

Understanding the Reasons for the Side-Channel Leakage is Indispensable for Secure Design

Werner Schindler

Federal Office for Information Security (BSI), Bonn, Germany

Leuven, September 13, 2012

Outline

- Introduction and motivation
- □ Goals of a security evaluation
- □ The Stochastic Approach
 - basics in a nutshell
- How to obtain relevant design information
- Conclusions

- □ Side-channel analysis has been a hot topic in academia and industry for the last 15 years.
- In the early years the applied mathematical methods often wasted a lot of information.
- In the meanwhile the mathematical methods have become much more efficient.
- The time has been ripe for systematic methods!

How I came in touch with side-channel analysis (I)

- In 1999 I gave a course "Selected Topics in Modern Cryptography" at Darmstadt Technical University.
- I had to bridge a "gap" of one and a half 90 minute lectures. I remembered a timing attack from Jean-Jacques Quisquater and his research group (CARDIS 1998).
- I studied the paper and was quickly convinced that the attack could be improved significantly.

How I came in touch with side-channel analysis (II)

- I contacted Jean-Jacques and proposed a new decision strategy.
- □ For the same hardware the number of traces per attack dropped down from 200000 300000 to 5000, which is an increase of efficiency by factor ≈ 50 (Schindler, Koeune, Quisquater, 2001).
- New stochastic methods made this improvement possible.
- I thought it might be a good idea to write <u>one</u> paper on this topic...

Security evaluations (I)

- The resistance of smart cards, or more generally, of security implementations, against power attacks has been an important aspect of many security evaluations.
- □ It is very important for evaluators and designers to know the strongest attacks.
- Usually several side-channel attacks are applied (e.g. different DPA or CPA attacks). The target device is considered secure if it withstands all these attacks.

Security evaluations (II)

- A successful attack shows that the device is vulnerable.
- **D** But ...

What are the consequences (countermeasures, limitation of the number of operations, re-design)?

What is the conclusion if all attacks have been ineffective? Do stronger attacks exist?

Security evaluations (III)

- □ It is clearly desirable
 - to have reliable security evaluations
 - to get more than a one-bit information (successful attack is known / is not known).
- Reliable and trustworthy evaluation methods are needed!
- Ideally, a security evaluation should disclose potential weaknesses, allowing target-oriented redesign if necessary (constructive side-channel analysis).

DPA / CPA

DPA and CPA are the "classics" in power analysis.

DPA and CPA are correlation attacks

- **-** + easy to apply, no profiling
- exploit only a fraction of the available information

Template attacks

- exploit power information from several time instants
 t₁<...<t_m
- electrical current vectors are interpreted as realizations of m-dimensional random vectors with unknown probability distribution.
- These random vector may depend on
 - □ (x,k): part of the plaintext / ciphertext x, subkey k
 - (x,z,k): part of the plaintext / ciphertext x, masking value z, and subkey k
 - □ f(x,k): e.g., f(x,k):= ham(x⊕k) (model-based templates)

Template attacks (II)

profiling phase (training device):

estimation of a probability density for each (x,k), resp. for each (x,z,k), resp. for each f(x,k) (templates)

□ attack (target device)

■substitution of the measured current values into the templates (→ maximum likelihood principle)

A successful template attack shows that the target implementation is vulnerable but it does not explain how to fix the problem.

The stochastic approach

- □ <u>target:</u> block cipher
- exploits power measurements at several time instants t₁ < t₂< ... < t_m
- The measurement values are interpreted as values that are assumed by random variables.
- The stochastic approach combines engineers' expertise with efficient stochastic methods from multivariate statistics.

Literature

Pioneer work:

Schindler, Lemke, Paar (2005),

 <u>Theoretical foundations and attack efficiency:</u> Schindler, Lemke, Paar (2005), Lemke, Gierlichs, Paar (2006), Lemke-Rust, Paar (2007), Schindler (2008), Standaert, Koeune, Schindler (2009), Heuser, Kasper, Schindler, Stöttinger (2012)

Design aspects:

Kasper, Schindler, Stöttinger (2010), Heuser, Kasper, Schindler, Stöttinger (2011 + 2012)

Schindler

The stochastic model (basic variant)

target algorithm: block cipher (e.g., AES; no masking) $x \in \{0,1\}^p$ (known) part of the plaintext or ciphertext [AES: (typically) s = 8] $\mathbf{k} \in \{0,1\}^{s}$ subkey time instant t $I_{t}(x,k) = h_{t}(x,k) + R_{t}$ deterministic part random variable random variable = leakage function (depends on x and k) $E(R_{t}) = 0$ (depends on x and k) noise (centered) quantifies the randomness of the side-channel signal at time t Schindler September 13, 2012 Slide 15

The stochastic model (masking)

- $x \in \{0,1\}^p$ (known) part of the plaintext or ciphertext
- $z \in M$ masking value
- $\mathbf{k} \in \{0,1\}^{s}$ subkey
- $t \in \{t_1, t_2, \dots, t_m\}$ time instant

[AES: (typically) s = 8]

$$I_{t}(x,z;k) = h_{t}(x,z;k) + R_{t}$$
random variable
(depends on x,z,k)
quantifies the random-
ness of the side-channel
signal at time t
Schindler
Schindl

Note

The leakage functions
h_{t1} (· , ·, ·,), h_{t2}(· , · , ·,), ... , h_{tm}(· , ·, ·)

and

the probability distribution of the random vector (R_{t1}, R_{t2}, ..., R_{tm}) ("noise vector")

are <u>unknown</u> and have to be estimated with a training device.

Profiling, Step 1 (I)

- **T** Fix a subkey $k \in \{0,1\}^s$.
- The unknown function

 $h_{t;k} \in \{0,1\}^p \times M \times \{k\} \rightarrow \mathbb{R}, \ h_{t;k}(\mathbf{x},\mathbf{z};\mathbf{k}) \coloneqq h_t(\mathbf{x},\mathbf{z};\mathbf{k})$

is interpreted as an element of a high-dimensional real vector space \mathcal{F}_k . In particular, dim $(\mathcal{F}_k) = 2^p |\mathbf{M}|$.

□ <u>Goal:</u> Approximate $h_{t;k}$ by its image $h^*_{t;k}$ under the orthogonal projection onto a suitably selected low-dimensional vector subspace $\mathcal{F}_{u,t;k}$

Geometric illustration

Profiling, Step 1 (II)

 $\mathcal{F}_{u,t;k} \coloneqq \{h': \{0,1\}^p \times M \times \{k\} \rightarrow R | \sum_{j=0}^{u-1} \beta'_{j,t;k} g_{j,t;k} \text{ with } \beta'_{j,t;k} \in \mathbb{R} \}$ (masking case)

with basis functions $g_{j,t;k}$: $\{0,1\}^p \times M \times \{k\} \rightarrow R$

The basis $g_{0,t;k}, \dots, g_{u-1,t;k}$ shall be selected under consideration of the attacked device.

The estimation of $h_{t,k}^*$ can completely be moved to the low-dimensional subspace $\mathcal{F}_{u,t;k}$, which reduces the number of measurements to a small fraction.

Schindler

September 13, 2012

Federal Office

for Information Security

Example: AES implementation on an FPGA (final round)

AES implementation on an FPGA (I)

<u>Target:</u> Key byte $k_{(2)} \in \{0,1\}^8$ in round 10

 $R_{(x)}$ value of register x after round 10

9-dimensional subspace:
$$\begin{split} g_{0,t;k(2)} & ((R_{(2)},R_{(6)}),k_{(2)}) = 1 \\ g_{j,t;k(2)} & ((R_{(2)},R_{(6)}),k_{(2)}) = (R_{(6)} \oplus S^{-1}(R_{(2)} \oplus k_{(2)}))_j \\ & \text{for } 1 \leq j \leq 8 \end{split}$$

AES implementation on an FPGA (II)

<u>Target:</u> Key byte $k_{(2)} \in \{0,1\}^8$ in round 10

 $R_{(x)}$ value of register x after round 10

2-dimensional subspace: $g_{0,t;k(2)} ((R_{(2)}, R_{(6)}), k_{(2)}) = 1$ $g'_{1,t;k(2)} ((R_{(2)}, R_{(6)}), k_{(2)}) = ham(R_{(6)} \oplus S^{-1}(R_{(2)} \oplus k_{(2)}))$

This 2-dimensional subspace potentially contains less leakage information than the 9-dimensional subspace defined on the previous slide.

Schindler

Profiling, Step 1 (I)

$$h_{t;k}^{*} = \sum_{j=0}^{u-1} \beta_{j,t;k}^{*} g_{j,t;k} \quad \text{(best approximator of } h_{t;k}^{*} \text{ in } \mathcal{F}_{u,t;k}^{*} \text{)}$$

- **Task:** Estimate the unknown coefficients $\beta^*_{0,t;k}$, ..., $\beta^*_{(u-1),t;k}$
- □ N₁ measurement values from the training device $i_t(x_1, z_1, k), \dots i_t(x_{N_1}, z_{N_1}, k)$

Least-square estimation:

$$\widetilde{h}_{t;k}^*(\cdot,k) = \sum_{j=0}^{u-1} \widetilde{\beta}_{j,t;k}^* g_{j,t;k}(\cdot,k)$$
 Slide 24

Schindler

Profiling, Step 2 (only relevant for attacks)

 $\begin{aligned} (I_{t_1}(x,z,k) - h^*_{t_1;k}(x,z,k), \dots, I_{t_m}(x,z,k) - h^*_{t_m}(x,z,k)) &\approx \\ (I_{t_1}(x,z,k) - h_{t_1}(x,z,k), \dots, I_{t_m}(x,z,k) - h_{t_m}(x,z,k)) &= \\ (R_{t_1}, \dots, R_{t_m}) \sim N(0,C) \end{aligned}$

Estimate the covariance matrix C (multivariate normal distribution), possibly with PCA

$$\square$$
 \rightarrow prob. density $f_{x,z;k}(\cdot)$ for $I_t(x,z,k)$

Schindler

September 13, 2012

Attack phase (only relevant for attacks)

- **D** Perform N_3 measurements on the target device
- Apply the maximum likelihood principle (analogous to template attacks)

NOTE: The random vector $I_t(x,Z,k)$ (unknown masking value) has density

$$\sum_{z'\in M} \operatorname{Prob}(Z = z') f_{x,z';k}(\cdot)$$

Be careful !

Within long measurement series the environmental conditions might change, influencing the power consumption and thereby violating the (silent) assumption of having identical conditions all the time.

Drifting offset

 The average electrical current shows a periodic drift (
 (
 variation of the temperature in the lab).
 This drift in particular influences the dataindependent coefficient.

□ All profiling-based attacks suffer from this problem.

Stochastic approach – the OTM method

exhanced stochastic model

$$I_{t}(x_{v},k) = h_{t}(x_{v},k) + \theta_{v} + R_{t}$$
drifting offset

 $\Box \underline{Observation:} \theta_{v+1} - \theta_v \approx 0$

■ <u>Solution</u>: Consider overlapping differences $I_t(x_{v+1},k) - I_t(x_v,k) \approx N(h_{t;k}(x_{v+1},k) - h_{t;k}(x_v,k), 2C)$

 $\Box use subspaces \mathcal{F}_{u,t;k}^{\circ} \underline{without} g_{0,t;k} = 1$

additional mathematical problems but clear increase of efficiency

Stochastic approach: profiling workload

- Phase 1: 2^s (= # subkeys) measurement series; may reduce to 1 measurement series in case of symmetry (→ later)
- Phase 2: 1 measurement serie
- no additional steps in case of masking

Stochastic approach: attack efficiency

- The attack efficiency depends on the choice of the subspace.
- For suitable subspaces the attack efficiency should be close to (full) template attacks
- more efficient than DPA and CPA

$$h_{t;k}^{*}(x,k) = \sum_{j=0}^{u-1} \beta_{j,t;k}^{*} g_{j,t;k}(x,k)$$

If $| \beta^*_{j,t;k} |$ is 'large' the 'direction' of the basis vector $g_{j,t;k}$ has significant impact on the data-dependent part of the leakage $h_{t;k}$.

Note

- □ To obtain design information only the first profiling phase is relevant (estimation of $h_{t,k}^{*}(\cdot, \cdot)$).
- These following results were obtained together with Annelie Heuser, Michael Kasper and Marc Stöttinger from my research group CASCADE at CASED (within the research project RESIST).
- For our experiments we used the SASEBO G-I evaluation board (with Virtex-II pro FPGA) and the SASEBO G-II evaluation board (with Spartan V FPGA).

for Information Security Example: AES implementation on an FPGA (final round)

Reminder: AES implementation on an FPGA

<u>Target:</u> Key byte $k_{(2)} \in \{0,1\}^8$ in round 10

 $R_{(x)}$ value of register x after round 10

9-dimensional subspace:
$$\begin{split} g_{0,t;k(2)} & ((R_{(2)},R_{(6)}),k_{(2)}) = 1 \\ g_{j,t;k(2)} & ((R_{(2)},R_{(6)}),k_{(2)}) = (R_{(6)} \oplus S^{-1}(R_{(2)} \oplus k_{(2)}))_j \text{-0.5} \\ & \text{for } 1 \leq j \leq 8 \end{split}$$

The term ' – 0.5 ' ensures that the basis vectors are centered (i.e. $E(g_{j,t;k(2)}) = 0$) for j>0, and $\beta_{0,t;k} = E(I_t(\cdot))$

β-Characteristic for an S-Box Design (FPGA, TBL)

A closer look at the implementation

- Part of the SBox after the synthesis process and the place & route process (Virtex-II pro family)
- The first layer of the multiplexer network is switched by the 5th bit
- Different propagation delays
 caused by LUT to the multiplexer
 produces data-dependent glitches.
- This implies bit-specific higher power consumption.

High-dimensional subspaces

Example: Attack on the key byte k₍₂₎

$$\mathcal{B}_0 := \{ g_{0,t;k(2)} = 1 \}$$

$$\mathcal{B}_1 := \{g'_{j,t;k(2)} - 0.5 \mid 1 \le j \le 8\}$$

High-dimensional subspaces

$$\mathcal{B}_{i} := \{ g'_{j_1,t;k(2)} \cdots g'_{j_i,t;k(2)} - (0.5)^{i} \mid 1 \leq j_{1} < \ldots < j_{i} \leq 8 \}$$

Unordered i-fold products (catches the interaction between up to i bit lines)

Example:
$$g'_{3,t;k(2)} \cdot g'_{7,t;k(2)} - 0.25 \in \mathcal{B}_2$$

(catches the interaction between the bit lines 3 and 7)

High-dimensional subspaces (OTM)

- The subspaces $\mathcal{F}_{u,t;k}^{\circ}$ are spanned by the following basis vectors
- $(\dim = 8)$ $\square \mathcal{B}_1$ $(\dim = 36)$ $\square \mathcal{B}_1 \cup \mathcal{B}_2$ $(\dim = 92)$ $\square \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$ $\Box \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4$ (dim = 162)(dim = 218) $\square \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4 \cup \mathcal{B}_5$ (dim = 246) $\square \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4 \cup \mathcal{B}_5 \cup \mathcal{B}_6$ $\square \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4 \cup \mathcal{B}_5 \cup \mathcal{B}_6 \cup \mathcal{B}_7$ (dim = 254)(dim = 255) $\Box \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3 \cup \mathcal{B}_4 \cup \mathcal{B}_5 \cup \mathcal{B}_6 \cup \mathcal{B}_7 \cup \mathcal{B}_8$ For the 'standard method' ' \mathcal{B}_0 ' is added to these bases, which increases the dimension by 1. Schindler September 13, 2012 Slide 40

β- coefficients (256-dimensional subspace)

AES, last round, S-Box, COMP

Impact on the attack efficiency

DPA contest v2: also SASEBO-G-II board with Spartan V - FPGA, S-box design: COMP

DPA-contest v2 / OTM method / public base

dim (F° _{u,t;k})	PSR > 80 %	GSR > 80 %	
8	8781	13020	Researc
36	5876	7533	CASCAF
92	5159	6734	
162	4353	6144	
218 (up to 5-fold products)	3552	4564	
246	3769	4691	
254	3720	4740	
255	3718	4748	
255 (with vertical trace alignment)	2682	3836	

h group

DE

Observation

Even some 5-fold products have significant contribution to the leakage.

- Crossover effects between neighboured bit lines cannot be the (only) reason.
- What is the reason for this behaviour? Glitches due to different time delays? (open question)
 Do other designs of the S-Box show qualitatively different results (maybe only significant contributions up to 3-fold products exist)? (open question)

Suitability of the leakage model

High-dimensional subspaces F_{u,t;k} may provide more precise leakage models.
 An important question remains: Is the choice of the basis vectors appropriate?

Symmetries (I)

The basis vectors from our example

$$g_{j,t;k(2)} ((R_{(2)},R_{(6)}),k_{(2)}) = (R_{(6)} \oplus S^{-1}(R_{(2)} \oplus k_{(2)}))_j - 0.5$$

depend only on

 $\phi(R(2),R(6),k(2)) := R(6) \oplus S^{-1}(R(2) \oplus k(2))$

Schindler

Symmetries (II)

- This reduces the argument of the leakage function from 24 bit to 8 bit ...
- □ ... and the dimension of the relevant (large) vector space from 2²⁴ to 2⁸.
- If the symmetry assumption (expressed by φ) is valid then for each j

$$\beta_{j,t;k'}^* = \beta_{j,t;k''}^*$$
 for all k',k'' $\in \{0,1\}^s$

Consequences

- In case of a (perfect) symmetry φ it suffices to estimate h^{*}_{t,k} for any single subkey k.
- Any power curve related to some subkey k' can be ,converted' into a power curve related to k
 → all power traces can be used for a single estimation process

Verification of a symmetry assumption (I)

- Any symmetry assumption influences the choice of the basis vectors.
- The suitability of the basis is very important for both attack and for getting useful design information.
- □ How can a symmetry assumption be verified?

Verification of a symmetry assumption (II)

□ <u>Crucial property:</u> If the symmetry assumption is valid $β^*_{j,t;k'} = β^*_{j,t;k''}$ for all k',k''∈ {0,1}^s

- <u>1st approach</u>:
 Estimate the β- coefficients for several subkeys k₁,k₂,..,k_v
 - If the β estimates are 'almost' equal: \rightarrow confirmation of the symmetry assumption
 - □ If the β- estimates are very unequal: → rejection of the symmetry assumption

Symmetry distance

For subkeys k' and k" the ratio

$$\frac{2\sqrt{\sum_{j>0} (\beta_{j,t;k'} - \beta_{j,t;k''})^2}}{\sqrt{\sum_{j>0} \beta_{j,t;k'}^2} + \sqrt{\sum_{j>0} \beta_{j,t;k''}^2}}$$
(**)

quantifies the distance of their β -coefficients. If the symmetry assumption is valid this term equals 0.

Symmetry distance (II)

This symmetry metric is invariant

- under the multiplication of the leakage function by positive scalars
- **under all orthonormal bases of** $\mathcal{F}_{u,t;k}$ with $g_{0,t;k}=1$

<u>Action</u>: Use a orthonormal basis and substitute the β -estimates into formula (**)

Leakage model *B* (distance model)

 $\begin{array}{l} \label{eq:g0} \mbox{9-dimensional vector space (orthonormal basis)} \\ g_{0,t;k(2)} \; ((R_{(2)},R_{(6)}),k_{(2)}) = 1 \\ g_{j,t;k(2)} \; ((R_{(2)},R_{(6)}),k_{(2)}) = 2((R_{(6)} \oplus S^{-1}(R_{(2)} \oplus k_{(2)}))_j \mbox{-}0.5) \\ & \mbox{ for } 1 \leq j \leq 8 \end{array}$

Here: $\phi((R_{(2)}, R_{(6)}), k_{(2)}) := R_{(6)} \oplus S^{-1}(R_{(2)} \oplus k_{(2)})$ (symmetry assumption \mathcal{B})

This symmetry property transfers to $h_{t,k(2)}^{*}((R_{(2)},R_{(6)}),k_{(2)})$ and $\tilde{h}_{t,k(2)}^{*}((R_{(2)},R_{(6)}),k_{(2)})$

Alternate leakage model *A* (weight model)

The basis vectors

depend on $((R_{(2)}, R_{(6)}), k_{(2)})$ only through $\varphi_A ((R_{(2)}, R_{(6)}), k_{(2)}) := S^{-1}(R_{(2)} \oplus k_{(2)})$ (alternate symmetry assumption \mathcal{A})

Comparison of β**-coefficients**

Schindler

Experimental Results

Round 10

leakage model \mathcal{A}

Further aspects

The stochastic approach can also be used to estimate
□ E_X((h_{t;k}(X,k) – h^{*}_{t;k}(X,k))²), (This L²-distance quantifies the approximation error of h^{*}_{t;k}(·,k).)
□ the signal-to-noise ratio

Details: Heuser, Schindler, Stöttinger (DATE 2012)

Masking

- Masked implementations can be handled similarly if the masking values are known. (Profiling with unknown masking values is also possible but less efficient.)
- Additionally, it might be necessary to rate the effect of masking (e.g. by the estimation of L¹distances of probability distributions).

Conclusion

- The stochastic approach
 - □ is an efficient attack tool
 - provides a representation of the leakage with regard to a vector basis

The stochastic approach can also be used to

- identify and quantify properties / weaknesses, which (might) be relevant for the leakage
- to verify or falsify leakage models (within the limits of statistics)
- to support target-oriented (re-)design (constructive side-channel analysis)

Contact

Federal Office for Information Security (BSI)

Werner Schindler Godesberger Allee 185-189 53175 Bonn, Germany

Tel: +49 (0)228-9582-5652 Fax: +49 (0)228-10-9582-5652

Werner.Schindler@bsi.bund.de www.bsi.bund.de www.bsi-fuer-buerger.de