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Physical Attacks

Cryptographic devices need to be protected.

Side-Channel Attacks

Passive attacks.
Power consumption, electromagnetic radiation, computation
time... may leak sensitive data.

Extra logic is required in order to mask the sensitive data or to
balance the leakage.
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Dual-rail Precharge Logic

Aims at making the device activity independent on the data
being processed.

A signal is represented by a pair of wires: T = 10, F = 01.
A cycle of computation alternates two phases:

precharge phase: propagation of NULL = {(0, 0)} through the
combinational part of the circuit.
evaluation phase: the data is processed by the combinational
part of the circuit.

Many proposals: WDDL, STTL, DRSL, BCDL, . . .
Possible vulnerabilities:

Glitches
Early evaluation
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Syntax

A combinational circuit is a directed acyclic graph of logical gates.

Combinational circuits
Let G be a set of logical gates.
We define by induction the set of combinational circuits over G:

P,Q ::= 0 | g | I | Y | X | P ||Q | P ; Q
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Syntax

A combinational circuit is a directed acyclic graph of logical gates.

Combinational circuits
Let G be a set of logical gates.
We define by induction the set of combinational circuits over G:

P,Q ::= 0 | g | I

| Y | X | P ||Q | P ; Q
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Syntax

A combinational circuit is a directed acyclic graph of logical gates.

Combinational circuits
Let G be a set of logical gates.
We define by induction the set of combinational circuits over G:

P,Q ::= 0 | g | I | Y

| X | P ||Q | P ; Q

a fork
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Syntax

A combinational circuit is a directed acyclic graph of logical gates.
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Syntax

A combinational circuit is a directed acyclic graph of logical gates.

Combinational circuits
Let G be a set of logical gates.
We define by induction the set of combinational circuits over G:
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Syntax

A combinational circuit is a directed acyclic graph of logical gates.

Combinational circuits
Let G be a set of logical gates.
We define by induction the set of combinational circuits over G:

P,Q ::= 0 | g | I | Y | X | P ||Q | P ; Q

P Q sequential composition
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Well-formedness

Circuit with n inputs and m outputs

T (g) = (n,m)

g : n ⊗m
g ∈ G

0 : 0⊗ 0 I : 1⊗ 1 Y : 1⊗ 2 X : 2⊗ 2

P1 : n1 ⊗m1 P2 : n2 ⊗m2

P1 ||P2 : n1 + n2 ⊗m1 + m2

P1 : n ⊗m P2 : m ⊗ p

P1 ; P2 : n ⊗ p
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Example: a half-adder

G = {AND,XOR}

Half :=(Y ||Y) ; (I ||X || I) ; (AND ||XOR)

Half is a combinational circuit with 2 inputs and 2 outputs, i.e.
Half : 2⊗ 2.
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Preliminary definitions

Alphabet, words, concatenation.
An alphabet Σ is a finite set of letters.
A word u over Σ is a finite sequence of letters u = u1 · · · un where
ui ∈ Σ.
The set of words over Σ is noted Σ∗.
The integer n is the length of u and noted |u|.
The empty word is noted ε and is the unique word of length 0.
The set of words of length n is noted Σn.
The concatenation of u = u1 · · · un and v = v1 · · · vm is defined
u • v := u1 · · · unv1 · · · vm.
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Formal semantics

C computes y on input x

The semantics of circuits is given by a relation of Σ∗ × Σ∗.

x ∈ Σ∗ E(g)(x) = y ∈ Σ∗

g  x  y
g ∈ G

0  ε ε

I  a a
a ∈ Σ

Y  a aa
a ∈ Σ

X  ab  ba
a, b ∈ Σ

P1  x1  y1 P2  x2  y2

P1 ||P2  x1 • x2  y1 • y2

P1  x  y P2  y  z

P1 ; P2  x  z
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E(g) is a partial function Σ∗ ⇀ Σ∗, defined consistently w.r.t. the
typing function.
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Formal semantics

C computes y on input x

The semantics of circuits is given by a relation of Σ∗ × Σ∗.
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g  x  y
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Structural congruence

≡ identifies circuits that only differ in some minor wiring details.
It is the smallest congruence that satisfies the following equations:

(P1 ||P2) ||P3 ≡ P1 || (P2 ||P3)

P || 0 ≡ 0 ||P ≡ P

(P1 ; P2) ; P3 ≡ P1 ; (P2 ; P3)

If P : n ⊗m then In ; P ≡ P ; Im ≡ P

If P1 : n ⊗m and P2 : m ⊗ p then
(P1 ; P2) || (P3 ; P4) ≡ (P1 ||P3) ; (P2 ||P4)

Y ; (I ||Y) ≡ Y ; (Y || I)
Y ; X ≡ Y
X ; X ≡ I || I
X ; (Y ||Y) ≡ (Y ||Y) ; (I ||X || I) ; (X ||X) ; (I ||X || I)
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Some results

If P : n ⊗m and P : n′ ⊗m′ then n = n′ and m = m′.
If P ≡ Q then P : n ⊗m ⇐⇒ Q : n ⊗m.
If P  x  y then P : |x | ⊗ |y |.
If P : n ⊗m and P  x  y then |x | = n and |y | = m.
If P : n ⊗m then for any x such that |x | = n there exists y
such that P  x  y .
If P  x  y and P  x  z then y = z .
' is a congruence.
If P and Q are ill-formed then P ' Q.
≡⊆'.
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Definitions
In the following, let Σ = {0, 1}.
We pose T = 10, F = 01, N = 00 et E = 11.
NULL = {N}, VALID = {T ,F}, FAULT = {E}.

Let � be the partial order defined by:

N

T F

Let ∼ be the equivalence relation on Σ2 whose equivalence
classes are NULL, VALID and FAULT.
We extend these definitions to words of even length.
For u ∈ Σ∗, we let [u] ∈ VALID∗ be the corresponding word
in dual-rail logic.
example: [0110] = FTTF = 01101001
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Transformation process

a
b

s ⇒
at
bt

af
bf

st

sf

a s ⇒ at
sfaf
st a a ⇒ at at

af af

a

ab

b ⇒
at

at
af

af
bt

bt

bf

bf a
a

a
⇒ at

at

ataf

af

af

P

Q
⇒

JPK

JQK

P Q ⇒ JPK JQK
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Properties

JPK fulfils the DPL invariants.

If JPK  x  y and x ∈ NULL∗ then y ∈ NULL∗.
If JPK  x  y and x ∈ VALID∗ then y ∈ VALID∗.

The transformation is sound.
If P  x  y then JPK  [x ] [y ].

No glitches are possible.

JPK  x  y
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Interpretation of �

� models the transition of signals from precharge state (NULL) to
evaluation state (VALID).

t

at

af

bt

bf

2012 All rights reserved | Public document, property of Secure-IC S.A.S.



Interpretation of �

� models the transition of signals from precharge state (NULL) to
evaluation state (VALID).

t

at

af

bt

bf

NN

2012 All rights reserved | Public document, property of Secure-IC S.A.S.



Interpretation of �

� models the transition of signals from precharge state (NULL) to
evaluation state (VALID).

t

at

af

bt

bf

NN TN

2012 All rights reserved | Public document, property of Secure-IC S.A.S.



Interpretation of �

� models the transition of signals from precharge state (NULL) to
evaluation state (VALID).

t

at

af

bt

bf

TN TF

2012 All rights reserved | Public document, property of Secure-IC S.A.S.



Properties

JPK fulfils the DPL invariants.

If JPK  x  y and x ∈ NULL∗ then y ∈ NULL∗.
If JPK  x  y and x ∈ VALID∗ then y ∈ VALID∗.

The transformation is sound.
If P  x  y then JPK  [x ] [y ].

No glitches are possible.

JPK  x  y

x ′
�

2012 All rights reserved | Public document, property of Secure-IC S.A.S.



Properties

JPK fulfils the DPL invariants.

If JPK  x  y and x ∈ NULL∗ then y ∈ NULL∗.
If JPK  x  y and x ∈ VALID∗ then y ∈ VALID∗.

The transformation is sound.
If P  x  y then JPK  [x ] [y ].

No glitches are possible.

JPK  x  y

JPK  x ′  y ′
�

2012 All rights reserved | Public document, property of Secure-IC S.A.S.



Properties

JPK fulfils the DPL invariants.

If JPK  x  y and x ∈ NULL∗ then y ∈ NULL∗.
If JPK  x  y and x ∈ VALID∗ then y ∈ VALID∗.

The transformation is sound.
If P  x  y then JPK  [x ] [y ].

No glitches are possible.

JPK  x  y

JPK  x ′  y ′
� �

2012 All rights reserved | Public document, property of Secure-IC S.A.S.



Outline

1. Introduction

2. Combinational Circuits
1. Language
2. Formal semantics, equivalences

3. Formalisation of WDDL and BCDL
1. Preliminaries
2. WDDL
3. BCDL

4. Discussion

5. Conclusion

2012 All rights reserved | Public document, property of Secure-IC S.A.S.



Transformation process
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Properties

JPK fulfils the DPL invariants.

If JgK  1x  y then y ∈ NULL∗.
If JPK  1̂x  y and x ∈ NULL∗ then y ∈ NULL∗.
If JPK  0̂x  y and x ∈ VALID∗ then y ∈ VALID∗.

The transformation is sound.
If P  x  y then JPK  0̂[x ] [y ].

No glitches are possible.
If JPK  p̂x  p̂y , x � x ′ and JPK  p̂x ′  p̂y ′ then y � y ′.
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Properties

There is no early-evaluation.
If JPK  0̂x  y and y ∈ VALID∗ then x ∈ VALID∗.
(provided that P does not contain gates with 0 outputs)

The transformation is complete.
If JPK  0̂x ′  y ′ and y ′ ∈ VALID∗ then
there exists x , y such that x ′ = [x ], y ′ = [y ] and P  x  y .
(provided that P does not contain gates with 0 outputs)

The secured circuit behaves the same on equivalent inputs.

JPK  p̂x  y
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There is no early-evaluation.
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(provided that P does not contain gates with 0 outputs)

The transformation is complete.
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(provided that P does not contain gates with 0 outputs)

The secured circuit behaves the same on equivalent inputs.
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Interpretation of ∼

∼ equates words which have the same amount of information, i.e.
in which corresponding dual-rail signals have the same nature.
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Properties

There is no early-evaluation.
If JPK  0̂x  y and y ∈ VALID∗ then x ∈ VALID∗.
(provided that P does not contain gates with 0 outputs)
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Back to WDDL

at
bt

af
bf

st

sf

The ANDWDDL gate suffers from early-evaluation.
x = 0100 6∈ VALID∗ and y = 01 ∈ VALID∗

The ANDWDDL gate behaves differently on equivalent inputs.
x = 0100 ∼ x ′ = 1000 and y = 01 � y ′ = 00
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Discussion
at
bt

af
bf

st

sf

BCDL fixes WDDL by adding a synchronisation barrier.
How to address the race between the synchronisation signal
and the data signals? (DRSL vulnerability)
How to discriminate this circuit?
Measure the activity of circuits and show that the activity of a
circuit is constant on equivalent inputs, i.e.

x ∼ x ′ ⇒ µC (x) = µC (x ′)
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Summary

We defined a calculus to describe combinational circuits.

We defined formally WDDL and BCDL securisation process.
We proved the correctness of these two transformations.
Regarding security properties, we identified some necessary
conditions to fulfil.
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Perspectives

Apply the model to other dual-rail styles.

Refine the model.
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The End

Thank You
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Rotations

On words
−→ε = ε and, for a ∈ Σ, u ∈ Σ∗, −→ua = au
←−ε = ε and, for a ∈ Σ, u ∈ Σ∗, ←−au = ua
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Rotations

On words
−→ε = ε and, for a ∈ Σ, u ∈ Σ∗, −→ua = au
←−ε = ε and, for a ∈ Σ, u ∈ Σ∗, ←−au = ua

We define by induction on n ∈ N the circuit rorn:

ror0 := 0
ror1 := I

rorn+2 :=(In ||X) ; (rorn+1 || I)

We have
rorn  x  y ⇐⇒ |x | = n ∧ y = −→x
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←−ε = ε and, for a ∈ Σ, u ∈ Σ∗, ←−au = ua

We define by induction on n ∈ N the circuit roln:

rol0 := 0
rol1 := I

roln+2 :=(roln+1 || I) ; (In ||X)

We have
roln  x  y ⇐⇒ |x | = n ∧ y =←−x
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Rotations

On words
−→ε = ε and, for a ∈ Σ, u ∈ Σ∗, −→ua = au
←−ε = ε and, for a ∈ Σ, u ∈ Σ∗, ←−au = ua

We also have that:
rorn ; roln ≡ In

roln ; rorn ≡ In
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Interleaving

On words
ε 9 ε := ε and for a, b ∈ Σ, u, v ∈ Σ∗, (au) 9 (bv) := ab(u 9 v)
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Interleaving

On words
ε 9 ε := ε and for a, b ∈ Σ, u, v ∈ Σ∗, (au) 9 (bv) := ab(u 9 v)

We define by induction on n ∈ N the circuit intn:

int0 := 0
intn+1 :=(I || rorn+1 || In) ; (I || I || intn)

We have

intn  x  y ⇐⇒ x = u • v ∧ |u| = |v | = n ∧ y = u 9 v
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Interleaving

On words
ε 9 ε := ε and for a, b ∈ Σ, u, v ∈ Σ∗, (au) 9 (bv) := ab(u 9 v)

We define by induction on n ∈ N the circuit unintn:

unint0 := 0
unintn+1 :=(I || I || unintn) ; (I || roln+1 || In)

We have

unintn  x  y ⇐⇒ y = u • v ∧ |u| = |v | = n ∧ x = u 9 v
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Interleaving

On words
ε 9 ε := ε and for a, b ∈ Σ, u, v ∈ Σ∗, (au) 9 (bv) := ab(u 9 v)

We also have that:
intn ; unintn ≡ I2n

unintn ; intn ≡ I2n
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