

PROOFS, September 13, 2012

Toward Formal Design of Cryptographic Processors Based on Galois Field Arithmetic

Naofumi Homma

Tohoku University, Japan

Formal processor design?

- Formal description and verification at front-end design
- Goal: circuit description whose function is completely guaranteed

- N. Homma et. al., "A Formal Approach to Designing Cryptographic Processors Based on GF(2^m) Arithmetic Circuits," IEEE Transactions on Information Forensics & Security, February 2012.
- Kazuya Saito, et. al., "A Formal Approach to Designing Arithmetic Circuits over Galois Fields Using Symbolic Computer Algebra," The 17th Workshop on Synthesis And System Integration of Mixed Information technologies, March 2012.
- Kazuya Saito, et. al., "A Graph-Based Approach to Designing Multiple-Valued Arithmetic Algorithms," The 41st International Symposium on Multiple Valued Logic, May 2011.

Why formal design?

- Galois-Field Arithmetic Circuit Graph: GF-ACG
- Formal verification using computer algebra
- Application to AES processor design
- Conclusions

Arithmetic circuits over Galois fields

Demands of high security and reliable systems

Cryptography, Error correction code

- Arithmetic operations over
 - Galois Fields (GF)
- ASIC implementation

GFs used in the ISO/IEC18033 standard cryptosystems

Public key ciphers		Symmetric key ciphers			
		Block ciphers		Stream ciphers	
ECIES-KEM	PSEC-KEM	AES	Camellia	MUGI	SNOW2.0
GF(2 ¹⁶⁰)~, GF(p) (log ₂ p>160)		GF(2 ⁸)	GF(2 ⁸), GF((2 ⁴) ²)	GF(2 ⁸)	GF((2 ⁸) ⁴)

Difficulties in designing GF arithmetic circuits GSIS, TOHOKU UNIVERSITY

Design issues

Lowest level description using logical expressions

- GF arithmetic is not supported in high-level design environments
 - Describe any basic operation by gates
 - Huge AND-XOR expressions
- Huge simulation times due to long operands
 - Impossible to simulate all input patterns in practical applications
 - Monte Carlo Test assuming no corner-case
- Test bench program might include a bug
 Not intuitive, Hard to visual confirmation

Necessity of complete verification

- Any corner case is not allowed in critical systems
 Software in critical system is usually verified formally
- Complete verification is in high demand for cryptographic hardware
 - Variety of circuit architectures
 - Optimizations depending on specifications
 - Countermeasures against physical attacks

e.g. Architectures for SubBytes and Mixcolumns in AES: Table S-box (Enc), Composite-field S-box (Enc), Composite-field inversion (Enc), Composite S-box (Enc+Dec), Mix+InvMix, Composite-field InvMix+InvAffine, Sbox with random masking, Mix with random masking...

Bugs (or initial failures) in crypto processors could severely compromise the security [CRYPTO '08]

Formal verification of arithmetic circuits

- Formal verification: Mathematically check the equivalence between specification and circuit description
- Conventional methods for integer arithmetic circuits Decision diagrams Moment diagrams Word-level DDs, *BMDs Not suitable or not applicable for describing GF arithmetic circuits

Binary Decision Diagram (BDD) *Binary Moment Diagram (*BMD)

Example of BDD for GF(2⁴) multiplier

 $Z[3:0] = X[3:0] \times Y[3:0]$

Conventional works for GF arithmetic circuits

- Formal verification of GF(2^m) circuits [Morioka '01]
 Positive Polarity Reed-Muller (PPRM) representation for equivalence checking
 - Successful verification of decoder in ECC circuit
- Extension to GF((2^m)ⁿ) arithmetic [Mukhopadhyay '07]
 Hierarchical design approach
- Formal verification of AES software [Slobodova '08]
 Verification on extended CPU instruction set

This work

Formal design of *GF(p^m)* arithmetic circuits and its application to cryptographic hardware design
 Arithmetization + Hierarchical design approach
 GF-ACG: Galois-Field Arithmetic Circuit Graph
 Formal verification using computer algebra

Why formal design?

Galois-Field Arithmetic Circuit Graph: GF-ACG

- Formal verification using computer algebra
- Application to AES processor design
- Conclusions

Extension fields

- Galois field of order p^m : $GF(p^m)$ p: prime number
- Each element is a polynomial over GF(p)
- Addition and multiplication are performed modulo irreducible polynomial *IP* of degree *m*

□ e.g., $GF(2^2) = \{0, 1, \beta, \beta + 1\}$ $IP = \beta^2 + \beta + 1$

Addition over <i>GF</i> (2 ²)		Multiplication over GF(2 ²)		
+	0 1 β $\beta+1$	\times 0 1 β $\beta+1$		
0	$0 1 \beta \beta+1$	0 0 0 0 0		
1	1 0 β +1 β	1 0 1 β $\beta+1$		
β	β β +1 0 1	$\beta 0 \beta \beta+1 1$		
β +1	β +1 β 1 0	β +1 0 β +1 1 β		

Basic ideas to represent GF arithmetic circuits

Arithmetization of all internal sub-functions in a GF circuit by variables and equations over GFs

$$x \rightarrow z = x \times y \rightarrow z \quad x, y, z \in (GF(2^4), (1,0))$$

 Any function including logic functions can be represented by arithmetic equations over GFs

Hierarchical design approach

Arithmetic circuits usually consist of sub-circuits that themselves compute arithmetic functions

How can we represent GFs formally?

Integer (e.g. binary number system)
 e.g., {0, 1, 2, 3,...} = {(00)₂, (01)₂, (10)₂, (11)₂,...}
 Represented with Weight and Digit-set vector

 II
 II
 (..., 2², 2¹, 2⁰)
 (..., {0, 1}, {0, 1}, {0, 1})

■ Galois field (e.g. $GF(2^2)$) e.g., {0, 1, β , β +1}= {(00)_{GF}, (01)_{GF}, (10)_{GF}, (11)_{GF}} □ Represented with Basis and Coefficient-set vector II II II (β^{m-1} , ..., β^1 , β^0) ({0, 1}, ..., {0, 1}, {0, 1})

□ Irreducible polynomial is required to define operations

Variables associated with Galois fields

Galois field: GF = (B, C, IP)

B: basis, C: coefficient-set vector, IP: irreducible polynomial

GF variables defined by GF and degree range (h, l)

e.g., GF variable x over $GF(2^4)$

 $GF(2^{4}) = \left(\left(\beta^{3}, \beta^{2}, \beta^{1}, \beta^{0}, \left(\{0,1\}, \{0,1\}, \{0,1\}, \{0,1\}\right), \beta^{4} + \beta^{1} + \beta^{0} \right) \right)$ degree range (h, l) = (1, 0)

 $x \in \{0,1,\beta,\beta+1\} = (GF(2^4),(1,0))$

GF-ACG: Galois Field Arithmetic Circuit Graph

$$\mathsf{GF-ACG}: G = (N, E)$$

- N: set of nodes
 Node: n = (F, G')
 -F: function (GF equation)
 -G': internal structure
 (GF-ACG)
- *E*: set of directed edges • Directed edge: $e = (n_s, n_d, x)$
 - $-n_{\rm s}$: source node
 - $-n_{\rm d}$: destination node
 - -x: GF variable

 G_0

X

Hierarchical design approach

Find hierarchical structure in arithmetic circuits

e.g., $GF(2^2)$ multiplier х х х х yV V y PPG PPG1 PPG0 $x \times y = t_0 + t_1$ Multiplier $\downarrow t_0$ $\downarrow t_1$ $z = x \times y$ ACC GFA $z = t_0 + t_1$ Z \overline{Z} ZZ**Highest** Lowest level level

Logic gates by GF-ACG

Pseudo logic variable GF variable on a GF(2)

 $GF(2) = ((\beta^0), (\{0, 1\}), nil)$

Representation of logic functions

$$NOT(u) = 1 - u$$

$$OR(u, v) = u + v - uv$$

$$AND(u, v) = uv$$

$$XOR(u, v) = u + v - 2uv$$

$$u, v = (Logic, (0,0), nil)$$

Idempotent conditions (property of logic signals): $v^2 = v, u^2 = u$

Examples of logic gates

AND gate

 $GF(2) = ((\beta^0), (\{0,1\}), nil)$ x, y, z \in (GF(2), (0,0))

$$\begin{array}{c|c} x \\ \hline \\ y \\ \hline \\ y \\ \hline \\ (z = x \times y, nil) \end{array} \begin{array}{c} x \\ z \\ \hline \\ z \\ \hline \end{array}$$

XOR gate

$$GF(2) = ((\beta^0), (\{0,1\}), nil)$$

x, y, z \in (GF(2), (0,0))

$$\begin{array}{c|c} x & n_1 = \\ y & (z = x + y - 2xy, \\ \hline nil) \end{array}$$

Logic circuit has no internal structure because the function is guaranteed by LSI manufacturer

Encoding function for GF(p) arithmetic

Mapping from GF variables to logic variables

Example of $x \in GF(2)$				
GF(2)	Logic			
0	0			
1	1			

Example of $x \in GF(3)$

GF(3)	Logic	
0	00	
1	01	
2	10	

$$x = L_0$$

$$\begin{cases} x = (L_1 - 1) L_0 + 2L_1 (L_0 - 1) \\ L_1 L_0 = 0 \end{cases}$$
variables

There are lowest-level nodes having encoding functions to transform GF and logic variables GSIS, TOHOKU UNIVERSITY

Why formal design?

- Galois-Field Arithmetic Circuit Graph: GF-ACG
- Formal verification using computer algebra
- Application to AES processor design
- Conclusions

Functional verification of arithmetic circuits

Formal verification: Formally (mathematically) check the equivalence between specification and implementation

Formal verification of GF-ACGs

Function is correct if the same function is derived from internal structure

Solve simultaneous algebraic equations for each node GSIS, TOHOKU UNIVERSITY

Example of verification

Method for solving simultaneous equations

Ideal

■ Ideal: Set of polynomials generated by a finite set of polynomials $P = \{p_0, p_1, ..., p_{n-1}\}$

$$I = \{a_0 p_0 + a_1 p_1 + \dots + a_{n-1} p_{n-1} \mid a_0, a_1, \dots, a_{n-1} \in R[x]\}$$

R[x]: set of entire polynomials, **P** : basis of ideal

Equivalent to solutions of simultaneous equations in P

- Solution for ideal membership problem using polynomial reduction
 - 1. Divide a polynomial f by the element of P repeatedly to get remainder r

 $f = q_0 p_0 + \cdots + q_{n-1} p_{n-1} + r$ (q₀, ..., q_{n-1}: quotients)

2. *f* is an element of an ideal *I* if r = 0

Polynomial reduction

Eliminate maximal term (or head term) repeatedly according to term ordering

Reduction result depends on reduction procedure GSIS, TOHOKU UNIVERSITY

Gröbner basis

Ideal membership problem is solved by polynomial reduction on computer GSIS, ТОНОКU UNIVERSITY

Polynomial reduction using Gröebner basis

- The reduction result can be uniquely determined
- If the result is 0, f can be represented by a combination of elements in P

Proposed verification method

Each node in GF-ACG is verified independently by the verification process

Evaluation of verification time

Comparison

- Proposed method using computer algebra
 - Software: Mathematica version 6.0
- Conventional method using logic simulation
 - HDL descriptions converted from GF-ACGs
 - Simulator: Verilog-XL

Experimental Condition

- Linux PC (Intel Xeon 3.00GHz, Memory 32GB)
- Mastrovito multiplier over GF(2^m)
- Extension degree (Operand length): 2-128

Verification time of $GF(2^m)$ multipliers

Why formal design?

- Galois-Field Arithmetic Circuit Graph: GF-ACG
- Formal verification using computer algebra
- Application to AES processor design
- Conclusions

AES (Advanced Encryption Standard)

Most popular block cipher

Round function is described by GF arithmetic
 Many modern ciphers are affected by AES

Functions in Round

SubBytes
$$s_{i,j} = \sum_{k=0}^{7} c_k \cdot a_{i,j}^{-2^k} + c_8$$

ShiftRows $t_{i,j} = s_{j,i+j \mod 4}$

MixColumns

$$m_{i,j} = \sum_{k=0}^{5} v_{i+k \mod 4} \cdot t_{k,j}$$

3

AddRoundKey
$$b_{i,j} = k_{i,j} + m_{i,j}$$

Round
$$b_{i,j} = k_{i,j} + \sum_{k=0}^{3} v_{i+k \mod 4} \cdot \left[\sum_{l=0}^{7} c_l \cdot a_{i,i+j \mod 4}^{-2^l} + c_8 \right]$$

Application to 128-bit AES processor design

GF-ACG for AES datapath

GF-ACG for AES datapath

GF-ACG for data randomization part

Evaluation of verification time

83 variables!

Graph pape	Num.	Verification time[sec]		
Graph hame		Composite field	Extension field	
AES datapath	1	697.15	711.67	
AddInitKey	1	1.47	1.40	
KeySchedule	1	0.58	0.60	
Rand datapath	1	0.49	0.44	
Rand sub-datapath	4	0.23	0.24	
SubBytes	4	158.01	3.24	
ShiftRows	4	0	0	
MixColumn Com	2) 0.60			
AddRoundkey	4		0	
Total	113	858.79	718.19	

Most time-consuming part is "AES datapath" at the highest level

 83 variables (16 1-byte inputs, 16 1-byte round keys, 16 1-byte outputs, 16 1-byte key outputs, 16 1-byte internal signals and 3 1-bit/1-byte control signals)

Inversion over composite field GF(((2²)²)²) can be verified

Other structures such as Table and GF(2⁸) multiplier are also possible

Complete verification of 128-bit AES datapath
 Common loop architecture with 128-bit inputs

- Extension of GF-ACGs to a wider variety of GFs
 Normal bases, Dual bases, etc.
- Hybrid verification approach with conventional DD-based approach
 - Combination of PPRM-based method and our method
- Applications to other cryptosystems
 Public-key (e.g. ECC) and block ciphers (e.g. CLEFIA)
 Countermeasures against physical attacks

 AES with random masking
- Automatic generation of GF arithmetic circuits

GF(2^m) multiplier generator on the Web

- Importance of formally-proofed GF arithmetic circuits is increasing as the application to security primitives increases
- Formal approach to designing GF arithmetic circuits based on GF-ACGs
 - **□** Formal verification using computer algebra
 - Design and verification of a 128-bit AES datapath
- There are many works to do in the future
 Research on formal method has a long history, but interest and demand for its application to cryptographic hardware have just increased

Thank you for your attention