 47% uniqueness and 91% reliability on average.

Keywords: Physically Unclonable Function, PUF synthesis, composite
PUF, optimized composition.

1 Introduction

Physically Unclonable Function [1] is a well-defined, instance-specific and (ide-
ally) consistent mapping from a set of input values (challenges) to a set of
output values (responses). Although every logical instance of a PUF is identical,
its unclonability is manifested when it is implemented in some physical form.
For example, oscillation frequencies of two identical ring oscillators mapped on
two different FPGAs of the same family and from the same manufacturer are
non-identical, and the difference in these frequencies can be encoded to provide
the response for a PUF. Apart from its physical unclonability, a PUF should be
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hard to simulate, emulate, or predict, but easy to evaluate. Generally, the un-
clonability is the result of unique and uncontrollable variations in every physical
system. Silicon PUFs exploit variation in manufacturing across different dies,
wafers, and process to generate (ideally) unique challenge-response mapping for
each IC (Integrated Circuit). Over the years, versatile applications of PUFs have
been proposed, such as: device authentication and identification [2–4], random
number generation [5] and intellectual property protection [6, 7]. Research in this
field is important, as PUFs introduce one more root of trust for designing secure
hardware.

The silicon manufacturing process variation is the major source of static noise
in silicon device and that is exploited in silicon PUF design. From a circuit design
perspective process variations can be divided into two major groups: die-to-die
variations and within-die variations [8]. The die-to-die variations have a variation
radius larger than the die size including within wafer, wafer-to-wafer, lot-to-lot
and fab-to-fab variations. These variations affect all the circuits within the die
equally. Within-die variations, on the other hand, refer to the variations that oc-
cur between various circuit elements of the same die. They can be grouped into
systematic and random variations. The radius of systematic variation is in the
order of few millimeters. The spatially correlated systematic variations happen
due to variation in design layout or manufacturing equipment. Finally, random
variations are non-systematic and unpredictable in nature and including ran-
dom variation in device length, discrete doping fluctuations and oxide thickness
variations. The radius of this variation is comparable to the sizes of individual
devices, so each device can vary independently.

Research on PUFs started with the seminal work of Lofstrom et al. [9] that
proposed the exploitation of mismatch in silicon devices for identification of ICs.
In 2001, Pappu et al. [10] presented the concept of physical one-way function,
which subsequently led to the idea of PUF [11]. In the last decade, several PUF
designs have been proposed by researchers. Each of these designs come with a
different way of measuring the effect of device-level process variation, and its
quantization to binary response. A common strategy is to exploit delay varia-
tion in CMOS logic components, in the so–called Delay PUFs. The most well-
known delay PUFs are Arbiter [2], Ring Oscillator [12], Butterfly [6], Bistable
Ring [13], Loop [14] and FPGA specific Anderson [15] PUF. Memory based
PUFs (e.g. SRAM [7] and Flip-Flop [16]), use variation in power–up values of
memory elements, and this type of PUFs are also known as challengeless PUFs.
ClockPUF [17] and ScanPUF [18] are two recently proposed interesting PUF
designs. ClockPUF uses pairwise difference in sink latencies in on-chip clock
network (clock skews), and ScanPUF uses the path delay variation between scan
flip-flops in scan chain, a common on-chip structure used for improving design
testability, to generate random bit strings.

A very important question about the usability and security of PUFs is cur-
rently under intense research scrutiny: can PUFs be mathematically cloned?
Several works [19–21] on PUF modeling using statistical and machine learn-
ing [22] techniques like Support Vector Machine (SVM), Artificial Neural Net-
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Fig. 1: PUF Synthesis overview: Composer selects subset of PUF blocks and generate
a new design obeying composition rules that defines the topology of composite PUF.

work (ANN), and Logistic Regression (LR), have been recently proposed. PUFs
exhibit different levels of robustness to model building attacks, for example, ar-
biter PUF and its variants [2, 23] have been shown to be the most vulnerable
candidates for this attack. However, there is no conclusive answer to the ques-
tion of which among the existing PUF designs is the best. This is because of the
fact that they vary widely with respect to diverse metrics of suitability: some
take less hardware resource to implement, some exhibit more randomness, while
some others provide more stability to temperature and voltage fluctuations.

It could be an obvious conclusion form existing literature of silicon PUF is
that most of the standalone PUFs are not suitable to be used as root-of-trust
in hardware security application due to either their poor performance quality
or significant resource-overhead. This observation motivates us to design PUFs
that exploit smaller version of existing PUFs, both weak and strong [24], as
design building blocks. We term this PUF design paradigm as PUF Synthesis
(see Fig. 1) and resultant design as composite PUF.

The main contribution of our work is: Design of a formal framework to guide
the PUF Synthesis process that use smaller PUFs as building blocks to build
a new PUF. Advantage of smaller PUF blocks is that they are confined in a
small chip area and eliminate the negative effects of systematic process variation
in PUF design. If the PUF circuit needs large area of IC for placement, then
it includes many regions with uncorrelated systematic process variation that
dominates useful random variation. Thus, the PUF synthesis could be very useful
for large PUF design.

The rest of the paper is organized as follows: Section 2 introduces the notion
of PUF synthesis and explains a formal framework for designing new PUF using
PUFSynthesis approach. Section 3 discusses usefulness of the notion of PUF
synthesis with a motivating example and its implementation results. Finally,
Section 4 concludes the paper and explains the future work directions.

2 PUF Synthesis

The PUF synthesis is a PUF design paradigm that exploits smaller PUFs (both
weak and strong PUFs) blocks of diverse types as a building blocks in the design
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of new PUF with large challenge space and good performance profile. New PUF
which emerges as result of the synthesis process could be termed as Composite
PUF, and hence synthesis process might also be called as PUF Composition. We
use these terms interchangeably.

Certain classes of PUFs, for example Ring Oscillator PUF, have an accept-
able performance profile, but not feasible for large design, a design with large
challenge-space, due to huge resource demand. Similarly, too many light-weight
PUF designs, e.g. Arbiter PUF, have poor performance profile with respect to
uniqueness, randomness, reliability, and/or unpredictability. The PUF compo-
sition is a new design paradigm as trade-off of above two design problems. In
addition, we would see that a composite PUF inherits the desirable qualities of
its component PUFs to a great extent.

To exploit a PUF in composition, it is necessary to have information about its
physical implementation like, resource requirement, performance quality. Other-
wise, it is difficult to evaluate the composition quality. For the clarity of expla-
nation, we use term PUFTypei as defined follows.

Definition 1 PUFTypei =< ID = i, P lat, Ii, Oi, Ri, Ui, Qi, Pi, Ai, Bi > is the
profile of physically implemented PUF having index i in the library of PUFs
where,

– ID is an integer used to retrieve details of a PUFType.
– Plat is the specification of platform used for the implementation, e.g. Altera

Cyclone-III. This is important to consider because performance of same PUF
design greatly depends on platform used for its physical embodiment.

– Ii and Oi are the challenge and response size of PUF in bits.
– Ri specifies the amount of resource used in design. For instance, in FPGA

platform this is the number of LUTs and FFs.
– Ui, Qi, Pi, Ai, and Bi are the values of performance metrics uniqueness, unifor-

mity, reliability, auto-correlation, and bit-aliasing in percentage, respectively.

We use following mathematical definition of PUF as a basis in formal defini-
tion of PUF composition.

Definition 2 A silicon Physically Unclonable Function is a mapping

γ : {0, 1}n −→ {0, 1}k

, where the output k-bit words are unambiguously identified by both the n chal-
lenge bits and the unclonable, unpredictable (but repeatable) instance specific
system behavior.

Each node in composite PUF circuit is a standalone PUF and connection among
PUF nodes define the topology of composition. For a given set of PUF nodes,
quality of composition is subject to topology. Following formal definition details
a set of constructive rules to guide the composition in a systematic way.

Definition 3 A composite PUF (ζ) over set of PUFs Γ = {γ1, γ2, ..., γm} is a
PUF circuit that is defined by recursively applying following rules:
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Fig. 2: Overview of Composition Rules: (a) Basic PUF Block. (b) r = (PUF2 ⊳
PUF1)(c). (c) r = (PUF1 ‖ PUF2)(c1, c2). (d) r = (PUF1 ⊕ PUF2)(c1, c2) (e)
r = (PUF2 ⋊⋉ PUF1)(c)

a. γi : Ci −→ Ri, where Ci, Ri ⊆ {0, 1}+ and γi ∈ Γ .
b. (γi ⊳ γj)(x) = γi(γj(x)), where x ∈ Cj .
c. (γi ‖ γj)(x, y) = γi(x) · γj(y)), where x ∈ Ci, y ∈ Cj, and

′.′ is binary strings
concatenation operator.

d. (γi⊕γj)(x, y) = γi(x) ⊕ γj(y), where x ∈ Ci, y ∈ Cj, ⊕ is bit-wise exclusive-
OR operator.

e. (γi ⋊⋉ γj)(x) = γj(γi(γj(x))), where x ∈ Cj

f. γi(perm(x)) and perm(γi(x)) are PUFs with input and output permutation
network perm(y) respectively, and y ∈ {0, 1}∗ and x ∈ Ci.

Now, it is important to explain why these composition operators have been
selected to design a composite PUF. Let X and Y be two random variables
regarding the output distributions of PUFs γi and γj .

Lemma 1 ([25]) Let X and Y be two independent random variables with en-
tropy H(X) and H(Y ), respectively. Then, H(X,Y ) = H(X) +H(Y ).

From Lemma 1, it is evident that entropy of (γi ‖ γj) is the sum of their indi-
vidual entropies. This operation also enhances both uniqueness and uniformity
when one component PUF has greater value than ideal value (50%) and other
has lesser than ideal one. It is clear that this operation is most effective when it
combines two weak PUFs with above mentioned features.

Lemma 2 Let X and Y be two Bernoulli random variables with probability p
and q, respectively. Then, random variable Z = X ⊕ Y also follows Bernoulli
distribution with probability p+ q − 2pq. It implies that if any of the component
distributions is uniform, then Z is also uniform.
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The claim of Lemma 2, is well-known. Let X be uniform and p = 0.5, then
Pr(Z = 1) = 0.5 + q − 2 × 0.5 × q = 0.5. In general, if the distribution of at
least one input is uniform, then the output of the XOR gate is also uniform.
This operation is used in cryptography to a great extent. So, this is another way
to enhance the entropy of composite PUF. Now, it seems that one PUF with
uniform distribution is equivalent to its XORing with multiple PUFs when only
output with uniform distribution is concerned. So, why does it need to XORing
them when one PUF is enough? Like other compositions, the XOR function
between the outputs of two PUF instances enhances the challenge space at less
hardware overhead, and improves unpredictability.

Lemma 3 ([25]) Let X and Y be two random variables. If Y = f(X) is a
deterministic function of X, then H(Y ) ≤ H(X) with equality if and only if f(.)
is one-to-one.

Proof. Joint entropy of X and Y isH(X, f(X)) = H(X)+H(f(X) | X) = H(X)
since, H(f(X) | X) = 0 because f is deterministic function of X and X is
known. Again, by chain rule we have: H(X, f(X)) = H(f(X))+H(X | f(X)) ≥
H(f(X)) since, H(X | f(X)) ≥ 0 with equality if and only if f is one-to-one.
Thus, H(Y ) ≤ H(X).

Lemma 3 is applicable to composition (γj ⊳ γi) when random variable X and
Y represent output distributions of γi and γj , respectively, and Y = γj(X).
Furthermore, every physical instance of a PUF is (semi-) deterministic, but not
one-to-one while each instance is different from others. The Lemma 3 implies
that the composition (γj ⊳ γi) does not improve the entropy, but propagates
entropy of γi to the output of composite PUF. Nevertheless, this composition
operator is used to enhance the unpredictability. The adversary now needs to
learn value of m + n parameters combinedly to reverse engineer the composite
PUF where m and n are number of parameters of γi and γj that determine their
mappings, respectively.

It is worth mentioning that some circuits obtained by applying Definition 3 of
composite PUF are ill-formed. For instance, this can happen if number of outputs
of γi is different from number of inputs of γj in the sequential composition
γj⊳γi. Similarly, this is true for γi⊕γj when number of outputs of γi and γj are
different. To eliminate all such ill-formed compositions, we define a type system
τ : Γ → N× N i.e., ∀γ ∈ Γ, τ(γ) = (n,m) where n and m are number of inputs
and outputs of γ, respectively. Formal definition of well-formed composite PUF
is given below.

Definition 4 (Well-formed composite PUF) Let ζ be a composite PUF hav-
ing n-input and m-output – written as ζ : n⊗m– and defined over Γ . The PUF
ζ is said to be well-formed if and only if each of its sub-circuit obeys the rules of
type system given below. Otherwise, ζ is said to be ill-formed.

i) τ(γ)=(n,m)
γ:n⊗m γ ∈ Γ ii)

γi:ni⊗mi,γj:nj⊗mj

γi‖γj :ni+nj⊗mi+mj
iii)

γi:ni⊗mi,γj:nj⊗mj ,ni=mj

γi⊳γj :nj⊗mi

iv)
γi:ni⊗mi,γj :nj⊗mj ,mi=mj

γi⊕γj:ni+nj⊗mi
v)

γi:ni⊗mi,γj :nj⊗mj,ni=mj ,nj=mi

γi⋊⋉γj :nj⊗mi
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Fig. 3: Motivational Example: A composite PUF exploiting ROPUF and APUF as
design building blocks.

3 Motivating Example

The objective of this section is to show the usefulness of composite PUF design
with an example.

3.1 Composite PUF Instance

The architectural description of the example composite PUF is shown in Fig. 3,
using Ring Oscillator and Arbiter PUFs. It consists of one arbiter PUF and
set of independent ROPUFs. Let, this PUF is denoted by χn,m. According to
Definition 3,

χn,m = γn+1((γ1 ‖ γ2 ‖ γ3 ‖ · · · ‖ γn−1 ‖ γn)(c1, c2, c3, . . . , cn−1, cn))

= γn+1((γ1(c1) · γ2(c2) · γ3(c3) · · · · · γn−1(cn−1) · γn(cn))

where γn+1 is an n-bit Arbiter PUF, and γi, 1 ≤ i ≤ n, are m-bit ROP-
UFs. Following formal definition illustrates how it works. The χn,m is a 5-tuple
(∆,Σ,Λ,B, Ψ), where

– ∆ = γn+1 is a n-bit arbiter PUF
– Σ = {γ1, γ2, γ3, ..., γn} is a set of independent m-bit ring oscillator PUF
– Λ is a set of nm-bit challenges and |Λ| = 2nṁ

– c ∈ Λ consists of n m-bit components i.e. c = (c1, c2, ..., cn) and |ci| = m, 1≤
i ≤ n

– B = {0, 1}
– Ψ : Λ → B is the characteristic mapping of a composite physically unclonable

function, and,
– ∀c ∈ Λ, Ψ(c) = ∆(γ1(c1) · γ2(c2) · γ3(c3) · · · · · γn(cn)) ∈ B and γi(ci) ∈ B.

The applied challenge is divided into n equal size sub-challenge, each of size m.
Each part of challenge is applied to n independent ROPUFs. Responses of the
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ROPUFs together form the (internal) challenge for the APUF that eventually
generates final response. Responses of the ROPUFs control the path switching
activities of APUF.

This design is superior than APUF and ROPUF in three aspects: i) shows
better modeling robustness than APUF, ii) consumes less resource than ROPUF,
and iii) has better performance profile than both ROPUF and APUF.

Note that apart from the composite behavior of χn,m, it reduces to an APUF
or an ROPUF, for special values of n and m. For example, if n = 1, then it works
almost similar as a ROPUF, while for m = 1 it works as an APUF. Also, note
that the components ci might or might not be in order in the total challenge c. If
they are in order, c = c1 ‖ c2 ‖ · · · ‖ cn. Otherwise, an optional bit permutation
network might be placed at the input of the composite PUF to permute the
applied external challenge and then apply the permuted challenge to the input
of the ROPUFs. This helps to increase the amount of randomness.

3.2 Implementation Results

Experimental Setup. The implementation of 60-bit target composite PUF
(see Fig. 3) was made using 11 Altera Cyclone-III EP3C80F780I7 FPGAs. The
60-bit target composite PUF instance consists of one 15-bit arbiter PUF (n=15)
and 15 4-bit ROPUFs (m=4). The 60-bit input challenge was segmented into
15 segments, each of size 4-bit that was applied to 15 ROPUFs as challenge.
Standard Altera CAD tool was used for designing and generating programming
file.

Altera Cyclone FPGA consists of LABs (Logic Array Block) that are ar-
ranged in 2D matrix, and few columns are reserved for BRAM (Block RAM)
blocks. Each LAB is a collection of 16 LEs (Logic Elements) that composes of
one 4-input LUT (Look Up Table) and one programmable register. One LAB
was used for designing a ring oscillator that contains one NAND gate and 15
delay elements in a loop. Altera’s lcell HDL primitive was used for each delay
element that requires one LUT in LE. In addition, NIOS-II soft processor, NIOS-
II IDE, and JTAG interface were employed for CRP (Challenge Response Pair)
exchange between FPGA and host computer.

Table 1 depicts the resource requirement for three PUF design: 60-bit APUF,
10-bit ROPUF, and 60-bit composite PUF. Resource requirement of the target

Table 1: Comparison of Hardware Resource Requirements of Proposed PUF with
ROPUF and APUF

PUF Type #Comb. Logic(4LUT) #Register

60-bit APUF 121 2

10-bit ROPUF⋆ 17828 32

60-bit Proposed PUF 5192 497
⋆Design of 60-bit ROPUF was infeasible on the FPGA we
worked with.
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Fig. 4: Resource required for 60–bit composite PUF and its critical dependency on
component ROPUF size (m), compared with standalone m-bit ROPUFs. Rcount is
resource count that includes 4-input LUT(s) and register(s) on an Altera Cyclone-III
FPGA.

composite design depends on the size of the component ROPUFs. Small-sized
ROPUFs, that are confined in a relatively small chip area with spatially corre-
lated process parameters, could avoid the negative effects of systematic process
variation. It allows designer to select any two distinct ROs for calculation of
response for a challenge without thinking whether they have been placed closed
to each other. In addition, size of ROPUF depends on size of MUXes, counters,
comparator, and number of ROs and RO size. For small m value, composite
PUF design requires relative more component ROPUFs and that results huge
resource overhead due to MUXes, counters and comparator of each component
ROPUFs. Fig. 4 depicts how the total resource requirement of target composite
PUF (60-bit challenge) varies as a function of component ROPUF size, when
implemented on an Altera Cyclone-III FPGA. It also reveals that if the chal-
lenge size of the component ROPUFs is less/equal than six bits, then amount
of resource required for 60-bit proposed PUF is lesser than that required for a
standalone 10-bit ROPUF. From our experiments, component ROPUF challenge
size not exceeding 6-bit (i.e. m ≤ 6) seems a reasonable choice.

Results. Performance quality of target composite PUF design have been eval-
uated based on standard metrics [26]: Uniqueness, Reliability, Uniformity, Bit
Aliasing, and Autocorrelation. Uniqueness is a measure of ability to identify
PUF instances uniquely and it is estimated in term of inter Hamming Distance
(HD). PUF instance should have ability to repeatedly generate same response
for given challenge – called as Reliable PUF. Reliability is expressed in term
of intra Hamming Distance. Uniformity measures the 0’s and 1’s distribution
in PUF’s binary response and it should be uniform for ideal PUF. Bit-aliasing
happens when different chips produce nearly identical PUF responses, which is
undesirable. In [26], bit-aliasing of l-th bit of a n-bit PUF response over k chips
is defined by (1),
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βl =
1

k

k∑

i=1

ri,l × 100% (1)

where ri,l is the l-th binary bit of a response from a chip i. Ideal value for βl

should be 50%. Here, we define minimum, maximum, and average bit-aliasing of
n-bit PUF signature by (4), (3), and (2), respectively.

βavg =
1

n

n∑

l=1

|βl − 50| (2)

βmax = max
1≤l≤n

|βl − 50| (3)

βmin = min
1≤l≤n

|βl − 50| (4)

The value of βavg lies in [0, 50]. Value of βavg = 50 implies all bits of signature
are fully aliased, whereas β = 0 presents no aliasing. Autocorrelation test is used
to estimate dependency between the bits of a given signature and to determine
the existent of periodic behavior. If bits are highly correlated then prediction of
response for an unknown challenge become easy. It can be defined by (5), where
x is the n-bit signature being observed:

ρxx(j) =
1

n

n∑

i=1

xi ⊕ xi−j (5)

and ρxx(j) is auto correlation coefficient with lag j. This value tends towards 0.5
for uncorrelated bit-strings and toward 0 or 1 for correlated bit-strings. Fig. 5(d)
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Table 2: Comparison of Performance Metrics of Composite PUF with ROPUF and
APUF†

Metrics
Ideal
Value

Composite PUF APUF ROPUF
Min. Max. Avg. Std. Div. Avg. Avg.

Uniqueness(%) 50 32.42 54.30 47.57 4.06 37.40 31.34

Reliability(%) 100 89.26 92.97 90.70 1.12 100 99.85

Uniformity(%) 50 36.33 55.27 47 3.27 70.63 51.56

Bit-aliasing[0,50] 0 4.55 50 14.95 10.26 30.90 28.20

Autocorrelation Coefficient[0,1] 0.5 0.43 0.57 0.50 0.23 0.42 0.49
†Challenge size of composite PUF, APUF, and ROPUF are 60, 60, and 10 bits,
respectively.

shows the scattering of correlation coefficient values of 11 different 512-bit sig-
natures and gives a clear indication of the mutual inter-independence of the bits
in a signature.

Table 2 provides every details of quality metrics and compares the perfor-
mance of composite design with standalone APUF and ROPUF. Fig. 5 is the
visual interpretation of quantities mentioned in tabular form. Reliability of com-
posite design is not good, but satisfactory. One reason could be the use of NIOS
II soft processor core that is a heavy resource-consume component. It is obvi-
ous that this reported reliability would further be degraded in consideration of
temperature and voltage variation. In addition, reliability could be improved by
switching off the components no longer in use. We did not perform the reliability
test with temperature and voltage variation as a part of this work.

In the next subsection, we describe the robustness of the target composite
PUF design to machine learning based modeling attacks, as compared to stan-
dalone ROPUFs and APUFs.

3.3 Robustness against Modeling Attacks

Objective of modeling attack is to build a numerical approximator for a PUF
instance based on known set of its CRPs. Machine Learning based modeling
attacks on PUF was discussed in [20]. Success in modeling attacks does not
imply its physical clonability, rather it is an implication of response prediction
for unknown challenge without knowing circuit details. Here, we discuss modeling
robustness of composite PUF with respect to SVM and ANN machine learning
approaches. Our implementations of SVM and ANN are based on the standard
Python package scikit-learn [27] and the MATLAB Neural Network Toolbox [28],
respectively. To build machine learning models, we used 11 different datasets,
each of size 25, 000 CRPs and obtained from 11 PUF instances. The derived
models were tested on 5000 unseen challenges for the proposed composite PUF
and APUFs, while for ROPUF the testing set consisted of 400 CRPs. For a
given training set, we built large number of models by tuning meta-parameters
of learning algorithm, for example kernel type for SVM and type of activation
function for ANN. The box-plot in Fig. 6 shows the prediction accuracy of all
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Fig. 6: Test prediction accuracy of PUF models. It shows the testing accuracy of models
built from known set of CRPs of ROPUF, APUF and composite PUF using SVM and
ANN. The X-axis presents number of CRPs, |Strain|, used in training phase. The Y-axis
presents testing accuracy of the derived model. Box-plot is used to show the accuracy
of a population of models.

models for different size of training set (|Strain|). The X-axis shows the different
value of |Strain| and the Y-axis shows the prediction accuracy of models that
were trained with training set of size |Strain|. From Fig. 6, it is inferred that
prediction accuracy of target composite PUF design is close to 50% (equivalent
to random prediction) and it does not improve with increase in training set size.
We verified this behavior of target composite PUF upto training set size 90, 000
CRPs. One reason of this modeling robustness could be the use of sequential
composition (⊳) rule. So, apart from its good performance metrics (as reported
in the previous subsection), the composite PUF design also has good modeling
robustness.

4 Conclusion

This work introduces a concept of PUF synthesis – also called as PUF compo-
sition – that shows how smaller PUFs of diverse types could be used to design
a qualitative large PUF. One important problem associated with this work is
the design of optimal composition. It needs to explore large space of composite
PUFs with diverse kinds of topology, and variety of PUF blocks. Our future
work would be directed towards the implementation of local search method and
genetic programming for designing optimal composite PUF, and development of
a CAD flow to automate the PUF synthesis methodology.
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Abstract. This paper presents a formal design of Galois-field multipli-
ers based on a graph representation called Galois-Field Arithmetic Cir-
cuit Graph (GF-ACG). We focus on one of the optimal GF (2m) parallel
multipliers, called Mastrovito Multiplier, and derive the hierarchical de-
scription from the original flatten description. The hierarchical descrip-
tion can be verified formally within a practical time even if the data
width is more than 128. This paper also applies the hierarchical design
to an automatic generation of formally-proofed GF parallel multipliers
for any irreducible polynomial.

Keywords: arithmetic circuits, formal verification, hierarchical descrip-
tion, computer algebra

1 Introduction

Applications of arithmetic operations over Galois fields (GFs) have been rapidly
increasing owing to the high demands of ECC (error correction code) and cryp-
tographic processors for reliable/secure communications and transactions [1].
These operations are often implemented on hardware in recent embedded sys-
tems, such as smart cards and RFIDs, and the performance and security of
arithmetic circuits have a significant impact on the entire systems. Currently,
many hardware algorithms on GF arithmetic have been devised and some of
such algorithms are implemented in actual systems.

On the other hand, most of such arithmetic circuits are designed at the
logic level by researchers who had trained in a particular way to understand GF
arithmetic. The conventional Hardware Description Languages (HDLs) do not
have high-level arithmetic data structures, arithmetic operations and formulae
over Galois fields. This sometimes requires us to describe structural details of
arithmetic circuits by hand at the lowest level of abstraction (i.e., the level
of AND-XOR expressions). In addition, the functional verification using the
conventional logic simulation is quite time-consuming since these operations are
usually performed with more-than 64-bit operands. The test pattern generation
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is also complicate since it varies with the irreducible polynomial even for the
same operation (e.g., multiplication). There is a decision diagram for Galois fields
based on the decomposition of multiple-valued functions [2], but it is difficult to
handle practical fields such as GF (216) and GF (232) and apply it to the formal
verification.

Addressing the above problems, a formal description and verification method
of arithmetic circuits over GFs were proposed in [3],[4]. The proposed idea is to
use a high-level mathematical graph based on variables and arithmetic formulae
over GFs, which is called Galois-field Arithmetic Circuit Graph: GF-ACG. Using
GF-ACGs, we can describe any GF arithmetic circuit in a hierarchical manner
as a combination of arithmetic sub-circuits (sub-graphs). Such description is for-
mally verified by checking for every sub-circuit whether the function is obtained
from the internal structure. The equivalence checking can be performed by for-
mula manipulations based on a polynomial reduction algorithm using Gröbner
Basis [5], which makes it possible to verify practical arithmetic circuits in a short
time.

In this paper, we present an automatic generation system producing formally-
proofed GF arithmetic circuits based on GF-ACG. Given a design specification,
the system generates GF (2m) parallel multipliers for any irreducible polynomial
in HDL format. The system first generates a GF-ACG code according to the
design specification, verifies it by the formal verification, and translates the ver-
ified code into the corresponding HDL code. We can generate Mastrovito and
Massey-Omura multiplication algorithms which are considered as typical ones
by polynomial basis (PB) and normal basis (NB), respectively [6],[7]. In this
paper, we first derive the hierarchical description of Mastrovito multiplier from
the original flatten description in order to exploit the GF-ACG approach. We
then demonstrate the performance of the proposed system through the exper-
imental generations of multipliers with some typical degrees. We confirm that
the proposed system successfully generates practical multipliers with more-than
128-bit inputs.

2 Galois-field arithmetic circuit graph

This section briefly describes the graph-based representation of GF arithmetic
circuits, where the graphs are referred to as GF Arithmetic Circuit Graphs (GF-
ACGs).

Figure 1 shows an overview of a GF-ACG. A GF-ACGG is defined as (N ,E),
whereN is a set of nodes, andE is a set of directed edges. The node represents an
arithmetic circuit by its functional assertion and internal structure. The directed
edge represents the flow of data between nodes, and defines the data dependency.
We assume that every node has at least one edge connection.

A node n (∈ N) is defined by (F , G′), where F is the functional assertion
given as a set of equations over GFs (GF equations) and G′ is the internal struc-
ture given as a smaller GF-ACG. A node at the lowest level of abstraction, which
does not have its internal structure, is described as (F , nil). A functional asser-
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 : Node 

 : Directed Edge

 : GF-ACG

Fig. 1. Galois-field arithmetic circuit graph.

tion is represented as a relation El = Er, where El and Er are the output and
input expressions, respectively, and each expression is given by variables, con-
stants or combinations of the two or more expressions connected by arithmetic
operations +, −, ×, and /.

A directed edge e (∈ E) is defined as (src, dest, x), where src and dest repre-
sent the start and end node, respectively, and x represents the variable indicating
an element of GF. If either src or dest is nil, its directed edge represents an ex-
ternal input or output for the given GF-ACG. Each variable is associated with
a Galois field. A Galois field GF based on polynomial basis (PB) is defined as
(B,C, IP ), where B is the basis, C is the coefficient vector, and IP is the
irreducible polynomial. More precisely, B, C, and IP are given as

B =
(
βm−1, βm−2, · · · , β0

)
, (1)

C = (Cm−1, Cm−2, · · · , C0) , (2)

IP = βm + cm−1β
m−1 + · · ·+ c0β

0, (3)

where β is the indeterminate element, Ci is the coefficient set of degree i, m
is the degree of field extension, and ci is the element of the coefficient set Ci.
IP = nil if the GF is a prime field. Thus, the above description can handle
both prime and extension fields. Let h (0 ≤ h ≤ m − 1) and l (0 ≤ l ≤ h)
be the most and least significant degrees, respectively. A variable is represented
as x = (GF, (h, l)), where the tuple (h, l) is called the degree range. Using the
above notation, we can handle a specific variable xi of degree i.

A variable can be decomposed to an expression with sub-variables at a lower
level of abstraction. Let x be a variable and xi (l ≤ i ≤ h) be a lower-level
variable. We have two types of decomposition nodes whose functions are given
as

x
(e)
h + x

(e)
h−1 + · · ·+ x

(e)
l = x, (4)

x
(p)
h βh + x

(p)
h−1β

h−1 + · · ·+ x
(p)
l βl = x. (5)

Eq. (4) indicates that x ∈ GF (pm) is divided into a number of variables of de-

gree i (i.e., x
(e)
i (l ≤ i ≤ h) ∈ GF (pm)). On the other hand, Eq. (5) indicates

that x ∈ GF (pm) is divided into a number of variables over the prime field
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(i.e., x
(p)
i (l ≤ i ≤ h) ∈ GF (p)). We also have two types of composition nodes

given as inverse relations between the above inputs and outputs. Using the de-
composition/composition nodes, we can change the level of abstraction in edge
representation. Note here that these nodes are implemented by wiring and have
no internal structures.

The above GF-ACG can be used also for representing any logic circuit. A
logic variable is considered as a variable over the GF whose coefficient set is
limited to the zero element “0” and the unit element “1”. Any logical operation
can be represented with pseudo logic equations. For example, the functions of
AND and XOR circuits are given as

and(a, b) = ab, (6)

xor(a, b) = a+ b− 2ab, (7)

respectively. Note that the idempotent law is considered as one of functional
assertions in the corresponding node (i.e., a = a2 and b = b2).

Thus, GF-ACG can represent any arithmetic circuit over GF represented by
PB and any logic circuit. The arithmetic circuits given by GF-ACGs are verified
by a formal verification method using Gröbner basis and a polynomial reduction
technique [3].

3 Hierarchical design of Mastrovito multiplier

TheMastrovito multiplier [6] is a 2-input 1-output parallel multiplier overGF (2m)
represented by Polynomial Basis (PB), which is known as one of the smallest
multiplier structures by PB. The Mastrovito multiplier is originally composed
of matrix generation and matrix operation parts.

Let a and b ∈ GF (2m) be the inputs and let c ∈ GF (2m) be the output.
The matrix generation part generates an m ×m matrix Z from the input a(=∑m−1

i=0 a
(p)
i · βi). For example, a matrix Z of the GF (24) Mastrovito multiplier

by an irreducible polynomial β4 + β + 1 is given as

Z =

⎡
⎢⎢⎢⎣

Z
(p)
3,3 Z

(p)
2,3 Z

(p)
1,3 Z

(p)
0,3

Z
(p)
3,2 Z

(p)
2,2 Z

(p)
1,2 Z

(p)
0,2

Z
(p)
3,1 Z

(p)
2,1 Z

(p)
1,1 Z

(p)
0,1

Z
(p)
3,0 Z

(p)
2,0 Z

(p)
1,0 Z

(p)
0,0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a
(p)
0 + a

(p)
3 a

(p)
1 a

(p)
2 a

(p)
3

a
(p)
3 + a

(p)
2 a

(p)
0 + a

(p)
3 a

(p)
1 a

(p)
2

a
(p)
2 + a

(p)
1 a

(p)
3 + a

(p)
2 a

(p)
0 + a

(p)
3 a

(p)
1

a
(p)
1 a

(p)
2 a

(p)
3 a

(p)
0

⎤
⎥⎥⎥⎦ ,

(8)

where Zp
i,j ∈ GF (2). The original description is not suitable for the design and

verification of GF-ACG since the complexity of the description is exponentially
increased by the degree (i.e., input width).

For the hierarchical design, we represent the matrix Z by column vectors Zi

as follows.

Z =
[
Zm−1 Zm−2 · · · Z0

]
. (9)
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In the case of the above example (i.e., Eq. (8)), Z1 is given as [a
(p)
2 a

(p)
1 a

(p)
0 + a

(p)
3

a
(p)
3 ]T. Note here that the column vector is represented by the following polyno-

mial.

Zi = a · βi, 0 ≤ i ≤ m− 1. (10)

The column vector is also given as the following recurrence formula.

Zi = Zi−1 · β, 1 ≤ i ≤ m− 1. (11)

Thus, the function and internal structure of the matrix generation are given by
Eqs. (10) and (11), respectively. The internal structure of Eq. (11) is given by
2-input 1-output adders over GF (2).

The matrix operation part calculates the inner product of Z and the other

input b(=
∑m−1

i=0 b
(p)
i,i · βi), where b

(p)
i,i is the i-th element given by the decom-

position of Eq. (5) after the decomposition of Eq. (4). The operation is given
by

c =
[
Zm−1 Zm−2 · · · Z0

]
×

⎡
⎢⎢⎢⎢⎣

b
(p)
m−1,m−1

b
(p)
m−2,m−2

...

b
(p)
0,0

⎤
⎥⎥⎥⎥⎦
=

m−1∑

i=0

Zi × b
(p)
i,i . (12)

Let b
(e)
i be b

(p)
i,i · βi (b

(e)
i ∈ GF (2m)). The function of Eq. (12) is also given as

c =
m−1∑

i=0

Zi × (b
(e)
i · β−i). (13)

For the hierarchical design, the function of Eq. (13) is represented by the follow-
ing equations.

wi = Zi × (b
(e)
i · β−i), 0 ≤ i < m, (14)

c =

m−1∑

i=0

wi. (15)

Thus, the matrix operation part is represented by two operations whose function
are given by Eqs (14) and (15). Here, the function of Eq. (15) is implemented by
m-1 2-input 1-output adders over GF (2m). In the lower level of abstraction, the
internal structures of Eqs. (14) and (15) are given by 2-input 1-output multipliers
and adders over GF (2), respectively.

Figure 2 shows the GF-ACGs for the Mastrovito multiplier over GF (24),
where the GF-ACGs are represented by four levels of abstraction. The nodes in
Fig. 2 (a), (b) and (c) correspond to the shaded parts in Fig. 2 (b), (c) and (d),
respectively. Tables 1 and 2 show the functional assertions and GF variables,
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Fig. 2. GF-ACGs for GF (24) Mastrovito multiplier from (a) the highest level to (d)
the lowest level.

respectively. Note that the decomposition/composition nodes are not shown in
Tab. 1.

The 2nd-level nodes “Matrix Generator” and “Matrix Operation” in Fig. 2 (b)
have functional assertions corresponding to Eqs. (10) and (13), respectively. The
3rd-level nodes “MGi” and “MOi” in Fig. 2 (c) have functional assertions corre-
sponding to Eqs. (11) and (14), respectively. And, The 3rd-level nodes “GFAi”
in Fig. 2 (c) indicate 2-input 1-output adders over GF (24). It is important to
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Table 1. NODES IN FIG. 2

[Multiplier] n0 = ({c = a× b}, G1)
[Matrix Generator] n1 = ({Z0 = a · β0, Z1 = a · β1, Z2 = a · β2, Z3 = a · β3}, G2)

[MG0] n3 = ({Z1 = Z0 · β}, G4)

n13 = ({Z(p)
1,1 = Z

(p)
0,0 + Z

(p)
0,3}, nil)

[MG1] n4 = ({Z2 = Z1 · β}, G5)

n14 = ({Z(p)
2,1 = Z

(p)
1,0 + Z

(p)
1,3}, nil)

[MG2] n5 = ({Z3 = Z2 · β}, G6)

n15 = ({Z(p)
3,1 = Z

(p)
2,0 + Z

(p)
2,3}, nil)

[Matrix Operation] n2 = ({c = ∑3
i=0 Zi × (b

(e)
i · β−i), G3)

[MO0] n6 = ({w0 = Z0 × (b
(e)
0 · β−0)}, G7)

n16 = ({w(p)
0,0 = Z

(p)
0,0 × b

(p)
0,0}, nil), n17 = ({w(p)

0,1 = Z
(p)
0,1 × b

(p)
0,0}, nil)

n18 = ({w(p)
0,2 = Z

(p)
0,2 × b

(p)
0,0}, nil), n19 = ({w(p)

0,3 = Z
(p)
0,3 × b

(p)
0,0}, nil)

[MO1] n7 = ({w1 = Z1 × (b
(e)
1 · β−1)}, G8)

n20 = ({w(p)
1,0 = Z

(p)
1,0 × b

(p)
1,1}, nil), n21 = ({w(p)

1,1 = Z
(p)
1,1 × b

(p)
1,1}, nil)

n22 = ({w(p)
1,2 = Z

(p)
1,2 × b

(p)
1,1}, nil), n23 = ({w(p)

1,3 = Z
(p)
1,3 × b

(p)
1,1}, nil)

[MO2] n8 = ({w2 = Z2 × (b
(e)
2 · β−2)}, G9)

n24 = ({w(p)
2,0 = Z

(p)
2,0 × b

(p)
2,2}, nil), n25 = ({w(p)

2,1 = Z
(p)
2,1 × b

(p)
2,2}, nil)

n26 = ({w(p)
2,2 = Z

(p)
2,2 × b

(p)
2,2}, nil), n27 = ({w(p)

2,3 = Z
(p)
2,3 × b

(p)
2,2}, nil)

[MO3] n9 = ({w3 = Z3 × (b
(e)
3 · β−3)}, G10)

n28 = ({w(p)
3,0 = Z

(p)
3,0 × b

(p)
3,3}, nil), n29 = ({w(p)

3,1 = Z
(p)
3,1 × b

(p)
3,3}, nil)

n30 = ({w(p)
3,2 = Z

(p)
3,2 × b

(p)
3,3}, nil), n31 = ({w(p)

3,3 = Z
(p)
3,3 × b

(p)
3,3}, nil)

[GFA0] n10 = ({w4 = w0 + w1}, G11)

n32 = ({w(p)
4,0 = w

(p)
0,0 + w

(p)
1,0}, nil), n33 = ({w(p)

4,1 = w
(p)
0,1 + w

(p)
1,1}, nil)

n34 = ({w(p)
4,2 = w

(p)
0,2 + w

(p)
1,2}, nil), n35 = ({w(p)

4,3 = w
(p)
0,3 + w

(p)
1,3}, nil)

[GFA1] n11 = ({w5 = w2 + w3}, G12)

n36 = ({w(p)
5,0 = w

(p)
2,0 + w

(p)
3,0}, nil), n37 = ({w(p)

5,1 = w
(p)
2,1 + w

(p)
3,1}, nil)

n38 = ({w(p)
5,2 = w

(p)
2,2 + w

(p)
3,2}, nil), n39 = ({w(p)

5,3 = w
(p)
2,3 + w

(p)
3,3}, nil)

[GFA2] n12 = ({c = w4 +w5}, G13)

n40 = ({c(p)0 = w
(p)
4,0 + w

(p)
5,0}, nil), n41 = ({c(p)1 = w

(p)
4,1 + w

(p)
5,1}, nil)

n42 = ({c(p)2 = w
(p)
4,2 + w

(p)
5,2}, nil), n43 = ({c(p)3 = w

(p)
4,3 + w

(p)
5,3}, nil)

note that we can simply extend the above GF-ACG description to describe any
Mastrovito multiplier over GF (2m) (2 ≤ m).

4 Galois-Field Arithmetic Module Generator

This section presents an application of our approach to an automatic generation
system (GF-AMG: Galois-Field Arithmetic Module Generator) producing GF
multipliers. We employ GF-ACG for describing Mastrovito and Massey-Omura
parallel multiplication algorithms as shown in the above section and [4]. The use
of GF-ACG makes it possible to produce multiplier modules whose functions are
formally verified at the algorithm level.
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Table 2. GALOIS FIELDS AND VARIABLES IN FIG. 2

Galois field

GF (24) = (
(
β3, β2, β1, β0

)
, ({0, 1}, {0, 1}, {0, 1}, {0, 1}) , β4 + β1 + β0)

GF (2) = (
(
β0

)
, ({0, 1}) , nil)

Galois field variables

a = (GF (24), (3, 0))
b = (GF (24), (3, 0))

b
(e)
i = (GF (24), (i, i)), (0 ≤ i ≤ 3)

b
(p)
i,i = (GF (2), (0, 0)), (0 ≤ i ≤ 3)

c = (GF (24), (3, 0))

c
(p)
i = (GF (2), (0, 0)), (0 ≤ i ≤ 3)
Zi = (GF (24), (3, 0)), (0 ≤ i ≤ 3)

Z
(p)
i,j = (GF (2), (0, 0)), (0 ≤ i ≤ 3, 0 ≤ j ≤ 3)

wi = (GF (24), (3, 0)), (0 ≤ i ≤ 5)

w
(p)
i,j = (GF (2), (0, 0)), (0 ≤ i ≤ 5, 0 ≤ j ≤ 3)

Figure 3 is a block diagram of GF-AMG, which consists of (i) GF-ACG Code
Synthesizer, (ii) GF-ACG Verifier, and (iii) ACG-to-HDL Translator. First, the
GF-ACG Code Synthesizer generates a GF-ACG code according to the design
specification. Either Mastrovito algorithm or Massey-Omura algorithm with any
irreducible polynomial can be selected for the specification. The degree for ir-
reducible polynomial is acceptable from 2 to 256/64 for the selected algorithm.
The GF-ACG verifier then verifies the generated GF-ACG code by computer
algebra in a formal manner. The ACG-to-HDL Translator finally translates the
verified GF-ACG code into the equivalent Verilog-HDL code. This can be done
simply by the one-to-one mapping.

Figure 4 shows an overview of the verification procedure for GF-ACGs.
Given a GF-ACG, all the nodes having functional assertions and internal struc-
tures are verified by the formula evaluation (FormulaEvaluation). If GF equa-
tions of the internal structure are equivalent to the functional assertion(s),
FormulaEvaluation returns true. Here, we assume that the lowest-level nodes,
where the functional assertions are given by logical functions such as XOR and
AND, are predetermined and reliable. The major feature of GF-ACGs is that
the formula evaluation can be performed by computer algebra, which utilizes
polynomial reduction and Gröbner basis techniques.

For any polynomial p, we obtain a unique element, called a normal form, from
repeated reductions with respect to a set of polynomials Q = {q1, q2, · · · , qm}.
The normal form is denoted by NFQ(p). If the set is a Gröbner Basis, NFQ(p) =

0 for any polynomial p in an ideal I (i.e., a set of polynomials genereted by Q).

Figure 5 illustrates the formula evaluation procedure using Gröbner Basis,
where GroebnerBasis(P ) indicates Buchberger’s algorithm to obtain a Gröbner
Basis GB from a set of polynomials P . Given a functional assertion f and
internal structure G, P is generated from functional assertions in the internal
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GF-ACG Code Synthesizer

GF-ACG Verifier

ACG-to-HDL Translator

Design Specification

GF-ACG Code

Verified GF-ACG Code

Verified HDL Code

GF-AMG

Fig. 3. Block diagram of GF-AMG.

Input: Galois-field arithmetic circuit graph G = (N ,E)

Output: Verification result r ∈ {true, false}
1: Function V erify((N ,E))
2: r := true
3: for each (F , G) ∈ N
4: if G �= nil
5: r := r & V erify(G)
6: for each f ∈ F
7: r := r & FormulaEvaluation(f,G)
8: end for
9: end if
10: end for
11: return r
12: end

Fig. 4. Verification algorithm for GF-ACGs.

structure. GB is then obtained from GroebnerBasis(P ). If the normal form of
f with respect to GB is equal to zero, f is a member of the ideal from P . This
means that the functional assertion can be realized with the internal structure.
Therefore, FormulaEvaluation(f,G) returns true. To complete the verification
of a GF-ACG, the above formula evaluation is applied to all the nodes in the
GF-ACG.

Example 1. Consider a formula evaluation for the highest-level node n0 of the
Mastrovito multiplier over GF (24) (as shown in Fig. 2), where the functional
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Input: Functional assertion f
Internal structure G = (N ,E)

Output: Verification result r ∈ {true, false}
1: Function FormulaEvaluation(f,G)
2: P := ∅
3: for each (F , G′) ∈ N
4: P := P ∪ F
5: end for
6: GB := GroebnerBasis(P )
7: if NFGB(f) = 0
8: r := true
9: else
10: r := false
11: end if
12: return r
13: end

Fig. 5. Formula evaluation algorithm.

assertion is c = a× b, the internal structure is composed of ten nodes including
decomposition/composition nodes, and the irreducible polynomial IP is β4 +
β1 + β0. The goal of this evaluation is to prove the correctness of the functional
assertion of n0 (c = a × b) under the condition that the lower-level nodes are
correctly implemented, in other words, that the functional assertions of lower
nodes (n1, n2, · · · ) are correct.

We first obtain a set of polynomials P from the internal structure.

P = {Z0 − a · β0, Z1 − a · β1, Z2 − a · β2, Z3 − a · β3,

b
(e)
0 + b

(e)
1 + b

(e)
2 + b

(e)
3 − b,

c− (Z0 × b
(e)
0 · β−0 + Z1 × b

(e)
1 · β−1 + Z2 × b

(e)
2 · β−2 + Z3 × b

(e)
3 · β−3),

β4 + β1 + β0}. (16)

Note here that the irreducible polynomial of GF (24) is also included in P . We
then derive the Gröbner basis GB from P according to Buchberger’s algorithm.

GB = {c+ a× b,

b+ b
(e)
0 + b

(e)
1 + b

(e)
2 + b

(e)
3 ,

a · β3 + Z3, a · β2 + Z2, a · β1 + Z1, a · β0 + Z0,

β4 + β1 + β0}. (17)

Note here that the operator “+” is identical to the operator “－” since the
variables are defined as GF (2) variables.

Finally, the normal form of the function (i.e., c− a× b) with respect to GB
is given by NFGB(c − a × b) = 0. Therefore, the function is derived from the
internal functions and the formula evaluation returns true.
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Table 3. Generation time of Mastrivito multipliers (sec)

GF (24) GF (28) GF (216) GF (232) GF (264) GF (2128)

Verilog-XL simulation 0.137 0.279 9330 N/A N/A N/A

Formal verification 2.499 3.374 5.188 9.487 19.55 52.61

Table 4. Generation time of Massey-Omura parallel multipliers (sec)

GF (24) GF (28) GF (216) GF (232) GF (264) GF (2128)

Verilog-XL simulation 0.309 0.460 N/A N/A N/A N/A

Formal verification 2.334 3.618 5.482 16.24 372.5 34,263

If the set of polynomials consists of linear polynomials, the Gröbner Basis
calculation is equivalent to Gaussian Elimination [5]. In this case, the compu-
tation cost of the proposed method becomes O(k3), where k is the number of
variables. For many arithmetic circuits, word-level structures are commonly rep-
resented by linear equations, and thus the proposed verification method can be
effective for verifying such word-level functions.

To evaluate the performance of our system, we generated the two types of
multipliers with some typical degrees. Tables 3 and 4 show the generation times
for Mastrovito and Massey-Omura multipliers, respectively. The evaluation was
done on Linux PC with Intel Core2 Due E4600 2.40GHz and 7GB memory.
The formal verification was implemented with an open-source general computer
algebra system called Risa/Asir. For comparison, we also performed the Verilog-
XL simulation using the corresponding HDL descriptions. We were not able
to succeed the complete simulation of GF (232) and larger multipliers in this
experiment because the verification time increases exponentially as the signal
length increases. On the other hand, using our system, we were able to succeed
the complete verification even for the 128-bit multiplier over GF (2128). Most of
the generation times were used by the GF-ACG verifier. The time consuming
related to the GF-ACG Synthesizer and the ACG-to-HDL Translator was almost
constant independent of the multiplier size.

5 Conclusion

This paper has presented the hierarchical designs of Galois-field parallel multi-
pliers based on GF-ACG, and shown an application to an automatic generation
system producing two types of multipliers (i.e., Mastrovito and Massey-Omura
multipliers) for any irreducible polynomial. The generated HDL codes are com-
pletely verified by the formal verification method in the system. The proposed
system is available from our website [8]. Further investigations are being con-
ducted to develop advanced module generators for cryptographic datapaths with
GF arithmetic circuits.
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Abstract. Integrated circuits (ICs) can contain malicious logic or back-
doors, known as hardware trojans, that may impede them from function-
ing properly. These hardware trojans include the recent bug attacks due
to Biham et al. In order to protect ICs against such hardware trojans and
the bug attacks, we present an effective method to efficiently construct
“trojan-resilient” circuits. Therefore, we revisit the fundamental work on
fault-tolerant circuits by Gál and Szegedy. We extend their attack model;
and from this extended adversary scenario we derive a mathematical def-
inition of “IC resilience” against well-defined hardware trojans. In our
model we allow an all-powerful adversary to modify a constant fraction
of the gates and wires at each level of the resilient circuit in an arbi-
trary way. We prove that every Boolean circuit can be transformed into
another Boolean circuit with the same functionality as the original cir-
cuit even in the presence of an adversary tampering with the “resilient”
circuit. The transformation is polynomial time computable and yields a
circuit, which has a logarithmic depth in the size of the original circuit.
To the best of our knowledge this is the first work to counteract hard-
ware trojans with a rigorous mathematical security proof — backed up
by a practical and meaningful model.

Keywords: bug attacks; error-correcting codes; hardware backdoors and
trojans; probabilistically checkable proofs; reliable and secure circuits;
resilient circuit design; security and trust.

1 Introduction

The recently presented bug attacks of Biham et al. [11] make use of determin-
istic errors in the hardware implementation of cryptosystems (such as Pohlig-
Hellman[29] and RSA[32]). By a single chosen ciphertext or a larger number of
ciphertexts (in the case of RSA OAEP [8]) the full secret key can be computed.
Even if there is only one error in the multiplication of a single pair of numbers,
this can be exploited by an adversary. The errors, which are utilized by attack-
ers, can occur due to accidental bugs like the Intel division bug. More alarming
is the problem of maliciously tampered hardware. Until recently, integrated cir-
cuits (ICs) were assumed to be secure against malicious activities. However,
it is questionable if this assumption is still valid. ICs are becoming more and
more vulnerable to malicious alterations, known as hardware trojans, as many
in-house steps of an IC fabrication process are being outsourced to third-parties.
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This risk is presented in [1, 13, 25]. In particular, hardware trojans have drawn
attention to the potential threats to governmental and military systems as well
as financial infrastructure and transportation security. For all mission critical ar-
eas and in order to prevent bug attacks, it is essential to use computer systems
that ensure their correct functionality in all circumstances. Thus, a reasonable
and challenging question is whether ICs can be designed in such a way that
the functionality intended by the designers is guaranteed — even if a malicious
adversary is allowed to tamper with the ICs during certain production steps.
That means, we consider that scenario, in which the design process is trusted,
but the subsequent production steps are not trustworthy. Due to the so-called
“fabless” trend, this scenario is the most relevant one as outsourcing to silicon
foundries is by virtue untrusted. This challenge was explicitly presented in [12]
as the first of three key topics and it was mentioned in [13] as well: “Given an
IC corresponding to a known design, does the IC that is delivered do what it is
supposed to do and nothing more? This is the case when the fabrication facility
is not trusted, but the design process is.”

Our paper answers the central question affirmatively by presenting a resilient
IC design that ensures equivalent IC functionality even if a malicious adversary
physically alters the IC in the fabrication phase. In a real-world scenario an
attacker will only slightly alter a chip since large-scale alterations would later be
detected during testing phase. This scenario goes along with the model of bug
attacks, in which only a single multiplication needs to be incorrect in order for the
attack to work. Thus, our concept for a resilient IC design fulfills the requirement
that small changes to the IC do not affect its correct functionality, whereas more
serious changes should be detected otherwise. Such a design could,e.g., prevent
the danger of so-called kill switches [1] and bug attacks [11].

Since the topic of hardware trojans is rather new, recent research has fol-
lowed other approaches. In [23, 26, 36] hardware trojans have been constructed
and practically investigated. There are various approaches to a hardware trojan
taxonomy [22, 37, 43]. This is necessary as adversaries have many different ob-
jectives, and hence, the developed hardware trojans are vastly different as well.
Several contributions to the topic of hardware trojans focus exclusively on trojan
detection [2, 18, 24, 37, 41, 43, 46]. However, little research has gone into design
techniques that detect hardware trojans at runtime or counteract them at run-
time [18, 41, 42]. The proposed directions are rather heuristic and do not cover
all hardware backdoors. Ishai et al. [20, 21] examine the problem of privacy in
circuits, which is motivated by side channel attacks. They define a formal threat
model, and suggest provably secure methods to counteract probing attacks on
circuits.

Compared to all other existing research concerning proper IC functionality,
this paper develops a trojan-resilient IC model, which is provably secure. To
achieve this, we first revisit the model of fault-tolerant Boolean circuits by Gál
and Szegedy [17]. Their work deals with deliberate non-random faults in Boolean
circuits. We extend their work and introduce a formal attack scenario that targets
the malicious altering of ICs. This hardware trojan model is mapped into a real-
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world taxonomy [22] as well. By leveraging Gál and Szegedy’s techniques of
fault-tolerant computations, we prove that it is indeed possible to design ICs
that maintain their correct functionality even if they are infected by hardware
trojans. To the best of our knowledge there is no prior work relating the area of
fault-tolerant circuit computation with hardware trojans.

Research in the area of fault-tolerant circuits has mainly been based on the
model of random faults by von Neumann [40]. In this model it is assumed that all
gates of a Boolean circuit fail, i.e., produce a faulty value, independently and with
probability bounded by some small constant. From this early research it is known
that any function can be reliably computed by another circuit of size L logL,
where L is the size of the error-free circuit that computes the given function
[15, 28, 40]. However, hardware trojans can not be described by this classical fault
model since maliciously altered hardware closely resembles deliberately inserted
faults. Gál and Szegedy deal with this more difficult case when the faults are
not random [17]. In their model an adversary may arbitrarily choose a small
constant fraction of the gates at each level of a Boolean circuit to be faulty.
They introduce a constructive way to efficiently build fault-tolerant Boolean
circuits with small redundancy even in the presence of non-random faulty gates.
Their construction makes use of very elaborated techniques from the field of
probabilistically checkable proofs (PCPs) amongst many others, cf. [6]. The PCP
theorem guarantees an efficient proof system with “robust” proofs for every set
of NP. In the notion of PCPs, proofs can be efficiently encoded and provide
enough redundancy such that a proof of a false statement will result in many
errors. Additionally, a verifier has to read only a constant number of proof bits,
but will still catch faulty proofs with high probability. These PCP encodings are
used to construct fault-tolerant circuits for arbitrary Boolean functions.

The paper is structured as follows. The next section introduces background
knowledge on Boolean circuits, ICs and PCPs. Furthermore, it revisits the ad-
versary model of fault-tolerant circuits that was presented in [17]. Our attack
model is explained in Sect. III, and consequently the trojan is defined. In Sect.
IV the model of [17] is extended and the presented techniques are applied in
order to counteract the trojan. Finally, in Sect. V our work is concluded; open
questions and future research directions are also presented.

2 Definitions and Preliminaries

This section briefly introduces Boolean circuits, PCPs and basic fault-tolerant
circuit constructions due to Gál and Szegedy [16, 17]. We consider combinational,
synchronous circuits with a single output bit; for a thorough treatment we refer
to [4, 16, 17, 44].

2.1 Boolean Circuits

A Boolean circuit C with NI input bits and one output bit is defined as an
acyclic directed graph, in which every vertex (called gate) corresponds to either
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a Boolean function from the set B = {AND,OR,NOT} or an input gate (of
in-degree 0) labeled by one of the NI input bits. Every edge represents a wire.
One gate is labeled as output gate. A Boolean circuit C computes a Boolean
function f : {0, 1}NI → {0, 1}. We can assume that AND and OR gates have
in-degree 2, NOT gates have in-degree 1, and all gates have a maximum out-
degree of 2. A combinational (or combinatorial) circuit with NI inputs and one
output is a Boolean circuit C with NI input bits x1, . . . , xNI

and one output bit
z. A circuit is called synchronous (or synchronized) if for any gate g all paths
from the inputs to g have the same length. Let C be a circuit and let g be any
gate in C. The depth of g is the length of the longest path from any input to g
and the circuit depth D(C) is defined as the maximal depth of an output gate.
The size S(C) of a circuit C is defined as the total number of gates it consists
of. The i-th level of a circuit consists of all gates with depth equal to i. A circuit
C is synchronous if and only if every wire in C is between adjacent levels.

2.2 Integrated Circuits

An integrated circuit (IC) is composed of combinational logic having some in-
puts, which are output derived, cf. [31]. There may also be independent inputs.
All or some of the outputs are fed back into the input. We denote by C the
combinational logic, by x1, . . . , xI the independent inputs to C and by Y the
output of C that is also fed back to C as input y. The output value Y , called
state vector, may be clocked (delayed) and becomes an input y to C. Because
of these possible delays the output Y and the corresponding input y may dif-
fer, and therefore, we denote them differently. W.l.o.g. we can assume that C
is a synchronous circuit [44]. For simplicity, only ICs with one output bit are
considered. This single output bit is fed back into the input.

2.3 Probabilistically Checkable Proofs (PCPs)

Conventional proofs have to be checked by a verifier step by step since a false
theorem could be “proven” by a proof that contains only one incorrect clause.
PCPs are more robust and a verifier can decide whether a proof is valid or not
much more efficiently.

Let L ∈ NP be a set. A PCP verifier V receives an input x and gets access
to a proof π. It is allowed to read some O(r) random bits, but at most O(q) bits
from the proof. Denote by V π(x, ρ) the output of V on proof π, input x and
randomness ρ. Then the class PCP [r, q] is the set of all languages L, for which
there exists such a verifier V with the following properties:

– (completeness) If x ∈ L, then there exists a proof π such that Probρ[V
π(x, ρ)accepts] =

1.
– (soundness) If x /∈ L, then it holds true for all proofs π that Probρ[V

π(x, ρ)accepts] ≤
1/2.

The PCP theorem states that NP = PCP [log n, 1] and is proved in [5, 14].
Improvements concerning proof length, query complexity and fault-tolerance
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were achieved in [5, 9, 10, 14, 30]. In [9] PCPs of length n exp(poly(log log n))2

and query complexity poly(log log n) are presented. Compared with this, in [10]
the PCPs have length n poly(log n) and can be verified by poly(log n) queries.
PCPs are closely related to so-called locally testable codes, on which we will not
elaborate in this paper. However, they may be of interest in order to practically
implement PCPs. In each case [9, 10] constructions for more efficient locally
testable codes are presented.

2.4 Gál and Szegedy’s Model of Fault Tolerant Boolean Circuits

The conventional scenario of fault-tolerant Boolean circuits deals with natural
random errors. In order to address the more difficult scenario of non-random
faults, Gál and Szegedy define a model, in which an adversary is allowed to
maliciously choose at most a constant fraction of the gates at each level of the
circuit to be faulty [17]. This means that gates may be destroyed or gate types
may even change. The wires of the circuit are assumed to work correctly. This
model is equivalent to the idea that a constant number of absolutely reliable
gates is used for the last few levels of a circuit. Such an assumption is reasonable
because more expensive and reliable hardware may be used for certain parts of
a circuit. As tiny alterations to the IC should not affect its functionality, the
circuit is required to compute a given function only “loose”. However, if the IC
is substantially altered, the loose version of the function is undefined and thus,
the malicious modification should be detected. Gál and Szegedy define and prove
the following fundamental insights towards their model.

Loose Computation Let f : {0, 1}n → {0, 1} be a Boolean function and M be
any computational device. We say that M δ-loosely computes f if the following
holds:

1. If f(x) = 1, then M(x) = 1.

2. If f(y) = 0 for every y with d(x, y) ≤ δn, then M(x) = 0,

where d(x, y) denotes the Hamming distance between x and y. If an input x
does not belong to one of the two categories, M can output an arbitrary value
or no value at all. Combined with an appropriate error-correcting code, the loose
computation behaves like the usual evaluation of a given function. For an error-
correcting code En with codewords of length qn and a function f : {0, 1}n →
{0, 1}, we define the function f ◦ En : {0, 1}qn → {0, 1} as follows:

1. (f ◦ En)(z) = 0 for all z where z is not a codeword of En.

2. If z = En(x), then (f ◦ En)(z) = f(x).

Lemma 1. If the Hamming distance of any two codewords in an error-correcting
code En with codewords of length qn is at least δqn and M is a computational
device that computes f ◦ En δ-loosely, then M(En(x)) = f(x) on any input x.
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It is known from coding theory, cf. [27], that there exist linear binary codes En
with the required properties: The matrix of En can be polynomially computed
in n. (This also means that the length of the codeword qn is polynomial in n.)
And the Hamming distance of any two codewords in En is at least δqn for some
small constant δ.

Faulty Gates and Circuits Formal definitions for the intuitive notions of
errors, faulty gates and faulty circuits are now given. Denote by g(x1, x2) the
function, which gate g is supposed to compute on an inputs x1 and x2. A gate g
is called faulty if its output is different from g(x1, x2). Let C be a circuit with no
faulty gates and let C̃ be a copy of the same circuit with possibly faulty gates.
The output of a gate of C̃ is incorrect if it is different from the value computed
by the same gate in C. Note that the output of a gate may be incorrect because
the gate is faulty or because the inputs of the gates are incorrect. Let C̃ be a
circuit with possibly faulty gates, but correctly working wires. If a gate g receives
an incorrect input, at least one of the previous adjacent gates that provide the
inputs to g computed an incorrect output. We say that a circuit C is γ-faulty if
at most a γ fraction of the gates on each level is faulty. A circuit C for a function
f is called fault-tolerant if it computes f δ-loosely even if it is γ-faulty.

ε-Halvers By the techniques presented by Gál and Szegedy it is possible to
construct a synchronous fault-tolerant circuit for every symmetric function [17].
The construction for symmetric functions makes use of ε-halvers from Ajtai et
al. [3]. An ε-halver is a bounded depth comparator network with the following
property: For any set of the l smallest (largest) inputs, where l ≤ n/2, at most
εl elements will be among the last (first) n/2 outputs. Equivalently, an ε-halver
can be defined as a halver (a network that separates the n/2 largest and the n/2
smallest inputs into two disjoint sets) that may misplace at most an ε fraction of
the elements. For 0-1 inputs ε-halvers can be implemented by monotone Boolean
circuits. Each comparator can be realized by an AND−OR gate pair, where the
AND gate computes the minimum and the OR gate computes the maximum
of the two common input bits. We will consider ε-halvers with faulty gates and
examine the number of faults and their propagation. At level d of an ε-halver
with faulty gates the number of incorrect outputs is at most the number of
incorrect outputs at level d − 1 plus the number of faulty gates at level d. For
an ε-halver we denote by L1 (L0) the number of 1’s (0’s) in the lower part of
the output, and by U1 (U0) the number of 1’s (0’s) in the upper part of the
output. The following two lemmas from [17] deal with the propagation of faults
in ε-halvers.

Lemma 2. Consider a γ-faulty ε-halver of depth c with m inputs and let the
number of 0’s in the input be a. If a ≥ m/2, then L1 ≤ ε(m − a) + cγm and
(a−m/2)−cγm ≤ U0 ≤ (a−m/2)+εm/2+cγm. If a ≤ m/2, then U0 ≤ εa+cγm
and (m/2− a)− cγm ≤ L1 ≤ (m/2− a) + εm/2 + cγm.
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Lemma 3. Consider a 0-1 string of length m, such that there are z 0’s followed
by m− z 1’s. Denote by zL (zU ) the number of 0’s in the lower (upper) part of
this ordered string. Consider a γ-faulty ε-halver of depth c with m inputs and
let the number of 0’s in the input be a, such that |a− z| ≤ r. Then |U0 − zU | ≤
r + (ε + 2cγ)m/2 and |L0 − zL| ≤ r + (ε + 2cγ)m/2. A similar statement holds
for the number of 1’s in the output.

Construction for Symmetric Functions ε-halvers are building blocks of so-
called overwhelming majority functions and threshold functions. These can be
computed correctly on all defined inputs by γ-faulty circuits, and they are used
to construct fault-tolerant circuits for symmetric functions [17].

The overwhelming majority function Majmk has value 1 (respectively 0) if
the number of 1’s (0’s) in the input is at least k, and it is undefined otherwise.
Let k > 3/4m. Then for some γ > 0 there is a γ-faulty circuit of size O(m)
and depth O(logm) computing Majmk correctly on every input belonging to its
domain, cf. [17]. The threshold function Thnk has value 1 if and only if at least
k of the n input bits have value 1. For any δ > 0 there is a γ > 0 such that
for any threshold function Thnk there is a synchronous circuit such that, cf. [17]:
If an adversary destroys a γ fraction of the gates on every level (including the
input level), the circuits still computes Thnk in a δ-loose manner. The size of the
circuit is O(n). The depth of the circuit is O(log n).

The above results constitute a central result of [17] showing that it is indeed
possible to construct a synchronous fault-tolerant circuit for every symmetric
function.

Theorem 1. For any δ > 0 there is a γ > 0 such that for any symmetric func-
tion f with n inputs there is a synchronous circuit with the following properties.
If an adversary destroys a γ fraction of the gates on every level (including the
input level), the circuit still computes f in a δ-loose manner. The size of the
circuit is O(n) and the depth of the circuit is O(log n).

Arbitrary Boolean Functions Furthermore, synchronous fault-tolerant cir-
cuits can be obtained for any Boolean function in this model if certain error-
correcting codes are applied. In addition to ε-halvers the fault-tolerant circuits
for arbitrary Boolean functions are also based on techniques from the area of
PCPs as defined by Arora et al. [5]. As we extend this construction from [17]
for arbitrary Boolean functions to our new hardware trojan model, we will thor-
oughly present the adapted and extended proof later as our main result.

3 Hardware Trojans

The risk of using maliciously altered hardware has risen over the years and poses
a real threat to critical computer systems. Since hardware is the lowest layer of
a computer system, it controls everything running on it. Not surprisingly, is is
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also very hard to detect and prevent such attacks on this lowest level of control,
cf. [23, 26, 36]. Additionally, there is no convenient hardware solution in order
to repair altered hardware afterwards. This means, there is no equivalent to the
usual software updates. Due to the plethora of different hardware trojans, there
is also a huge taxonomy [22, 37, 43] of different hardware trojans. Table 1 shows
the taxonomy presented by Karri et al. [22] based on five attributes.

In order to focus on feasible problem solutions and to counteract bug attacks,
this paper considers hardware trojans that might alter the proper functionality
of an IC. The central idea is that small changes to the IC should not affect the
functionality of a “resilient” IC, while more serious changes could be detected
otherwise. It is obvious that massive design changes are clearly visible by a
simple mask comparison with the IC die under investigation. So, even if an
adversary knew of this resilient design method and the thresholds defining small
and massive changes, he cannot destroy the IC arbitrarily too much. Hence,
although the proposed solution seems to be static, it is virtually impossible for
an adversary to circumvent it.

Let us consider the development cycle of an IC [12, 45] and the trustworthi-
ness of its stages. In the specification phase the characteristics of the system,
e.g., its expected function, are defined. Next, the specification is transformed
into a chip design taking account of logical and physical requirements. These
two steps take place in trusted research laboratories. During the fabrication
phase the physical design layout is transformed into a set of mask layouts. A set
of masks is then produced from these layouts and the wafers can be processed
by the masks. We will consider the case when the specification and design pro-
cesses are trustworthy, but the mask and fabrication phase are not. Since the
mask and fabrication process are often outsourced to untrusted factories, our
approach is well-founded [12, 13] in practice. At these or some later stages an
adversary may have the opportunity to change the mask or even change the IC
during production. It is likely that an adversary subtly tampers with the mask
or the complex IC production process itself. This is due to the fact that major
changes could be detected during the trusted testing phase, and will thus force
the adversary to make only tiny deliberate alterations.

In this paper we consider adversaries that change the existing gates and wires
of the combinational logic of an IC. Since an adversary who can tamper with a
mask will not only change gates, but also wires, this is a very natural assumption
and a logical extension of Gál and Szegedy’s model [17]. Gates may be destroyed
or gate types may be changed, and wires may be cut or swapped. This work does
not address adversarial additions of logic to an IC directly as it is presented, e.g.,
in [23]. We hereby follow one of the presented scenarios from [12], in which only
“destructive” alterations are taken into account. However, in current ICs there
usually is a large surplus of logic elements anyway that could be exploited by an
attacker [33]. These logic elements are not essential for the proper functionality
of the IC. Instead they are used to implement built-in self-tests for debugging
facilities like JTAG [33, 35] and they provide the last possibility to patch non-
functional electronic devices after an erroneous fabrication. Suppose there was a
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Table 1. Hardware trojan taxonomy according to [22]. Properties of our hardware
trojan are highlighted in green.

Hardware Trojans

Insertion phase Abstraction level Activation mechanism Effects Location

specification system level always on change the functionality processor

design development environment triggered downgrade performance memory

fabrication register-transfer level B internally leak information I/O

testing gate level • time-based denial of service power supply

assembly and package transistor level • physical-condition-based clock grid

physical level B externally

• user input

• component output

secure IC design against added malicious logic like the hardware trojan in [23].
When it comes to practice, even in such a design model an attacker could take
advantage of the above-mentioned additional test-components, which are integral
features of the device by design. Our model is not limited to special components
of a system. However, it might be reasonable to examine components with certain
attributes, e.g., a trusted input, separately.

Formal Attack Scenario Consider an integrated circuit IC with synchronous
and combinational logic C. An adversary is allowed to choose at most a small
constant fraction α < 1 of the gates at each level of C to be faulty. Additionally,
he is allowed to choose at most a fraction β < 1 of the wires between all levels
of C to be faulty. That means the adversary may choose at most a γ := α + β
fraction of the gates at each level to produce incorrect outputs. Observe that the
last gate and the outgoing wire that reconnects the single output of C with the
input of C via the clock must work correctly since the adversary is only allowed
to destroy a 0 ≤ β < 1 fraction of this connection. The gates and wires of the
last few levels are very likely to remain unchanged since alterations would be
too obvious and detected during testing phase.

Definition 1. We call an IC infected by a hardware trojan if an adversary
has tampered with it for some γ > 0 according to our model. After the adver-
sary tampered with an IC the way it is described for our hardware trojan, its
combinational circuit C is called γ-faulty.

Definition 2. A circuit C ′ for a function f is said to be γ-resilient if C ′ com-
putes the function f even if C ′ has been tampered by a hardware trojan for some
γ > 0. Additionally, an IC that contains C ′ is also called γ-resilient.

The previously defined hardware trojan covers a large and important variety of
hardware trojans. It can be classified according to the taxonomy of [22] in the
following way (see Table 1):
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Fig. 1. An infected IC. The right side shows the intended layout with 3 metal layers
for the correct design where malicious design alterations are highlighted by red lines in
the correct layout. Left, an X-ray of the modified silicon is shown where a wire in metal
1 was cut (red cross in layout image) and was instead connected to another via (red
bridge in layout). In terms of Table 1 this trojan was realized via FIB (Focused Ion
Beam) post fabrication and testing, but before assembly and package, on the physical
level, will be always on, changes the functionality and might affect all elements of the
IC (processor, memory, I/O, power supply, and the clock grid).

– Insertion phase during development cycle: after design phase.
– Hardware abstraction level: gate level or below.
– Activation mechanism: always on. However, depending on the gates and

wires, which are destroyed, the trojan might only make an impact if triggered
by some event.

– Effects on the target device: change of functionality, denial of service.
– Location in a system: not limited to a special component.

Since this attack scenario is similar in its consequences to the one of the
previous section, namely a γ-faulty circuit, we can apply similar techniques to
the combinational logic of an IC. In the next section we will extend the adver-
sary model from [17] to faulty wires in order to cover our model of hardware
trojans. Thus, the combinational circuit is provided with more robustness and
redundancy and is able to reliably compute the intended function. Having trans-
formed a circuit C according to these techniques into a fault-tolerant circuit C ′,
C ′ clearly is γ-resilient. If C ′ is the combinational component of an IC, this IC
is γ-resilient as well. These γ-resilient ICs of course counteract the predefined
hardware trojan, and hence, prevent computer systems from adversarial misuse.

4 Trojan-Resilient Circuit Construction

The model of Gál and Szegedy is limited to the alteration of gates [17]. As seen
above, an adversary is interested in tampering with the wires as well. Hence,
in our extended model an adversary is allowed to maliciously choose at most a
constant fraction of the gates at each level and as well wires between adjacent
levels to be faulty. All in all, we assume that at most a constant fraction of the
gates on each level newly produces incorrect outputs because of faulty gates or
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wires. The corresponding definitions of Sect. II are extended and stronger results
are proven.

Faulty Wires and Circuits Let g1 and g2 be two adjacent gates connected by
a wire w in a circuit without faults where g1 provides an input to g2. In a copy
of the same circuit, which may have been tampered with by an adversary the
wire w is called faulty if the output of g1 is different from the input to g2. Let
C be a circuit with no faulty gates and let C̃ be a copy of the same circuit with
possibly faulty gates and faulty wires. The output of a gate of C̃ is incorrect if it
is different from the value computed by the same gate in C. Note that the output
of a gate may be incorrect because the gate is faulty or because the inputs of the
gates are incorrect. The inputs of the gate may be incorrect because the input
wires are faulty or because the outputs of the previous gates are incorrect. At
most a γd fraction of the outputs at level d of a γ-faulty circuit is incorrect.
Note that this modified definition of a γ-faulty circuit does not contradict the
definition from Sect. II, since in that model all wires work correctly. Hence, β = 0
and γ = α is the maximum fraction of faulty gates on each level.

ε-Halvers Like in Sect. II we will use ε-halvers. However, the ε-halvers may
now contain faulty gates and faulty wires. Gál and Szegedy’s lemmas 2 and 3
easily translate to ε-halvers with faulty gates and wires. This is implied by the
proposition stated and proved in appendix A.

4.1 Construction for Symmetric Functions

We will construct γ-faulty circuits, which can correctly compute overwhelming
majority functions and threshold functions for all defined inputs and base our
techniques on [17].

Lemma 4. Let k > 3/4m. Then for some α, β > 0 and γ := α + β there is a
γ-faulty circuit of size O(m) and depth O(logm) computing Majmk correctly on
every input belonging to its domain. At most an α fraction of the gates on each
level and a β fraction of the wires between all levels are faulty.

Proof. The construction is based on majority preservers. In [7] this component is
defined as a comparator network with m inputs and m/2 outputs that guarantees
that if at least a given constant fraction greater than 1/2 of the m inputs have the
same value, this value appears in at least the same given constant fraction of the
m/2 outputs. A majority preserver, which tolerates a small constant fraction of
errors at each of its levels can be constructed by triplets of ε-halvers. An m-input
ε-halver, denoted by M -halver, is applied to the m inputs. Next, one m/2-input
ε-halver is applied to the upper part and another one is applied to the lower
part of the output of the M -halver. They are called U -halver and L-halver. The
output of this majority preserver consists of the upper part of the output of
the L-halver and of the lower part of the output of the U -halver. A family of
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ε-halvers of depth c with the same parameters ε and c for all input lengths exists
for an appropriate choice of the constants ε and c.

Now let a be the number of 0’s in the input of the majority preserver. Suppose
a ≥ (3/4+cγ)m. By L0(M) (respectively U0(M)) the number of 0’s in the lower
(upper) part of the output of the M -halver is denoted. A similar notation is
used for the U -halver and the L-halver. From lemma 2 it follows that L0(M) ≥
m/2 − (ε + 2cγ)m/2 and U0(M) ≥ m/4. Denote by I0(L) (respectively I0(U))
the number of 0’s in the input of the L-halver (U -halver). As the M -halver is
connected to the L-halver (U -halver) by m/2 wires, at most βm/2 wires may be
faulty. Hence, I0(L) ≥ m/2− (ε+ 2cγ)m/2− βm/2 and I0(U) ≥ m/4− βm/2.
Applying lemma 2 to the L-halver and the U -halver yields U0(L) + L0(U) ≥
(1−2(ε+2cγ+β))m/2. If the number of 0’s in the input of a majority preserver
is at least (3/4 + cγ) fraction of the input, then at least a (1 − 2(ε + 2cγ + β))
fraction of its output is 0 as well.

Since several majority preservers will be combined by feeding the outputs of
one as inputs to the next, we have to consider the faulty wires of these connec-
tions. Connecting an m/2-output majority preserver with an m/2-input majority
preserver, it holds for the number of 0’s I0(MP ) in the input of the second ma-
jority preserver that I0(MP ) ≥ (1 − 2(ε + 2cγ + β))m/2 − βm/2. A similar
statement can be shown for the number of 1’s. Choose α, β and γ = α+ β small
enough so that k > 3/4+cγ and −3β+1−2(ε+2cγ) ≥ 3/4+cγ. By feeding the
outputs of one majority preserver as inputs to the next, we combine j majority
preservers. This construction with n/2j outputs has the property that its over-
whelming majority is the same as the overwhelming majority of the input. Once
n/2j < min{1/α, 1/β}, the computation can be finished by a small circuit that
has fewer than 1/α gates at each of its levels, fewer than 1/β wires between all
levels and that computes the usual majority of its inputs. In this small circuit
the adversary can destroy neither gates nor wires — according to our model. ut
Theorem 2. For any δ > 0 there are α, β > 0 and γ := α + β such that for
any threshold function Thnk there is a synchronous circuit such that the following
holds. If an adversary destroys an α fraction of the gates on each level (including
the input level) and a β fraction of the wires between all levels, the circuit still
computes Thnk in a δ-loose manner. The size of the circuit is O(n) and the depth
of the circuit is O(log n).

Proof. As the circuit is supposed to compute the threshold function in a δ-
loose way, the circuit has to output 1 if the number of 0’s is ≤ n − k, 0 if
the number of 0’s is ≥ n − k + δn and an arbitrary value otherwise. Assume
that the input is correctly ordered and consider the set of bits at positions
n − k + 1, . . . , n − k + δn. Whenever the circuit has to output 1 (respectively
0) all these bits are 1 (respectively 0). Parameters t and l are chosen such that
ln/2t ≥ n − k and (l + 1)n/2t ≤ n − k + δn. t depends on n and δ, but not
on k. Let T be the set of elements at positions ln/2t + 1, . . . , (l + 1)n/2t of the
correctly ordered input, and let zT be the number of 0’s in T .

The construction consists of two components. First, a circuit, denoted by
C1, is constructed, which has n inputs and n/2t outputs. The number v of 0’s
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in its output should satisfy |v − zT | ≤ (ε + α + 2β + 2cγ)n, where ε and c are
parameters of the ε-halvers that are used.

The second component is the construction from lemma 4, which computes
the overwhelming majority function Majms of the outputs of C1, where m = n/2t

and s = (1−2t(ε+α+2β+2cγ))m. In order to apply this lemma, it is necessary
that 1− 2t(ε+ α+ 2β + 2cγ) ≥ 3/4 + cγ. Parameters ε, α, β and γ = α+ β are
determined by this inequality. Depending on the kind of ε-halvers that are used
and depending on ε, c can be computed.

Circuit C1 is a comparator network consisting of t γ-faulty ε-halvers each
of depth c. The i-th ε-halver has n/2i−1 inputs and n/2i outputs. Denote by
l1, . . . , lt the binary representation of l.

– If li = 0, the input to the i+ 1-st ε-halver is the lower part of the output of
the i-th ε-halver.

– If li = 1, the upper part is fed to the next ε-halver.

Denoted by a0 is the number of 0’s in the correct input. However, the adversary
may destroy an α-fraction of the input gates of C1. So, let a be the number of
0-valued input gates. Then a0 − αn ≤ a ≤ a0 + αn. Lemma 3 can be repeatedly
applied with r = αn. Since at most a β fraction of the wires between the i-th and
i+1-st ε-halver may be faulty, these errors have to be considered by introducing
the summand depending on β. It follows that |v − zT | ≤ αn +

∑t
i=1(ε + 2β +

2cγ)n/2i ≤ (ε+ α+ 2β + 2cγ)n. ut

Theorem 3. For any δ > 0 there is a γ > 0 such that for any symmetric
function f there is a synchronous circuit with the following properties. If an
adversary destroys an α fraction of the gates on each level (including the input
level) and a β fraction of the wires between all levels and γ := α+ β, the circuit
still computes f in a δ-loose manner. The size of the circuit is O(n) and the
depth of the circuit is O(log n).

Proof. Every symmetric function f can be described by a binary string of length
n + 1. The i-th element of the string is 1 if and only if the value of f is 1 on
inputs containing exactly i 1’s. Suppose every set of consecutive 0’s in this string
has length < δn. In this case the δ-loose computation of f becomes trivial since
the value 1 can be output for every input. Now consider the case that the string
contains h ≥ 1 sets of consecutive 0’s of length ≥ δn. Denote by (li, ui) the i-th
set. In order to compute f in a δ-loose way, it is sufficient to compute each ¬Thnli
and each Thnui

. These 2h functions can be computed in parallel. They can all be
computed in a δ-loose way by constructions from theorem 2 because the negated
threshold functions may be computed analogously to presented techniques.

Set α := α̃/2h, β := β̃/2h and γ := γ̃/2h, and choose α̃, β̃ and γ̃ according
to theorem 2. The parameters α̃, β̃, γ̃, δ, ε and c can be chosen in such a way
that they have the same value for all 2h circuits, cf. [17]. By this choice the
number of gates and wires at corresponding levels of all circuits is the same. If
an attacker destroys at most an α fraction of the gates at each level, at most
an α̃ fraction of the gates at each level of any one of the 2h circuits will be
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destroyed. There is a similar correlation between β and β̃ concerning the wires
of the circuits. As for the parameters it is true that h < 1/δ < 1/2γ (from [17])
and 1/2γ ≤ min{1/2α, 1/2β}, the 2h values can be combined without having to
consider any faulty gates or faulty wires. ut

4.2 Arbitrary Boolean Functions

Like in the original model it is possible to design fault-tolerant circuits if the
input is specifically encoded. The circuit constructions for symmetric Boolean
functions are used as well as the aforementioned PCP techniques [5]. First, the
Boolean circuit computing a given function is transformed into a PCP verifier
consisting of several circuits. Then the resulting circuits are structured, and
finally the techniques of fault-tolerant circuits for symmetric functions are used
to recombine them. We now state the main theorem of our paper, which shows
how to efficiently construct provable secure trojan-resilient circuits.

Theorem 4. Let C be a Boolean circuit and let f : {0, 1}n → {0, 1} be the
corresponding Boolean function computed by C. There exists a code E = EC
and a circuit C ′ such that C ′ computes f ◦ E in a δ-loose manner for every
δ > 0 even if an adversary destroys an α fraction of the gates at each level of C ′

and as well a β fraction of the wires between all levels of C ′. Moreover, E and
C ′ have the following properties:

1. |E(x)| ≤ q(|x|) for some polynomial q independent of C.
2. The Hamming distance d(x, y) between any two codewords x and y of E is

at least δ0 |E| for some 0 < δ0 < 1 independent of C (δ0 is a function of δ).
3. D(C ′) ≤ O(logS(C)). This implies that S(C ′) is polynomial in S(C).
4. C ′ can be computed from C in probabilistic polynomial time and E(x) can

be computed from C and x in polynomial time.

Before we present the proof of the above main theorem, we will simplify the
PCP properties 1 (completeness) and 2 (soundness) into a single property. Con-
sider the subset C1 of tuples from {0, 1}n, for which C evaluates to 1 and the
analogously defined subset C0. Arora et al. presented a procedure to transform
a circuit C into a family {Ci}i∈I of constant size circuits with input (G(x), Y )
[5]. Here G(x) is an adequate error-correcting encoding of the input x to C, and
Y is an advise string (both have length polynomial in S(C)). For this family
{Ci}i we have:

1. For every x ∈ C1 there is a Y such that for all i ∈ I: Ci(G(x), Y ) = 1.
2. For every x ∈ C0 and for every Y it is true that Probi∈I [Ci(G(x), Y ) = 0] ≥
ε, for some ε.

Now, by applying techniques due to Valiant and Vazirani, see lemma 6 of the
appendix, we can modify the circuit family Ci such that Y of property 1 is
unique for every x and property 2 holds for every Y . Thus, properties 1 and 2
can be combined into a single property, where | · | denotes the binary length of
the argument and d(·, ·) the Hamming distance between its arguments.
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Lemma 5. For every x ∈ C1 there is, with high probability, a unique Yx such
that for all i ∈ I : Ci(G(x), Yx) = 1. Also, for every δ > 0 there exist ε > 0 such
that Probi∈I [Ci(H,Y ) = 0] < ε implies that d((H,Y ), (G(x), Yx)) ≤ δ |(H,Y )|
for some x ∈ C1.

Remark 1. Originally, Gál and Szegedy [17] cited an unknown construction due
to C. Lund and D. Spielman to guarantee a unique witness Yx for the PCP
completeness. However, their construction was neither clear nor described in
[17]. Due to this lack we developed our own Yx uniqueness construction. Details
can be found in the appendices.

Proof (Proof of the theorem). The circuit C ′ will consist of several parts. Circuit
C ′ should contain all members of the modified family {Ci}i∈I with the property
that:

For every x ∈ C there is a unique Yx such that for all i ∈ I: Ci(G(x), Yx) = 1.
Also, for every δ > 0 there exists ε > 0 such that Probi∈I [Ci(H,Y ) = 0] ≤ ε
implies that d((H,Y ), (G(x), Yx)) ≤ δ |(H,Y )| for some x ∈ C1.

The members of the family should have disjoint inputs, which can be achieved by
transforming G(x) into G′(x) and Yx into Y ′x. G′(x) is formed by repeating the
bits of G(x) and Y ′x is formed by repeating Yx as many times as the number of
times, for which they appear as input to some {Ci}, i ∈ I. By this construction
each bit of G(x) (respectively Yx) will be repeated for the same number of
times [17]. Next, the error-correcting code E is defined. If x ∈ C1, E(x) :=
(G′(x), Y ′x), and if x ∈ C0, E(x) := (G′(x), 0, . . . , 0). Finally, C ′ is constructed in
the following way. The family {Ci}i∈I is transformed into a family of synchronous
circuits such that all of its members have disjoint inputs and all outputs are at the
same level. In order to ensure that the groups of repeated bits consist of identical
bits extra tests are added. Therefore, a bounded degree expander is introduced
over each group of input bits that have to be identical, cf. [4, 19]. For every edge of
these expanders equality is checked. This family is referred to as {Dj}j∈J and the
circuits have to be synchronized with the members of {Ci}i∈I so that all outputs
are at the same level. Furthermore, the sizes of I and J have to be the same within
a constant factor. Clearly, ∧i∈ICi(H,Y )∧∧j∈JDj(H,Y ) = f◦E(H,Y ). Since the
construction for threshold functions can be used to compute the Boolean AND
function, this technique is applied to combine the output bits of the circuits
Ci, i ∈ I, and Dj , j ∈ J . Theorem 2 and the above Lemma 5 conclude the proof
that C ′ computes f ◦ E in a δ-loose way even if an α fraction of the gates at
each level of C ′ and a β fraction of the wires between all levels are destroyed for
adequate α and β. ut

5 Conclusions

This paper connects the fundamental work on fault-tolerance for Boolean circuits
by Gál and Szegedy [17] with the very vibrant research area of hardware trojans.
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Their work was enhanced in a natural way and extended to fully cover faulty
wires as well. Developing their approach further, it was shown how to efficiently
design fault-tolerant Boolean circuits in this extended model of deliberate faults
on gates and wires. A corresponding and natural trojan model affecting the
functionality of an IC, practically backed up by DARPA’s problem challenge
[12], was also defined. This hardware trojan fits very well into the above model of
deliberate faults. Thus, in theory, we can design ICs that reliably compute their
intended functions even if they are infected by a hardware trojan from our model.
Our finding is highly relevant to industries, in which trust in computer systems
is crucial, cf. [13]. As bug attacks require only very small errors, adversaries
launching such attacks will only slightly alter the affected hardware as well. The
overhead of additional circuits arising from our constructions might therefore
be kept within reasonable limits. The presented design for trojan-resilient ICs
is worthwhile to be developed further; especially from a practical point of view
when it comes to the very elaborated PCP construction. First, the theoretical
techniques of PCP constructions may be improved, as there have been many
advancements in the fields of PCPs and related codes, cf. [9, 10, 14, 30]. Second,
it is important to examine the practical PCP implementation, its complexity and
costs. Just recently another approach was presented, which uses PCPs to solve
a very practical problem [34] Indeed, this recent work put forward the thesis,
that PCP usage can be put into practice. Thus, we are optimistic, that further
achievements in Moore’s law will enable us to spend many transistors on their
sole usage of Boolean circuit resilience.
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A ε-Halvers with faulty gates and faulty wires

In Sect. IV we consider ε-halvers with faulty gates and faulty wires. We therefore
examine the possible malicious alterations of wires between comparators of level
d − 1 and level d. Assume there are no faulty gates. An adversary may cut a
wire near the output of a gate so that two input bits are affected. Formally, two
wires are faulty. He may also cut a wire so that only one wire is faulty, and
hence, one input bit is affected. In both cases at most one of the two output bits
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is incorrect. Finally, an adversary could swap two wires, which means that two
wires are faulty. This leads to lemmas similar to the ones from Gál & Szegedy
as presented within Sect. II concerning faulty ε-halvers. Their lemmas 2 and
3 easily translate to (extended) ε-halvers with faulty gates and wires. This is
implied by the following proposition.

Proposition 1. 1. In a comparator with correctly working gates, but faulty
wires, the number of incorrect output bits is at most the number of faulty
wires.

2. At level d of an ε-halver with faulty gates and faulty wires the number of
incorrect outputs is at most the number of incorrect inputs at level d plus the
number of faulty gates at level d. The number of incorrect inputs at level d
is at most the number of incorrect outputs at level d− 1 plus the number of
faulty wires between levels d− 1 and d.

Proof. We prove the second statement. Level d of an ε-halver consists of disjoint
comparators. A comparator in such an ε-halver is an AND-OR gate pair with
common inputs. It is sufficient to show that the number of incorrect output
bits of a comparator at level d is at most the number of its faulty gates plus
the number of faulty wires feeding the comparator plus the number of incorrect
output bits of the adjacent gates at level d−1. Hence, it is enough to deal with a
single comparator with two inputs and two outputs at a time. From the previous
observations and the first statement the proposition follows. ut

B Valiant-Vazirani Uniqueness Reduction

We briefly describe the fundamental Valiant-Vazirani uniqueness reduction, cf.
[39]. This is a probabilistic method that can be applied in order to reduce the
number of satisfying assignments of a satisfiable formula to a single one. We will
follow the notation of [38].

Lemma 6. There is a probabilistic polynomial time algorithm that on input φ
(a CNF formula) and an integer k outputs a formula ψ such that

– If φ is unsatisfiable then ψ is unsatisfiable.
– If φ has at least 2k and less than 2k+1 satisfying assignments, then there

is a probability of at least 1/8 that the formula ψ has exactly one satisfying
assignment.

The proof of the above lemma will easily follow from certain other definitions
and results, which will be presented first.

Let H be a family of functions of the form h : {0, 1}n → {0, 1}m. We say that
H is a family of pairwise independent hash functions if for every two different
inputs x, y ∈ {0, 1}n and for every two possible outputs a, b ∈ {0, 1}m we have

Probh∈H[h(x) = a ∧ h(y) = b] = 2−2m.
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For m vectors a1, . . . , am ∈ {0, 1}m and m bits b1, . . . , bm, define
ha1,...,am,b1,...,bm : {0, 1}n → {0, 1}m as ha,b(x) = (a1 · x + b1, . . . , am · x + bm),
and let H′ be the family of functions defined this way. Then H′ is a family
of pairwise independent hash functions. This construction implies the following
simple result.

Lemma 7. Let T ⊆ {0, 1}n be a set such that 2k ≤ |T | < 2k+1 and let H
be a family of pairwise independent hash functions of the form h : {0, 1}n →
{0, 1}k+2

. Then if we pick h at random from H, there is a constant probability
that there is a unique element x ∈ T such that h(x) = 0. Precisely,

Probh∈H[| {x ∈ T : h(x) = 0} | = 1] ≥ 1/8.

Now we can prove the famous uniqueness reduction due to Valiant and Vazi-
rani.

Proof. In order to prove the above lemma, the following algorithm is pre-
sented. The algorithm randomly chooses vectors a1, . . . , ak+2 ∈ {0, 1}n and
bits b1, . . . , bk+2 and produces a formula ψ that is equivalent to the expression
φ(x)∧ (a1 ·x+ b1 = 0)∧ . . .∧ (ak+2 ·x+ bk+2 = 0). By construction, the number
of satisfying assignments of ψ is equal to the number of satisfying assignments
x of φ such that ha1,...,ak+2,b1,...,bk+2

(x) = 0. If φ is unsatisfiable, then, for every
possible choice of the ai, ψ is also unsatisfiable. If φ has between 2k and 2k+1

assignments, then the previous lemma implies that with probability of at least
1/8 there is exactly one satisfying assignment for ψ. ut

Consider the subset C1 of tuples from {0, 1}n, for which a Boolean circuit
C evaluates to 1 and the analogously defined subset C0. Arora et al. presented
a procedure to transform C into a family {Ci}i∈I of constant size circuits with
input (G(x), Y ) [5] where G(x) is an adequate error-correcting encoding of the
input x to C, and Y is an advise string (both have length polynomial in S(C)).
For this family {Ci}i we have:

1. For every x ∈ C1 there is a Y such that for all i ∈ I: Ci(G(x), Y ) = 1.
2. For every x ∈ C0 and for every Y it is true that Probi∈I [Ci(G(x), Y ) = 0] ≥
ε, for some ε.

The techniques by Valiant and Vazirani described above guarantee the unique-
ness of Y in property 1. Properties 1 and 2 can now be combined. | · | denotes
the binary length of the argument and d(·, ·) the Hamming distance between its
arguments.

Lemma 8. For every x ∈ C1 there is, with high probability, a unique Yx such
that for all i ∈ I : Ci(G(x), Yx) = 1. Also, for every δ > 0 there exist ε > 0 such
that Probi∈I [Ci(H,Y ) = 0] < ε implies that d((H,Y ), (G(x), Yx)) ≤ δ |(H,Y )|
for some x ∈ C1.

Proof. The equivalence of property 1 and the first part of the lemma is ob-
vious. Hence, we focus on property 2 and the second part. Assume for the

130 Proceedings of PROOFS 2013



contrary that the second part is not true. Then there does not exist an
x ∈ C1 : G−1(H) = x. Hence, there is an x0 ∈ C0 : G−1(H) = x0 and
Probi∈I [Ci(H,Y ) = 0] = Probi∈I [Ci(G(x0), Y ) = 0] < ε. For the other di-
rection assume that property 2 does not hold true. Then there exist x ∈ C0 and
Y such that Probi∈I [Ci(H,Y ) = 0] < ε. Since x ∈ C0 and H = G(x) it holds
for all x1 ∈ C1 that d((G(x), Y ), G(x1, Yx1

)) ≥ δ0|E| ≥ δ|(G(x), Y )|. ut
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