
GSIS, TOHOKU UNIVERSITY

Toward Formal Design of Cryptographic

Processors Based on Galois Field Arithmetic

Naofumi Homma

Tohoku University, Japan

PROOFS, September 13, 2012

GSIS, TOHOKU UNIVERSITY

Formal processor design?

Formal description and verification at

front-end design

Goal: circuit description whose function

is completely guaranteed

2

Front-end design

Back-end design

module SD_MULTIPLIER(P, X,
Y);

output TC P;
input TC X, Y;
constraint begin

P.high = 16; P.low = 0;
X.high = 7; X.low = 0;
Y.high = 7; Y.low = 0;

end
assertion P = X * Y;
structure begin

wire SD4_2 B;
wire SD2 PP[];
wire SD2 F;
constraint begin

B.high = 3; B.low = 0;
PP.high = 3; PP.low
for (i, 0, 3) begin

PP[i].high = i*2
end
F.high = 15; F.low =

end
BOOTH_ENCODE U0 (B,Y);
PPG
ACCUMULATE U2 (F,PP);
SD2TC U3 (P,F);

end
endmodule

Specification

System/Architecture

Functional simulation

Logic synthesis

Place and route

Clock tree synthesis

…

GSIS, TOHOKU UNIVERSITY

References

 N. Homma et. al., “A Formal Approach to Designing Cryptographic

Processors Based on GF(2m) Arithmetic Circuits,” IEEE

Transactions on Information Forensics & Security, February 2012.

 Kazuya Saito, et. al., “A Formal Approach to Designing Arithmetic

Circuits over Galois Fields Using Symbolic Computer Algebra,“ The

17th Workshop on Synthesis And System Integration of Mixed

Information technologies, March 2012.

 Kazuya Saito, et. al., “A Graph-Based Approach to Designing

Multiple-Valued Arithmetic Algorithms,” The 41st International

Symposium on Multiple Valued Logic, May 2011.

3

GSIS, TOHOKU UNIVERSITY

Outline

Why formal design?

Galois-Field Arithmetic Circuit Graph: GF-ACG

 Formal verification using computer algebra

 Application to AES processor design

 Conclusions

4

GSIS, TOHOKU UNIVERSITY

Arithmetic circuits over Galois fields

 Demands of high security and reliable systems

 Cryptography, Error correction code

– Arithmetic operations over

 Galois Fields (GF)

– ASIC implementation

5

Public key ciphers Symmetric key ciphers

ECIES-KEM PSEC-KEM

Block ciphers Stream ciphers

AES Camellia MUGI SNOW2.0

GF(2160)~, GF(p) (log2p>160) GF(28) GF(28),

GF((24)2)

GF(28)

GF((28)4)

GFs used in the ISO/IEC18033 standard cryptosystems

Difficulties in designing GF arithmetic circuits

GSIS, TOHOKU UNIVERSITY

 Lowest level description using logical expressions

 GF arithmetic is not supported in high-level design

environments

– Describe any basic operation by gates
– Huge AND-XOR expressions

 Huge simulation times due to long operands

 Impossible to simulate all input patterns in practical

applications

 Monte Carlo Test assuming no corner-case

 Test bench program might include a bug

 Not intuitive, Hard to visual confirmation

Design issues

6

GSIS, TOHOKU UNIVERSITY

 Any corner case is not allowed in critical systems

 Software in critical system is usually verified formally

 Complete verification is in high demand for

cryptographic hardware

 Variety of circuit architectures

– Optimizations depending on specifications

– Countermeasures against physical attacks

e.g. Architectures for SubBytes and Mixcolumns in AES:

Table S-box (Enc), Composite-field S-box (Enc), Composite-field inversion (Enc),

Composite S-box (Enc+Dec), Mix+InvMix, Composite-field InvMix+InvAffine, S-

box with random masking, Mix with random masking…

 Bugs (or initial failures) in crypto processors could

severely compromise the security [CRYPTO ‘08]

Necessity of complete verification

7

GSIS, TOHOKU UNIVERSITY

Formal verification of arithmetic circuits

8

 Formal verification: Mathematically check the

equivalence between specification and circuit

description

 Conventional methods for

 integer arithmetic circuits

 Decision diagrams

 Moment diagrams

 Word-level DDs, *BMDs

 Not suitable or not applicable

 for describing GF arithmetic

 circuits

*Binary

 Moment

 Diagram

(*BMD)

Binary

Decision

Diagram

(BDD)

GSIS, TOHOKU UNIVERSITY

Example of BDD for GF(24) multiplier

9

z[0]
z[1]

z[2]
z[3]

Z[3:0] = X[3:0] × Y[3:0]

GSIS, TOHOKU UNIVERSITY

Conventional works for GF arithmetic circuits

10

 Formal verification of GF(2m) circuits [Morioka ‘01]

 Positive Polarity Reed-Muller (PPRM) representation

for equivalence checking

 Successful verification of decoder in ECC circuit

 Extension to GF((2m)n) arithmetic [Mukhopadhyay ‘07]

 Hierarchical design approach

 Formal verification of AES software [Slobodova ‘08]

 Verification on extended CPU instruction set

GSIS, TOHOKU UNIVERSITY

This work

 Formal design of GF(pm) arithmetic circuits and its

application to cryptographic hardware design

 Arithmetization + Hierarchical design approach

 GF-ACG: Galois-Field Arithmetic Circuit Graph

 Formal verification using computer algebra

11

Logic Simulation

Proposed method

Verification time for

GF(2m) multipliers

GSIS, TOHOKU UNIVERSITY

Outline

Why formal design?

Galois-Field Arithmetic Circuit Graph: GF-ACG

 Formal verification using computer algebra

 Application to AES processor design

 Conclusions

12

GSIS, TOHOKU UNIVERSITY

Extension fields

 Galois field of order pm: GF(pm) p: prime number

 Each element is a polynomial over GF(p)

 Addition and multiplication are performed modulo

irreducible polynomial IP of degree m

 e.g.,

12  IP 1,,1,0)2(2  GF

＋ 0 1 β β+1

0 0 1 β β+1

1 1 0 β+1 β

β β β+1 0 1

β+1 β+1 β 1 0

× 0 1 β β+1

0 0 0 0 0

1 0 1 β β+1

β 0 β β+1 1

β+1 0 β+1 1 β

13

Multiplication over GF(22) Addition over GF(22)

GSIS, TOHOKU UNIVERSITY

Basic ideas to represent GF arithmetic circuits

 Arithmetization of all internal sub-functions in a

GF circuit by variables and equations over GFs

– Any function including logic functions can be

represented by arithmetic equations over GFs

 Hierarchical design approach

 Arithmetic circuits usually consist of sub-circuits that

themselves compute arithmetic functions

14

z = x × y
x

y
z))0,1(),2((,, 4GFzyx 

GSIS, TOHOKU UNIVERSITY

How can we represent GFs formally?

 Integer (e.g. binary number system)

e.g., {0, 1, 2, 3,…} = {(00)2, (01) 2, (10) 2, (11) 2,…}

 Represented with Weight and Digit-set vector

Galois field (e.g. GF(22))

 e.g., {0, 1, β, β+1}= {(00)GF, (01)GF, (10)GF, (11)GF}

 Represented with Basis and Coefficient-set vector

 Irreducible polynomial is required to define operations

15

=

=

(…, 22, 21, 20) (…, {0, 1}, {0, 1}, {0, 1})

(βm-1 , …, β1, β0) ({0, 1}, …, {0, 1}, {0, 1})

=

=

GSIS, TOHOKU UNIVERSITY

Variables associated with Galois fields

Galois field: GF=(B, C, IP)

GF variables defined by GF and degree range (h, l)

16

B: basis, C: coefficient-set vector, IP: irreducible polynomial

e.g., GF variable x over GF(24)

    01401234 ,}1,0{},1,0{,}1,0{},1,0{,,,,)2( GF

 ))0,1(),2((1,,1,0 4GFx  

degree range
(h, l) = (1, 0)

GSIS, TOHOKU UNIVERSITY 17

 N: set of nodes

 Node: n = (F, G’)

– F: function (GF equation)

– G’: internal structure

 (GF-ACG)

 E: set of directed edges

 Directed edge: e = (ns, nd, x)

– ns: source node

– nd: destination node

– x: GF variable

GF-ACG: G = (N, E)

GF-ACG: Galois Field Arithmetic Circuit Graph

n0

n1 n2 n3

G0

G1

p0

p1

p2

p3

x

y

s0

s1 z

x

y z

GSIS, TOHOKU UNIVERSITY 18

Highest

level

Lowest

level

Hierarchical design approach

 Find hierarchical structure in arithmetic circuits

e.g., GF(22) multiplier

GSIS, TOHOKU UNIVERSITY

Logic gates by GF-ACG

19

 Pseudo logic variable

 GF variable on a GF(2)

NOT(u) = 1 – u

OR(u, v) = u + v – uv

AND(u, v) = uv

XOR(u, v) = u + v – 2uv

u, v = (Logic, (0,0), nil)

 Representation of logic functions

GF(2) = ((β0), ({0, 1}), nil)

Idempotent conditions

(property of logic signals):

 v2 = v, u2 = u

GSIS, TOHOKU UNIVERSITY

 AND gate

 XOR gate

Logic circuit has no internal structure because the function

is guaranteed by LSI manufacturer

Examples of logic gates

20

 

))0,0(),2((,,

)),1,0(),(()2(0

GFzyx

nilGF



 

 

))0,0(),2((,,

)),1,0(),(()2(0

GFzyx

nilGF



 

GSIS, TOHOKU UNIVERSITY

Encoding function for GF(p) arithmetic

Mapping from GF variables to logic variables

21

GF(2) Logic

0 0

1 1

GF(3) Logic

0 00

1 01

2 10

Example of x ∈GF(2)

x = L0

Example of x ∈GF(3)

x = (L1 – 1) L0 + 2L1 (L0 – 1)

L1 L0 = 0 L0, L1: Pseudo logic

variables

There are lowest-level nodes having encoding

functions to transform GF and logic variables

GSIS, TOHOKU UNIVERSITY

Outline

Why formal design?

Galois-Field Arithmetic Circuit Graph: GF-ACG

 Formal verification using computer algebra

 Application to AES processor design

 Conclusions

22

GSIS, TOHOKU UNIVERSITY

Functional verification of arithmetic circuits

Circuit

implementation

Circuit

specification

“Function”

in node

Formula

manipulation

“Internal structure”

in node

equal?

23

 Formal verification: Formally (mathematically)

check the equivalence between specification

and implementation

GSIS, TOHOKU UNIVERSITY

 Function is correct if the same function is

derived from internal structure

Solve simultaneous algebraic equations for

each node

Formal verification of GF-ACGs

24

z = x × y
t0 +t1 = x × y

z = t0 +t1

GSIS, TOHOKU UNIVERSITY

Example of verification

25

z = x × y t0 +t1 = x × y y = y0 + y1

t0 = x×y0

t1 = x×y1

z = t0 +t1

t0,0 = x0×y0

t0,1 = x1×y1

x = x0 + x1

t0 = t0.0 + t0,1
t0 = t0.0 + t0,1
t1 = t1.0 + t1,1
z0 = t0,0 +t1.0

z1 = t0,1 +t1.1
z = z1 + z0

z = t0 +t1

Highest level Lowest level

Hierarchical verification for each

function and internal structure

GSIS, TOHOKU UNIVERSITY

Method for solving simultaneous equations

26

Ideal membership

problem

 f is included in

Ideal I generated

by P?

Equation

Simultaneous

equations Set of polynomials

Computer algebra

Polynomial

GF-ACG

Derivable?

Same

function?

p0(x0,x1,…,xm-1)=0

p1(x0,x1,…,xm-1)=0

pn-1(x0 ,x1,…,xm-1)=0

・
・
・

f(x0, x1,…, xm-1)=0 f(x0, x1,…, xm-1)

P＝{p0, p1,…, pn-1}

GSIS, TOHOKU UNIVERSITY

Ideal

 Ideal: Set of polynomials generated by a finite set of
polynomials P={p0, p1,…, pn-1}

 Equivalent to solutions of simultaneous equations in P

 Solution for ideal membership problem using
polynomial reduction

1.Divide a polynomial f by the element of P repeatedly

to get remainder r

 f = q0 p0 + ・・・ + qn-1 pn-1 + r (q0,…,qn-1: quotients)

2. f is an element of an ideal I if r = 0

27

]}[,,,|{ 110111100 xRaaapapapaΙ nnn   

R[x]: set of entire polynomials, P : basis of ideal

GSIS, TOHOKU UNIVERSITY

Polynomial reduction

 Eliminate maximal term (or head term)

repeatedly according to term ordering

28

p0 = ab-z

f = x2+3xy+2y2-z

P = { p0 ,p1, p2 }

p1 = x+y-a

p2 = x+2y-b

x2+3xy+2y2-z

ay-a2-z

-ap1

-by+a2-z

-bp2

-bp1

ab-z

-ap2

0

-p0

ordering: x>y>a>b>z

ax+2ay-z

-2yp1

2xy+ax+2y2-z

-xp1 -xp2

xy+bx+2y2-z

bx+by-z

-yp2

e.g.

f =p0+(x+2y)p1+ap2

Reduction result depends on reduction procedure

GSIS, TOHOKU UNIVERSITY

Gröbner basis

 Basis with good property (Church-Rosser property)
 Reduction result is canonical

– f is an element of an ideal ⇔ Reduction result is 0

 Obtained from arbitrarily basis by finite steps
(Buchberger’s algorithm)

Ideal membership problem is solved by

polynomial reduction on computer
29

p1

f

f’1
f ’2

f ’3

f’4

p2 p3

p1

p3

p4

p1

p4

p2 f f ’
g1

g2
g1 g3

g4

g4 g3 g2

g4
g3

Gröbner basis Common basis

Finite

steps

GSIS, TOHOKU UNIVERSITY

Polynomial reduction using Gröebner basis

g1 = ab-z

f = x2+3xy+2y2-z

G = {g1 ,g2, g3}

g2 = y+a-b

g3 = x-2a+b

x2+3xy+2y2-z

3xy+(2a-b)x+2y2-z

ab-z

0

(4a-b)y+4a2-4ab+b2-z 2y2-2a2+5ab-2b2-z

-xg3

-(3y+2a-b)g3 -2yg2 -3xg2 –(-a+2b)g3

-g1

-(2y-2a+2b)g2 -(4a-b)g2

f = g1+(4a-b+2y) g2

 +(x+3y+2a-b)g3

30
2008/7/29 ACA-2008

 The reduction result can be uniquely determined

 If the result is 0, f can be represented by a combination

of elements in P

GSIS, TOHOKU UNIVERSITY

Proposed verification method

31

Calculate Gröbner basis GB from P

using Buchberger’s algorithm

Reduce the polynomial f by GB

Reduction

result is 0?

Function is

wrong

Function is

correct YES NO

Input: function f and internal structure P

Each node in GF-ACG is verified independently

by the verification process

GSIS, TOHOKU UNIVERSITY

Evaluation of verification time

 Comparison

 Proposed method using computer algebra

– Software: Mathematica version 6.0

 Conventional method using logic simulation

– HDL descriptions converted from GF-ACGs

– Simulator: Verilog-XL

 Experimental Condition

 Linux PC (Intel Xeon 3.00GHz, Memory 32GB)

 Mastrovito multiplier over GF(2m)

 Extension degree (Operand length): 2-128

32

GSIS, TOHOKU UNIVERSITY

Verification time of GF(2m) multipliers

33

GF(2128) multiplier were verified

about 10 minutes

GF(216) multiplier could not be

verified

GSIS, TOHOKU UNIVERSITY

Outline

Why formal design?

Galois-Field Arithmetic Circuit Graph: GF-ACG

 Formal verification using computer algebra

 Application to AES processor design

 Conclusions

34

GSIS, TOHOKU UNIVERSITY

AES (Advanced Encryption Standard)

Most popular block cipher

 Round function is described by GF arithmetic

Many modern ciphers are affected by AES

35

GSIS, TOHOKU UNIVERSITY

Functions in Round

 SubBytes

 ShiftRows

MixColumns

 AddRoundKey

 Round

36

 
 



 









3

0

7

0

8

2

4mod,4mod,,

k l

jiilkijiji cacvkb
l




 
7

0

8

2

,,

k

jikji cacs
k

4mod,, jijji st 




 
3

0

,4mod,

k

jkkiji tvm

jijiji mkb ,,, 

GSIS, TOHOKU UNIVERSITY

Application to 128-bit AES processor design

37

GSIS, TOHOKU UNIVERSITY

GF-ACG for AES datapath

38

GSIS, TOHOKU UNIVERSITY

GF-ACG for AES datapath

39

GSIS, TOHOKU UNIVERSITY 40

GF-ACG for data randomization part

GSIS, TOHOKU UNIVERSITY

Evaluation of verification time

41

Graph name Num.
Verification time[sec]

Composite field Extension field

AES datapath 1 697.15 711.67

 AddInitKey 1 1.47 1.40

 KeySchedule 1 0.58 0.60

 Rand datapath 1 0.49 0.44

 Rand sub-datapath 4 0.23 0.24

 SubBytes 4 158.01 3.24

 ShiftRows 4 0 0

 MixColumns 4 0.87 0.60

 AddRoundKey 4 0 0

Total 113 858.79 718.19

83 variables!

Composite field GF(((22)2)2)

GSIS, TOHOKU UNIVERSITY

Discussions

Most time-consuming part is “AES datapath” at

the highest level

 83 variables (16 1-byte inputs, 16 1-byte round keys,

16 1-byte outputs, 16 1-byte key outputs, 16 1-byte

internal signals and 3 1-bit/1-byte control signals)

 Inversion over composite field GF(((22)2)2) can

be verified

 Other structures such as Table and GF(28) multiplier

are also possible

 Complete verification of 128-bit AES datapath

 Common loop architecture with 128-bit inputs

42

GSIS, TOHOKU UNIVERSITY

Future prospective

 Extension of GF-ACGs to a wider variety of GFs

 Normal bases, Dual bases, etc.

 Hybrid verification approach with conventional

DD-based approach

 Combination of PPRM-based method and our method

 Applications to other cryptosystems

 Public-key (e.g. ECC) and block ciphers (e.g. CLEFIA)

 Countermeasures against physical attacks

– AES with random masking

 Automatic generation of GF arithmetic circuits

43

GSIS, TOHOKU UNIVERSITY

GF(2m) multiplier generator on the Web

 Automatic generation of GF(2m) multipliers for any
irreducible polynomial

 Generate only formally-proofed

 HDL codes

Verified HDL

codes

Generation &

Verification

 based on

GF-ACGs

CSA CSACSACSA CSACSA

CSACSACSA

CSA

CSA

CSA

CSACSA

CSA

CSA

module SD_MULTIPLIER(P, X,
Y);

output TC P;
input TC X, Y;
constraint begin

P.high = 16; P.low = 0;
X.high = 7; X.low = 0;
Y.high = 7; Y.low = 0;

end
assertion P = X * Y;
structure begin

wire SD4_2 B;
wire SD2 PP[];
wire SD2 F;
constraint begin

B.high = 3; B.low = 0;
PP.high = 3; PP.low
for (i, 0, 3) begin

PP[i].high = i*2
end
F.high = 15; F.low =

end
BOOTH_ENCODE U0 (B,Y);
PPG
ACCUMULATE U2 (F,PP);
SD2TC U3 (P,F);

end
endmodule

Design specification

Irreducible polynomial

AMG: Arithmetic Module

Generator

Designers

44

GSIS, TOHOKU UNIVERSITY

Conclusions

 Importance of formally-proofed GF arithmetic

circuits is increasing as the application to security

primitives increases

 Formal approach to designing GF arithmetic

circuits based on GF-ACGs

 Formal verification using computer algebra

 Design and verification of a 128-bit AES datapath

 There are many works to do in the future

Research on formal method has a long history, but

interest and demand for its application to

cryptographic hardware have just increased

45

GSIS, TOHOKU UNIVERSITY

END

Thank you for your attention

46

