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Formal processor design? 

Formal description and verification at 

front-end design 

Goal: circuit description whose function 

is completely guaranteed 
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Front-end design 

Back-end design 

module SD_MULTIPLIER(P, X, 
Y);

output TC P;
input TC X, Y;
constraint begin

P.high = 16; P.low = 0;
X.high = 7; X.low = 0;
Y.high = 7; Y.low = 0;

end
assertion P = X * Y;
structure begin

wire SD4_2 B;
wire SD2 PP[];
wire SD2 F;
constraint begin

B.high = 3; B.low = 0;
PP.high = 3; PP.low 
for (i, 0, 3) begin

PP[i].high = i*2
end
F.high = 15; F.low =

end
BOOTH_ENCODE U0 (B,Y);
PPG         
ACCUMULATE   U2 (F,PP);
SD2TC        U3 (P,F);

end
endmodule

Specification 

System/Architecture 

Functional simulation 

Logic synthesis 

Place and route 

Clock tree synthesis 

… 
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Outline 

Why formal design?  

Galois-Field Arithmetic Circuit Graph: GF-ACG 

 Formal verification using computer algebra 

 Application to AES processor design 

 Conclusions 
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Arithmetic circuits over Galois fields 

 Demands of high security and reliable systems 

 Cryptography, Error correction code 

– Arithmetic operations over  

   Galois Fields (GF) 

– ASIC implementation 
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Public key ciphers Symmetric key ciphers 

ECIES-KEM PSEC-KEM 

Block ciphers Stream ciphers 

AES Camellia MUGI SNOW2.0 

GF(2160)~, GF(p) (log2p>160) GF(28) GF(28),  

GF((24)2) 

GF(28) 

 

GF((28)4) 

 

GFs used in the ISO/IEC18033 standard cryptosystems 

Difficulties in designing GF arithmetic circuits 
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 Lowest level description using logical expressions 

 GF arithmetic is not supported in high-level design 

environments 

– Describe any basic operation by gates   
– Huge AND-XOR expressions 

 Huge simulation times due to long operands 

 Impossible to simulate all input patterns in practical 

applications 

 Monte Carlo Test assuming no corner-case 

 Test bench program might include a bug 

 Not intuitive,  Hard to visual confirmation 

Design issues 

6 
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 Any corner case is not allowed in critical systems 

 Software in critical system is usually verified formally 
 

 Complete verification is in high demand for 

cryptographic hardware 

 Variety of circuit architectures 

– Optimizations depending on specifications 

– Countermeasures against physical attacks 

e.g. Architectures for SubBytes and Mixcolumns in AES:  

Table S-box (Enc), Composite-field S-box (Enc), Composite-field inversion (Enc), 

Composite S-box (Enc+Dec), Mix+InvMix, Composite-field InvMix+InvAffine, S-

box with random masking, Mix with random masking… 

 Bugs (or initial failures) in crypto processors could 

severely compromise the security [CRYPTO ‘08] 
 

 

Necessity of complete verification 
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Formal verification of arithmetic circuits 
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 Formal verification: Mathematically check the 

equivalence between specification and circuit 

description 
 

 Conventional methods for  

     integer arithmetic circuits 

 Decision diagrams  

 Moment diagrams 

 Word-level DDs, *BMDs 

 Not suitable or not applicable  

    for describing GF arithmetic 

    circuits 

*Binary 

 Moment 

 Diagram 

(*BMD) 

Binary 

Decision 

Diagram 

(BDD) 
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Example of BDD for GF(24) multiplier 
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z[0] 
z[1] 

z[2] 
z[3] 

Z[3:0] = X[3:0] × Y[3:0] 
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Conventional works for GF arithmetic circuits 
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 Formal verification of GF(2m) circuits [Morioka ‘01] 

 Positive Polarity Reed-Muller (PPRM) representation 

for equivalence checking 

 Successful verification of decoder in ECC circuit 
 

 Extension to GF((2m)n) arithmetic [Mukhopadhyay ‘07] 

 Hierarchical design approach 
 

 Formal verification of AES software [Slobodova ‘08] 

 Verification on extended CPU instruction set 
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This work 

 Formal design of GF(pm) arithmetic circuits and its 

application to cryptographic hardware design 

 Arithmetization + Hierarchical design approach 

 GF-ACG: Galois-Field Arithmetic Circuit Graph 

 Formal verification using computer algebra 
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Logic Simulation 

Proposed method 

Verification time for  

GF(2m) multipliers 
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Outline 

Why formal design? 

Galois-Field Arithmetic Circuit Graph: GF-ACG 

 Formal verification using computer algebra 

 Application to AES processor design 

 Conclusions 
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Extension fields 

 Galois field of order pm: GF(pm)    p: prime number 

 Each element is a polynomial over GF(p) 

 Addition and multiplication are performed modulo  

irreducible polynomial IP of degree m 

 e.g.,  

 

  

12  IP 1,,1,0)2( 2  GF

＋  0 1 β β+1 

0 0 1 β β+1 

1 1 0 β+1 β 

β β β+1 0 1 

β+1 β+1 β 1 0 

×  0 1 β β+1 

0 0 0 0 0 

1 0 1 β β+1 

β 0 β β+1 1 

β+1 0 β+1 1 β 
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Multiplication over GF(22) Addition over GF(22) 
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Basic ideas to represent GF arithmetic circuits 

 Arithmetization of all internal sub-functions in a 

GF circuit by variables and equations over GFs 
 

 

 

 

– Any function including logic functions can be 

represented by arithmetic equations over GFs 
 

 

 

 Hierarchical design approach 

 Arithmetic circuits usually consist of sub-circuits that 

themselves compute arithmetic functions 
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z = x × y 
x 

y 
z ))0,1(),2((,, 4GFzyx 
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How can we represent GFs formally? 

 Integer (e.g. binary number system) 

e.g., {0, 1, 2, 3,…} = {(00)2, (01) 2, (10) 2, (11) 2,…} 

 Represented with Weight and Digit-set vector  

 

 
Galois field (e.g. GF(22)) 

     e.g., {0, 1, β, β+1}= {(00)GF, (01)GF, (10)GF, (11)GF} 

 Represented with Basis and Coefficient-set vector 

  

  

 Irreducible polynomial is required to define operations 
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=
 

=
 

(…, 22, 21, 20 ) (…, {0, 1}, {0, 1}, {0, 1}) 

(βm-1 , …, β1, β0 ) ({0, 1}, …, {0, 1}, {0, 1}) 

=
 

=
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Variables associated with Galois fields 

Galois field: GF=(B, C, IP) 

 
 
 

GF variables defined by GF and degree range (h, l) 
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B: basis, C: coefficient-set vector, IP: irreducible polynomial 

e.g., GF variable x over GF(24) 

    01401234 ,}1,0{},1,0{,}1,0{},1,0{,,,,)2(  GF

  ))0,1(),2((1,,1,0 4GFx  

degree range 
(h, l) = (1, 0) 
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 N: set of nodes 

 Node: n = (F, G’) 

– F: function (GF equation) 

– G’: internal structure  

   (GF-ACG) 
 

 E: set of directed edges 

 Directed edge: e = (ns, nd, x) 

– ns: source node 

– nd: destination node 

– x: GF variable 

GF-ACG: G = (N, E) 

GF-ACG: Galois Field Arithmetic Circuit Graph 

n0

n1 n2 n3

G0

G1

p0

p1

p2

p3

x

y

s0

s1 z

x

y z
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Highest 

level 

Lowest 

level 

Hierarchical design approach 

 Find hierarchical structure in arithmetic circuits  

e.g., GF(22) multiplier  
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Logic gates by GF-ACG 

19 

 Pseudo logic variable 

 GF variable on a GF(2) 

NOT(u) = 1 – u  

OR(u, v) = u + v – uv 

AND(u, v) = uv 

XOR(u, v) = u + v – 2uv 

u, v = (Logic, (0,0), nil) 

 Representation of logic functions 

GF(2) = ((β0), ({0, 1}), nil) 

Idempotent conditions 

(property of logic signals): 

  v2 = v, u2 = u 
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 AND gate 

 

 

 
 

 XOR gate 

 

 

 
 

Logic circuit has no internal structure because the function 

is guaranteed by LSI manufacturer 

Examples of logic gates 
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 

))0,0(),2((,,

)),1,0(),(()2( 0

GFzyx

nilGF



 

 

))0,0(),2((,,

)),1,0(),(()2( 0

GFzyx

nilGF


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Encoding function for GF(p) arithmetic 

Mapping from GF variables to logic variables 

21 

GF(2) Logic 

0 0 

1 1 

GF(3) Logic 

0 00 

1 01 

2 10 

Example of x ∈GF(2) 

x = L0 

Example of x ∈GF(3)  

x = (L1 – 1) L0 + 2L1 (L0  – 1) 

L1 L0  = 0 L0, L1: Pseudo logic 

variables 

There are lowest-level nodes having encoding 

functions to transform GF and logic variables 
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Outline 

Why formal design?  

Galois-Field Arithmetic Circuit Graph: GF-ACG 

 Formal verification using computer algebra 

 Application to AES processor design 

 Conclusions 
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Functional verification of arithmetic circuits 

Circuit 

implementation 

Circuit 

specification  

“Function” 

in node 

Formula 

manipulation 

“Internal structure” 

in node 

equal? 
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 Formal verification: Formally (mathematically) 

check the equivalence between specification 

and implementation 
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 Function is correct if the same function is 

derived from internal structure 

 

 

 
 
 

 

 

 

 

 

Solve simultaneous algebraic equations for 

each node 

 

Formal verification of GF-ACGs 
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z = x × y 
t0 +t1 = x × y 

z = t0 +t1  
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Example of verification 
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z = x × y t0 +t1 = x × y y  = y0 + y1 

t0  = x×y0 

t1  = x×y1 

 

z = t0 +t1  

t0,0 = x0×y0 

t0,1  = x1×y1 

x = x0 + x1  

t0 = t0.0 + t0,1  
t0 = t0.0 + t0,1  
t1 = t1.0 + t1,1  
z0 = t0,0 +t1.0  

z1 = t0,1 +t1.1  
z = z1 + z0  

z = t0 +t1  

Highest level Lowest level 

Hierarchical verification for each 

function and internal structure 



GSIS,  TOHOKU UNIVERSITY 

Method for solving simultaneous equations 

26 

Ideal membership 

problem 

 f is included in  

Ideal I generated 

by P? 

Equation 

Simultaneous  

equations Set of polynomials 

Computer algebra 

Polynomial 

GF-ACG 

Derivable? 

Same 

function? 

p0(x0,x1,…,xm-1)=0 

p1(x0,x1,…,xm-1)=0 
  

pn-1(x0 ,x1,…,xm-1)=0 

・
・
・ 

f(x0, x1,…, xm-1)=0 f(x0, x1,…, xm-1) 

P＝{p0, p1,…, pn-1} 
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Ideal 

 Ideal: Set of polynomials generated by a finite set of 
polynomials P={p0, p1,…, pn-1} 

 

 
 

 

 

 Equivalent to solutions of simultaneous equations in P 
 

 

 Solution for ideal membership problem using 
polynomial reduction 

1.Divide a polynomial f  by the element of P repeatedly 

to get remainder r  

  f = q0 p0 + ・・・ + qn-1 pn-1 + r        (q0,…,qn-1: quotients) 
 

2.  f  is an element of an ideal I if r = 0  
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]}[,,,|{ 110111100 xRaaapapapaΙ nnn   

R[x]: set of entire polynomials, P : basis of ideal 
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Polynomial reduction 

 Eliminate maximal term (or head term) 

repeatedly according to term ordering  
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p0 = ab-z 

f = x2+3xy+2y2-z 

P = { p0 ,p1, p2 } 

p1 = x+y-a 

p2 = x+2y-b 

x2+3xy+2y2-z 

ay-a2-z 

-ap1 

-by+a2-z 

-bp2 

-bp1 

ab-z 

-ap2 

0 

-p0 

ordering: x>y>a>b>z 

ax+2ay-z 

-2yp1 

2xy+ax+2y2-z 

-xp1 -xp2 

xy+bx+2y2-z 

bx+by-z 

-yp2 

e.g. 

f =p0+(x+2y)p1+ap2 

Reduction result depends on reduction procedure 
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Gröbner basis 

 Basis with good property (Church-Rosser property) 
 Reduction result is canonical 

– f is an element of an ideal ⇔ Reduction result is 0  

 Obtained from arbitrarily basis by finite steps 
(Buchberger’s algorithm) 

 

 

 

 
 

 

 

 

Ideal membership problem is solved by  

polynomial reduction on computer 
29 

p1 

f 

f’1 
f ’2 

f ’3 

f’4 

p2 p3 

p1 

p3 

p4 

p1 

p4 

p2 f f ’ 
g1 

g2 
g1 g3 

g4 

g4 g3 g2 

g4 
g3 

Gröbner  basis Common basis  

Finite 

steps  
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Polynomial reduction using Gröebner basis 

g1 = ab-z 

f = x2+3xy+2y2-z 

G = {g1 ,g2, g3} 

g2 = y+a-b 

g3 = x-2a+b 

x2+3xy+2y2-z 

3xy+(2a-b)x+2y2-z 

ab-z 

0 

(4a-b)y+4a2-4ab+b2-z 2y2-2a2+5ab-2b2-z 

-xg3 

-(3y+2a-b)g3 -2yg2 -3xg2 –(-a+2b)g3 

-g1 

-(2y-2a+2b)g2 -(4a-b)g2 

f = g1+(4a-b+2y) g2  

     +(x+3y+2a-b)g3 

30 
2008/7/29 ACA-2008 

 The reduction result can be uniquely determined  

 If the result is 0, f can be represented by a combination 

of elements in P  
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Proposed verification method 

31 

Calculate Gröbner basis GB from P  

using Buchberger’s algorithm 

Reduce the polynomial f by GB 

Reduction  

result is 0? 

Function is 

wrong 

Function is 

correct YES NO 

Input: function f  and internal structure P 

Each node in GF-ACG is verified independently 

by the verification process 
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Evaluation of verification time 

 Comparison  

 Proposed method using computer algebra 

– Software: Mathematica version 6.0 

 Conventional method using logic simulation 

– HDL descriptions converted from GF-ACGs 

– Simulator: Verilog-XL 
 

 

 Experimental Condition 

 Linux PC (Intel Xeon 3.00GHz, Memory 32GB) 

 Mastrovito multiplier over GF(2m) 

 Extension degree (Operand length): 2-128 
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Verification time of GF(2m) multipliers  

33 

GF(2128) multiplier were verified 

about 10 minutes 

GF(216) multiplier could not be 

verified 
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Outline 

Why formal design?  

Galois-Field Arithmetic Circuit Graph: GF-ACG 

 Formal verification using computer algebra 

 Application to AES processor design 

 Conclusions 
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AES (Advanced Encryption Standard) 

Most popular block cipher 

 Round function is described by GF arithmetic 

Many modern ciphers are affected by AES 

35 
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Functions in Round 

 SubBytes  

 

 ShiftRows 

 

MixColumns 

 

 AddRoundKey 

 

 Round 
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Application to 128-bit AES processor design 
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GF-ACG for AES datapath 
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GF-ACG for AES datapath 

 

39 



GSIS,  TOHOKU UNIVERSITY 40 

GF-ACG for data randomization part 
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Evaluation of verification time 

41 

Graph name Num. 
Verification time[sec] 

Composite field Extension field 

AES datapath 1 697.15 711.67 

  AddInitKey 1 1.47 1.40 

  KeySchedule 1 0.58 0.60 

  Rand datapath 1 0.49 0.44 

    Rand sub-datapath 4 0.23 0.24 

      SubBytes 4 158.01 3.24 

      ShiftRows 4 0 0 

      MixColumns 4 0.87 0.60 

      AddRoundKey 4 0 0 

Total 113 858.79 718.19 

83 variables! 

Composite field GF(((22)2)2) 
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Discussions 

Most time-consuming part is “AES datapath” at 

the highest level  

 83 variables (16 1-byte inputs, 16 1-byte round keys, 

16 1-byte outputs, 16 1-byte key outputs, 16 1-byte 

internal signals and 3 1-bit/1-byte control signals) 
 

 Inversion over composite field GF(((22)2)2) can 

be verified 

 Other structures such as Table and GF(28) multiplier 

are also possible 
 

 Complete verification of 128-bit AES datapath  

 Common loop architecture with 128-bit inputs 
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Future prospective 

 Extension of GF-ACGs to a wider variety of GFs  

 Normal bases, Dual bases, etc. 

 Hybrid verification approach with conventional 

DD-based approach 

 Combination of PPRM-based method and our method 

 Applications to other cryptosystems 

 Public-key (e.g. ECC) and block ciphers (e.g. CLEFIA) 

 Countermeasures against physical attacks 

– AES with random masking 

 Automatic generation of GF arithmetic circuits 
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GF(2m) multiplier generator on the Web 

 Automatic generation of GF(2m) multipliers for any 
irreducible polynomial 

 Generate only formally-proofed 

    HDL codes 

Verified HDL 

codes  

Generation &  

Verification 

 based on  

GF-ACGs 

CSA CSACSACSA CSACSA

CSACSACSA

CSA

CSA

CSA

CSACSA

CSA

CSA

module SD_MULTIPLIER(P, X, 
Y);

output TC P;
input TC X, Y;
constraint begin

P.high = 16; P.low = 0;
X.high = 7; X.low = 0;
Y.high = 7; Y.low = 0;

end
assertion P = X * Y;
structure begin

wire SD4_2 B;
wire SD2 PP[];
wire SD2 F;
constraint begin

B.high = 3; B.low = 0;
PP.high = 3; PP.low 
for (i, 0, 3) begin

PP[i].high = i*2
end
F.high = 15; F.low =

end
BOOTH_ENCODE U0 (B,Y);
PPG         
ACCUMULATE   U2 (F,PP);
SD2TC        U3 (P,F);

end
endmodule

Design specification 

Irreducible polynomial 

AMG: Arithmetic Module 

Generator 

Designers 
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Conclusions 

 Importance of formally-proofed  GF arithmetic 

circuits is increasing as the application to security 

primitives increases 
 

 Formal approach to designing GF arithmetic 

circuits based on GF-ACGs 

 Formal verification using computer algebra 

 Design and verification of a 128-bit AES datapath 
 

 There are many works to do in the future 

Research on formal method has a long history, but 

interest and demand for its application to 

cryptographic hardware have just increased 
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END 

Thank you for your attention 
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